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Topic 3: Di↵erential Equations

1. Introduction. Definitions and classifications of ODEs

Most often decision agents take optimal actions sequentially and economic variables evolve along
time. Thus it is important to understand the tools of analysis and modeling of dynamical systems.
We are looking at functions x : R �! R or vector functions x : R �! Rn described by equations of
the form

d

dt
x(t) = f(t, x(t)),

possibly with an initial condition x(t0) = x0.

Objectives:
(1) To find x(t) in closed form or, if this is not possible,
(2) to study qualitative properties of x(t) (e.g. stability).
(3) To apply the above to economic modeling.

Notation:
• x is the independent or unknown variable and t the dependent variable; most often the

variable t is omitted;

• d

dt
x(t) ⌘ dx

dt
, x0(t), x0, ẋ(t), ẋ, x(1)(t), x(1).

• Higher order derivatives
dk

dtk
x(t) ⌘ x(k)(t). Special case k = 2, x00, ẍ, x(2).

• Other variables are possible, e.g.
d

dx
y(x), y0(x).

Definition 1.1. A one dimensional ordinary di↵erential equation (ODE) of order k is a relation of
the form

(1.1) x(k)(t) = f(t, x(t), x(1)(t), . . . , x(k�1)(t)).

Note that k is the highest derivative appearing in the equation.

Definition 1.2. A first order system of ordinary di↵erential equations is a relation of the form

(1.2) ẋ(t) = f(t,x(t)),

where x = (x1, . . . , xn

)0, f = (f1, . . . , fn

)0, x
i

: R �! R, f
i

: Rn+1 �! R, i = 1, . . . , n.

It is always possible to transform a kth order ODE into a first order system. Let us see how.
Suppose we have the kth order ODE

x(k)(t) = f(t, x(t), x(1)(t), . . . , x(k�1)(t))

and consider new functions defined by setting x1 = x, x2 = x0, . . . , x
k

= xk�1. Then the ODE
appears as the following first order system of di↵erential equations:

ẋ1 = x2,

ẋ2 = x3,
...

ẋ
k

= f(t, x1, x2, . . . , xk

).

Note that in this case f(t,x) = (x2, x3, . . . , xk

, f(t,x)). As an example, consider the second order
ODE

ẍ = ẋ2 � 2x� cos t.
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Let the new variable y = ẋ, Then the first order system equivalent to the original scalar equation is

ẋ = y,

ẏ = y2 � 2x� cos t.

Definition 1.3. A solution of the first order system (1.2) on an interval I ✓ R is a di↵erentiable
function x : I �! Rn such that x(t) 2 D for all t 2 I and ẋ(t) = f(t,x(t)) for all t 2 I.

Definition 1.4. An initial value problem or Cauchy problem for a first order system consists of
(1.2) together with a condition x(t0) = x0, where (t0,x0) 2 D.

Definition 1.5. An initial value problem or Cauchy problem for a kth order ODE consists of (1.1)
together with the conditions

x(t0) = x0, x0(t0) = x1, . . . , x
(k�1)(t0) = x

k�1,

where (t0, x0, x1, . . . , xk

) 2 D.

Thus,

ẋ = t sin x, x(0) = ⇡

is a Cauchy problem, as well as

ẍ = eẋ � tx, x(1) = 2, ẋ(1) = �1.

Under suitable conditions, a Cauchy admits a unique solution.

Definition 1.6.

• The ODE (1.2) is linear if for fixed t, the map x �! f(t,x) is linear.
• The ODE (1.2) is autonomous if f is independent of t.

Throughout these lecture notes it is assumed the continuity of the functions f and f .

2. Elementary integration methods of first order ODEs

Let us look at some particular cases where the scalar first order ODE

(2.1) ẋ(t) = f(t, x(t)), t 2 I ✓ R, Ian interval finite or infinite,

can be explicitly solved.

The simplest case is when f is independent of the solution itself, x. That is

ẋ(t) = f(t), t 2 I = [a, b] ✓ R.

Finding x leads to the integration problem.
The Fundamental Theorem of Calculus establishes that

x(t) = C +
Z

t

a

f(t) dt,

with C a constant. If we want the solution passing through (a, x0), then C = x0. Note that even in
this simple case the solution found can have little practical value, and the study of the qualitative
behavior can be more illuminating. Resorting to numerical approximations of the solution is another
interesting possibility.
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2.1. Separable equations.

Definition 2.1. A first order ODE is separable if f(t, x) = g(t)h(x), that is

ẋ(t) = g(t)h(x(t)).

Method of solution: Denoting H(x) and G(t) some antiderivatives of 1/h(x) and g(t) respectively,
observe the following steps (notice that H 0 = 1/h and G0 = g):

(i) Separation of variables:
ẋ

h(x)
= g(t),

(ii) Chain Rule:
d

dt
H(x(t)) =

d

dt
G(t),

(iii) Integration with respect to t: H(x(t)) = G(t) + C.

The expression obtained defines x implicitly. It is possible to prove that if h(x0) 6= 0, then the
solution defined by the implicit expression satisfying x(t0) = x0 is unique in a neighborhood of x0.
The constant C can be determined if an initial condition is fixed.

Example 2.2. To find the solution of the separable ODE ẋ = tx2, we start with

ẋ

x2
= t) dx

x2
= t dt)

Z
dx

x2
=

Z
t dt.

Integrating, we find

�x�1 =
t2

2
+ C.

Solving for x we get

x(t) = � 1
t

2

2 + C
.

Suppose that we want the solution passing through (0, 1); then

1 = x(0) = � 1
C
) C = �1,

thus

x(t) = � 1
t

2

2 � 1
.

The solution exists only in the interval [0,
p

2).

2.2. Exact equations. Integrating factors. Suppose we have a first order ODE of the form in
the form

(2.2) ẋ(t) = �P (t, x(t))
Q(t, x(t))

,

for some functions P , Q, such that Q(t, x) 6= 0 for every point (t, x) in some set D.

This is equivalent to Q(t, x)ẋ = �P (t, x), and interpreting
dx

dt
as a quotient (this has no sense,

of course, but it is useful and it works in this case) we can rewrite the ODE as

(2.3) P (t, x) dt + Q(t, x) dx = 0.

Consider now a function V of variables (t, x), of class C2 (the second order partial derivatives
exist and are continuous). The di↵erential of V is

dV =
@V

@t
dt +

@V

@x
dx.
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Suppose that it is possible to find a function V such that
@V

@t
= P.(2.4)

@V

@x
= Q.(2.5)

Then, the di↵erential of V

dV =
@V

@t
dt +

@V

@x
dx = P dt + Q dx = 0

along the solutions of the ODE. This means that V is constant. Thus we get that the solutions of
the ODE are given by the implicit equation:

V (t, x(t)) = C.

This important observation motivates the following definition.

Definition 2.3. The first order ODE (2.2) (or (2.3)) is exact in a neighborhood D of the point
(t0, x0) if Q(t0, x0) 6= 0 and there exists a function V of class C2 on D satisfying (2.4) and (2.5).

When is there a function V satisfying (2.4) and (2.5)? It both conditions were true, then
@2V

@x@t
=
@P

@x
.(2.6)

@2V

@t@x
=
@Q

@t
.(2.7)

Since the order of derivation does not matter for a C2 function,
@2V

@x@t
=

@2V

@t@x
,

we get the necessary (and su�cient) condition
@P

@x
(t, x) =

@Q

@t
(t, x).

Theorem 2.4. Assume that P and Q are C1 in a neighborhood D of the point (t0, x0). The necessary
and su�cient condition for (2.2) (or (2.3)) to be exact in D is

(2.8)
@P

@x
=
@Q

@t
in D.

Example 2.5. The equation (2t� x2) dt + 2tx dx = 0 is not exact, since
@P

@x
= �2x 6= 2x =

@Q

@t
.

However, the equation
(2t� x2) dt� 2tx dx = 0

is exact. Let us solve. Once we determine function V , the problem is finished. To find V , we begin
with (2.4)

@V

@t
= P (t, x) = 2t� x2.

Integrating with respect to t we get

(2.9) V (t, x) =
Z

(2t� x2) dt = t2 � tx2 +  (x),

where  is a function of x that we must determine using the other condition (2.5), that is,
@V

@x
= Q(t, x) = �2tx.
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Deriving in (2.9) with respect to x we get
@V

@x
= �2tx +  0(x)

and equating both expressions above
 0(x) = 0.

We choose  = 0. Hence, V (t, x) = t2 � tx2 and since the solution satisfies V (t, x(t)) = C, we have

t2 � tx2(t) = C ) x(t) = ±
r

t� C

t
(t 6= 0).

If the equation
P (t, x) dt + Q(t, x) dx = 0

is not already exact, we could multiply the equation by a non null function µ(t, x) such that the
equation

µ(t, x)P (t, x) dt + µ(t, x)Q(t, x) dx = 0
be exact. Then µ is called an integrating factor. Unfortunately, to find integrating factors is di�cult,
except in the two following cases:

(1) The quotient

a(t) =
@P

@x

� @Q

@t

Q
is independent of x. Then

µ(t) = e
�

a(t) dt

is an integrating factor.
(2) The quotient

b(x) =
@Q

@t

� @P

@x

P
is independent of t. Then

µ(x) = e
�

b(x) dx

is an integrating factor.

Example 2.6. The equation

(2.10) (t2 + x2) dt� 2tx dx = 0

is not exact, since @P/@x = 2x 6= �2x = @Q/@t. To find an integrating factor we consider the two
quotients:

@Q

@t
�

@P

@x

P
=
�4x

t2 + x2
,

@P

@x

� @Q

@t

Q
=

4x

�2tx
= �2

t
, independent of x.

Hence
µ(t) = e�

�
2/t = e�2 ln t = eln t

�2
= t�2

is an integrating factor. We multiply equation (2.10) by µ, transforming the ODE in an equivalent
one

t2 + x2

t2
dt +

✓
�2x

t

◆
dx = 0,

which is exact, since
@P

@x
=

2x

t2
=
@Q

@t
.
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Now we compute V using (2.4)

@V

@t
= P =

t2 + x2

t2
= 1 + x2t�2,

hence
V (t, x) =

Z
(1 + x2t�2) dt = t� x2t�1 +  (x).

Deriving with respect to x we have
@V

@x
= �2xt�1 +  0(x).

On the other hand, by (2.5)
@V

@x
= Q = �2

x

t
.

We obtain that  = 0, and the solution is given by

t� x(t)2t�1 = C.

2.3. Linear equations.

Definition 2.7. The first order ODE

ẋ(t) + a(t)x(t) = b(t)

is called linear. Here, a(t) and b(t) are given functions.

To solve the linear equation we proceed as follows. Let µ(t) = e
�

a(t) dt and multiply the equation
by µ(t) so that

(ẋ + a(t)x)µ(t) = b(t)µ(t).
Notice that µ̇(t) = a(t)µ(t) thus,

(ẋ(t) + a(t)x(t))µ(t) = ẋ(t)µ(t) + x(t)a(t)µ(t) = ẋ(t)µ(t) + x(t)µ̇(t) =
d

dt
(x(t)µ(t)).

Hence integrating
Z

d

dt
(x(t)µ(t)) dt =

Z
b(t)µ(t) dt ) x(t)µ(t) =

Z
b(t)µ(t) dt.

Solving for x(t) we find

(2.11) x(t) =
1

µ(t)

Z
b(t)µ(t) dt.

Recall that the integral symbol means a primitive plus an arbitrary constant. Since for any constant
t0 Z

t

t0

b(s)µ(s) ds

is a primitive of b(t)µ(t), we can write

x(t) =
1

µ(t)

✓Z
t

t0

b(s)µ(s) ds + C

◆
,

from which we can identify the constant C if we look for the solution satisfying x(t0) = x0:

x0 =
1

µ(t0)
C ) C = x0µ(t0),

(2.12) x(t) =
1

µ(t)

✓Z
t

t0

b(s)µ(s) ds + x0µ(t0)
◆

.

Hence we have proved the following result.
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Theorem 2.8. The unique solution of ẋ(t) + a(t)x(t) = b(t) passing through (t0, x0) is given by
(2.12).

Of course, it is not needed to remember the formula. We only need to understand the method
used to find it.

Example 2.9. Solve the Cauchy problem t2ẋ + tx = 1, t > 0, x(1) = 2.

Solution: First divide by the coe�cient of ẋ to have the standard form of the ODE

ẋ +
x

t
=

1
t2

.

We identify here a(t) = �1/t and b(t) = 1/t2. Since
R

a(t) dt = ln t, we have µ(t) = t. Using (2.11)
we get

x(t) =
1
t

Z
1
t2

t dt =
1
t

Z
1
t

dt =
1
t
(ln t + C).

This is the general solution. The individual solution passing through (1, 2) gives 2 = C, hence
x(t) = 1

t

(ln t + 2).

Example 2.10. Solve the linear equation ẋ+ ax = b with initial value x(t0) = x0, where a 6= 0 and
b are constants.

Solution: Here µ(t) = e
�

a dt = eat and from (2.11)

(2.13) x(t) = e�at

Z
beat dt = e�at

✓
b

a
eat + C

◆
=

✓
b

a
+ Ce�at

◆
.

Imposing x(t0) = x0 it is possible to determine the constant C as follows

x0 =
✓

b

a
+ Ce�at0

◆
) C =

✓
x0 �

b

a

◆
eat0

and plugging this value of C into the (2.13)

x(t) =
b

a
+

✓
x0 �

b

a

◆
e�a(t�t0).

For instance, the solution of the equation ẋ + 2x = 10 with x(0) = �1 is

x(t) = 5� 6e�2t.

2.4. Phase diagrams. The phase diagram of the autonomous equation ẋ = f(x) consists in a
drawing of the graph of function f in the plane (x, ẋ). The zeroes of f correspond to steady states,
stationary points or equilibrium points of the equation, that is, constant solutions of the autonomous
ODE.

Definition 2.11 (Stationary points). A stationary point of the autonomous ODE ẋ = f(x) is any
constant x0 satisfying f(x0) = 0.

Stationary points are important in the study of the behavior of the dynamics. Analyzing the
graph of f , one obtains information on whether the solutions are increasing or decreasing. If f > 0
in an interval, then x(t) increases in this interval, which can be indicated by an arrow of motion
pointing to the right. Similarly, if f < 0, then x(t) decreases in this interval and the arrow that
describes the motion of x points to the left.

For scalar ODEs, the sign of the f near a stationary point (if any) gives important information
on the behavior of the solution near that point. For systems the situation is more complicated, and
will be explored in next sections.

For now, we center on the scalar case, f : D �! R.
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As remarked above, a stationary point is a solution of the ODE, hence if we know that some
uniqueness of solutions criterium holds, then no solution can cross through x0. In the scalar case
we have the following, where we are assuming that the stationary point x0 is isolated:

• f > 0 on (a, x0) and f > 0 on (x0, b). The solution x converges to x0 from initial conditions
a < x0 < x0 and diverges of x0 from b > x0 > x0 (unstable solution);

• f > 0 on (a, x0) and f < 0 on (x0, b). The solution x converges to x0 from every initial
condition a < x0 < b (stable solution);

• f < 0 on (a, x0) and f > 0 on (x0, b). The solution x diverges of x0 from every initial
condition a < x0 < b (stable solution);

• f < 0 on (a, x0) and f < 0 on (x0, b). The solution x diverges of x0 from initial conditions
a < x0 < x0 and converges to x0 from b > x0 > x0 (unstable solution).

We can resume the above in the following: a stationary state x0 is locally asymptotically stable if
and only if there exists � > 0 such that for all x 2 (x0 � �, x0 + �), x 6= x0 we have

(x� x0)f(x) < 0

and it is unstable in the other case:
(x� x0)f(x) < 0.

Example 2.12. The ODE ẋ = f(x) = x3 � 2x2 � 5x + 6 has three equilibrium points f(x) = 0:
x0

1 = �2, x0
2 = 1 and x3

0 = 3. The function in negative in (�1,�2), positive in (�2, 1), negative in
(1, 3) and positive in (3,1). Hence,

x0
1 = �2 is unstable;

x0
2 = 1 is locally asymptotically stable;

x3
0 = 3 is unstable.
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3. Applications

Example 3.1 (Walras adjustment mechanism). Economic models often analyze rates of change of
economic variables. In equilibrium analysis the rate of change of the market price for commodity x
depends on excess demand E (demand quantity minus the supply quantity, E = D � S)

(3.1) ṗ(t) = E(p(t)),

where p is the price. This is a first order di↵erential equation, called the Walrasian price adjustment
mechanism. Note that E(p) > 0 implies that p rises, and E(p) < 0 that p falls. Suppose that
D(p) = b� ap and S(p) = � + ↵p, with a, b,↵, � > 0, with b > �; then

ṗ = b� � � (a + ↵)p.

This is a linear ODE with constant coe�cients. The solution is

p(t) = p(0)e�(a+↵)t +
b� �

a + ↵
(1� e�(a+↵)t)

=
✓

p(0)� b� �

a + ↵

◆
e�(a+↵)t +

b� �

↵ + a
.

The solution tends to the equilibrium solution p0 = b��

↵+a

> 0.

Example 3.2 (An asset pricing model). Let p(t) denote the price of an equity that pays dividend
D(t) dt, and let r denote the yield on a risk free bond. Consider an interval of time [t, ⌧ ]. The total
cash flow of the asset in interval [t, ⌧ ] is

R
⌧

t

D(s) ds, and the capital gain in p is p(⌧) � p(t). By a
non–arbitrage condition, the cash flow plus capital gains must be equal to earnings of keeping the
asset in the bank account, hence

Z
⌧

t

D(s) ds + p(⌧)� p(t) = p(t)er(⌧�t) � p(t).

Dividing by (⌧�t), taking limits as ⌧ ! t, assuming D is (right) continuous and applying L’Hospital
rule, we have

lim
⌧!t

R
⌧

t

D(s) ds

⌧ � t
=

0
0

= lim
⌧!t

D(⌧)
1

= D(t), (L’Hospital rule).

lim
⌧!t

p(⌧)� p(t)
⌧ � t

= ṗ(t), (Definition of derivative).

lim
⌧!t

er(⌧�t) � 1
⌧ � t

=
0
0

= lim
⌧!t

rer(⌧�t)

1
= r, (L’Hospital rule).

Then we get the linear ODE

(3.2) D(t) + ṗ(t) = rp(t) ) ṗ(t)� rp(t) = D(t),

which is the fundamental pricing equation.
Given dividends D(t), the price of the asset is driven by ODE (3.2). It is a linear equation that

can be solved using (2.12) with µ(t) = e�
�

r dt = e�rt to give

p(t) = ert

✓Z
t

0
�D(s)e�rs ds + p(0)

◆
.

Here, p(0) is the current price of the asset, and solving for it we find

p(0) = e�rtp(t) +
Z

t

0
D(s)e�rs ds.

Notice that we find that the price of the equity at time 0 equals the present value of future dividends
only if

lim
t!1

e�rtp(t) = 0.
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Supposing that this holds (the non–bubble condition), then price of the asset today is

p(0) =
Z 1

0
D(s)e�rs ds,

that is, the fundamental value of the equity equals the discounted sum of all future dividends from
t = 0 onwards.

Some examples: Which is the price of an asset that pays the constant amount of 1 dt euros
perpetually? It is

p(0) =
Z 1

0
e�rs ds =

1
r

lim
t!1

(1� e�rt) =
1
r
.

Which is the price of an asset that pays 1 dt euro up to t < 10 and then 2 dt euros forever if the
risk–free rate is r = 0.025? It is

p(0) =
Z 10

0
e�0.025s ds + 2

Z 1

10
e�0.025s ds

= 40(1� e�0.25) + 80 lim
t!1

(e�0.25 � e�0.025t)

= 40(1� e�0.25) + 80e�0.25 = 40(1 + e�0.25) = 71.152 euros.

Example 3.3 (Malthus’ model). The British economist Thomas Malthus (1766–1834) observed
that many biological populations increase at a rate proportional to the population, P , that is,

(3.3) Ṗ (t) = rP (t),

where the constant of proportionality r is called the rate of growth (r > 0) or decline (r < 0).
The mathematical model with r > 0 predicts that the population will grow exponentially for all
time. Malthus was led to this formulation by inspecting the census records of the United States,
which showed a doubling of population every 50 years. Since the means of subsistence were found to
increase in arithmetic progression, he argued that the earth could not feed the human population.
This point of view had a major impact on social philosophy in the 19th Century. It is immediate to
see that the solution is

P (t) = P (0)ert,

which is unique given the initial condition P (0). The solution shows exponential growth r > 0.
As an example, consider the population of the United States in 1800, that was recorded as 5.3

million. Taking r = 0.03 (which is a good approximation of the true rate of growth for years
around 1800) we get P (t) = 5.3e0.03t million for the population in year 1800 + t. For 1850 it
predicts P (50) = 23.75 million, whereas the actual population was 23.19. However, for 1900 it gives
P (100) = 106.45, but the actual population was 76.21. The model approximate the data for years
near the initial one, but the accuracy of the approximation diminishes over time because the increase
in population is not proportional to the population.

Example 3.4 (Verhulst’ model). The Belgian mathematician P.F. Verhulst (1804–1849) observed
that limitations on space, food supply or other resources will reduce the growth rate, precluding
exponential growth. He modified Eq. (3.3) replacing the constant r by a function r(P )

Ṗ (t) = r(P (t))P (t).

To choose an adequate r(P ) requires some thought. Verhulst supposed that encounters between
members of a population are of two kinds, cooperative and competitive. He took the view that
cooperation tends to increase, and competition tends to decrease, the population. Considering that
the encounters are more harmful than beneficial, population growth is conditioned by an amount
proportional to the number of harmful encounters. The probability that an individual has a chance
encounter with another is proportional to the size of the population. So the total number of encoun-
ters between all members is proportional to the number of people in the population. Thus Verhulst
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arrived to the formula

(3.4) Ṗ (t) = rP (t)� kP 2(t),

hence r(P ) = r � kP . This is also known as the logistic equation. It can be written

Ṗ (t) = r

✓
1� P (t)

K

◆
P (t),

where K = r/k. The constant r is called the intrinsic growth rate, and KB is the saturation level
or environmental carrying capacity.

The logistic equation (3.4) is separable and can be integrated explicitly (see the corresponding
problem set). Turning back to the example above about United States population, suppose that
K = 300 (this is close to the actual population of year 2009, and thus a very modest level for the
carrying capacity) and r = 0.03 (a good estimation of the intrinsic growth rate around 1800, but
far away from the actual intrinsic growth rate in year 2009). Recall that the initial data from year
1800 was 5.3. Using this we find P (50) = 22.38 and P (100) = 79.61, whereas the actual population
in 1900 was 79.61.

In Figure 8 it is represented P/K for a population model driven by the logistic equation with
r = 0.71, for several initial conditions. The thicker line is the solution with P (0) = 0.25K.

0 1 2 3 4 5 6 7 8

0.25

0.50

0.75

1.00

1.25

1.50

1.75

t

P/
K

Figure 8. P/K versus t for the logistic equation with r = 0.71.

Example 3.5 (Population with a threshold). Suppose now that when the population of a species
falls below a certain level, the species cannot sustain itself, but otherwise, the population follows
logistic growth. To describe this situation, we can consider the di↵erential equation (we omit t)

(3.5) Ṗ = �r

✓
1� P

A

◆ ✓
1� P

B

◆
P,

where 0 < A < B. The constant A is called the threshold of the population (we will see why
afterwards) and B is now the carrying capacity. There are three stationary points, P = 0, P = A
and P = B, corresponding to the equilibrium solutions P1(t) = 0, P2(t) = A and P3(t) = B,
respectively. From Figure 9, it is clear that P 0 > 0 for A < P < B. The reverse is true for y < A or
y > B. Consequently, the equilibrium solution P1(t) and P3(t) are asymptotically stable, and the
solution P2(t) is unstable. Notice that the population goes to extinction when P (0) < A, so we call
A the threshold of the population.
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In Figure 10 we graph several solutions to Ṗ = �0.25P (1�P )(1�P/3) using di↵erent values for
the initial population P0.When 0 < P (0) < 1, lim

t!1 P (t) = 0, and if 1 < P (0) < 3 or P (0) > 3,
then lim

t!1 P (t) = 3.

O
>> >><< <<

f(P )

A B P

Figure 9. Phase space in the population model with threshold.
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Figure 10. Several solutions in the population model with threshold.

Example 3.6 (The Solow model). The dynamic economic model of Solow (1956) marked the be-
ginning of modern growth theory. It is based on the following assumptions.

(1) Labour, L, growths at a constant rate n, i.e. L̇/L = n;
(2) All saving S = sY are invested in capital formation, I = K̇ + �K, where Y denotes income,

K capital and �, s 2 (0, 1] (� is capital depreciation):

sY = K̇ + �K.

(3) The production function F (L, K) depends on labor L and capital K, and shows constant re-
turns, F (�L, �K) = �F (K, L). A typical example is the Coob–Douglas production function
F (K, L) = AL↵K1�↵, ↵ 2 [0, 1]. Observe that taking � = L

Y = F (K, L) = F

✓
L

K

L
, L

◆
= LF

✓
K

L
, 1

◆
= Lf(k),

where k = K

L

and f(k) = F
�

K

L

, 1
�
.
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The fundamental dynamic equation of this growth model is obtained as follows:

k̇ =
d

dt

K

L
=

K̇L�KL̇

L2
=

K̇

L
� K

L

L̇

L

=
sLf(k)� �K

L
� kn = sf(k)� (� + n)k.

Thus, we have obtained that the per–capita capital moves according to the ODE

k̇ = sf(k)� (� + n)k.

Common assumptions are that the function f is increasing and strictly concave and that there
exists a maximal productive stock of capital, k

m

, that is, f(k) < k for k > k
m

and f(k) < k for
k < k

m

.
There are two steady states k̇ = 0, k = 0 and k = k

e

satisfying sf(k
e

) = (� + n)k
e

. The steady
state 0 is unstable and k

e

is stable. This can be seen in the figure below (� = � + n).

0

>>

k̇

ke

<<>>

sf(k)

�k

Figure 11. Phase diagram in the model of Solow.
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4. Second order linear ODEs

Definition 4.1. A second order linear ODEs is of the form

(4.1) ẍ + a1(t)ẋ + a0(t)x = b(t),

where a1, a0 and b are given functions. In the case that a1 and a0 are constant, then the ODE
is called of constant coe�cients (even if b is not constant). In the case b = 0, the ODE is called
homogeneous.

Definition 4.2. The general solution of (4.1) is the set of all its solutions; a particular solution is
any element of this set.

The space of solutions of the homogeneous ODE has the structure of a vector subspace.

Proposition 4.3. If x1 and x2 are solutions of the homogeneous ODE, then for any constants C1,
C2, x(t) = C1x1(t) + C2x2(t) is also a solution.

Theorem 4.4. The general solution of the complete ODE (4.1) is the sum of the general solution
of the homogeneous equation, x

h

, and a particular solution, x
p

:

x(t) = x
h

(t) + x
p

(t).

Next, we give a result that shows how to find the general solution x
h

for the equation with
constant coe�cients

(4.2) ẍ + a1ẋ + a0x = 0, a1, a0 constant.

Definition 4.5. The characteristic equation of (4.2) is

r2 + a1r + a0 = 0.

Theorem 4.6. Let r1, r2 be the solutions (real or complex) of the characteristic equation. Then,
the general solution of the homogeneous equation is of one of the following forms:

(1) r1 and r2 are both real and distinct,

x
h

(t) = C1e
r1t + C2e

r2t.

(2) r1 = r2 = r is real and of multiplicity two,

x
h

(t) = C1e
rt + C2te

rt.

(3) r1, r2 are complex conjugates, r1,2 = a± ib,

x
h

(t) = eat(C1 cos bt + C2 sin bt).

Example 4.7. Find the general solution of the following homogeneous equations.
(1) ẍ� x = 0; since r2 � 1 = 0 is the characteristic equation,

x
h

(t) = C1e
t + C2e

�t.

(2) ẍ� 4ẋ + 4x = 0; since r2 � 4r � 4 = (r � 2)2 = 0 is the characteristic equation,

x
h

(t) = C1e
2t + C2te

2t.

(3) ẍ + x = 0; since r2 + 1 = 0 is the characteristic equation, that has roots ±i (a = 0, b = 1),

x
h

(t) = C1 cos t + C2 sin t.

Now, to obtain the general solution of the complete equation, we need to give methods to obtain
particular solutions. This is possible only in some limited cases that are described next. Hence,
consider the equation with constant coe�cients

ẍ + a1ẍ + a0x = b(t),

where b(t) is:
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-: A polynomial P (t) = b
n

tn + · · · b1t + b0 of degree n = 0, 1, . . .;
-: An exponential beat;
-: Trigonometric b1 cos at + b2 sin at;
-: Product and sums of the above (e.g. (t2 � t + 1)e�t + 2 sin t).

Then, the a particular solution of the complete equation is of the form
-: x

p

(t) = B
n

tn + · · · B1t + B0 of degree n = 0, 1, . . .;
-: x

p

(t) = Beat;
-: x

p

(t) = B1 cos at + B2 sin at;
-: Product and sums of the above (e.g. (B2t2 + B1t + B0)e�t + D1 sin t + D2 sin t),

respectively.
The procedure to find x

p

is to substitute the guessed form for x
p

(depending of the structure of
b(t)) on the equation, and then to match coe�cients to obtain a linear systems for the unknown
constants B0, . . . Bn

.

Example 4.8. Find particular solutions of the following equations.
(1) ẍ� x = 2et/2 + e�t/2. We guess

x
p

(t) = B1e
t/2 + B2e

�t/2

and put into the equation (after obtaining ẋ
p

and ẍ
p

) to have

B1

4
et/2 +

B2

4
e�t/2 �B1e

t/2 �B2e
�t/2 = 2et/2 + e�t/2.

Then, B1 = �8/3 and B2 = �4/3.
(2) ẍ� 4ẋ + 4x = t2 � t. We guess

x
p

(t) = B2t
2 + B1t + B0.

We find ẋ
p

= 2B2t + B1 and ẍ
p

= 2B2 and substituting into the equation we obtain

2B2 � 8B2t� 4B1 + 4B2t
2 + 4B1t + 4B0 = t2 � t.

Hence, it must be
4B2 = 1

�8B2 + 4B1 = �1
2B2 � 4B1 + 4B0 = 0

9
=

; .

Solving, we get B0 = 1/8, B1 = 1/4 and B2 = 1/4.
(3) ẍ + x = te�t � 2. We guess

x
p

(t) = (B1t + B0)e�t + C.

We find ẋ
p

= B1e�t � (B1t + B0)e�t and ẍ
p

= �B1e�t + (B1t + B0)e�t � B1e�t and
substituting into the equation we get

�2B1e
�t + B0e

�t + B1te
�t + B1te

�t + B0e
�t + C = te�t � 2.

Hence,
C = �2

2B1 = 1
�2B1 + 2B0 = 0

9
=

;

implies C = �2, B1 = 1/2 and B0 = 1/2.

Definition 4.9. The Cauchy problem of the equation (4.1) consists in finding a solution satisfying
the initial conditions

x(t0) = x0, ẋ(t0) = x1.
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Example 4.10. Solve the Cauchy problem

ẍ� 4ẋ + 4x = t2 � t, x(0) = 1, ẋ(0) = 0.

As we know from examples above, the general solution of the complete equation is

x(t) = C1e
2t + C2te

2t +
1
8
t2 +

1
4
t +

1
4
.

We need to compute the derivative to use the condition imposed in ẋ(0).

ẋ(t) = 2e2t(C1 + C2t) + C2e
2t +

t

2
+

1
4
.

Then
x(0) = 1 = C1 + 1

8
ẋ(0) = 0 = 2C1 + C2 + 1

4

�
.

This linear system can be solved to obtain C1 = 7/8 and C2 = �2. The solution of the Cauchy
problem is thus

x(t) =
✓

7
8
� 2t

◆
e2t +

1
8
t2 +

1
4
t +

1
4
.

4.1. Stability of second order ODEs with constant coe�cients. Consider the equation

ẍ + a1ẋ + a0x = b,

where a1, a0 and b are constant with b 6= 0. Then x0 = b/a0 is an equilibrium state, since x(t) = b/a0

is a constant solution of the equation.
For the next result, recall that for a complex number z = ↵ + i�, ↵ is the real part, and that the

real part of a real number is the number itself.

Proposition 4.11. The equilibrium point x0 = b/a0 is globally asymptotically stable i↵ both roots
of the characteristic equation r2 + a1r + a0 = 0 have negative real parts.

Proof. We have two cases to consider:
(1) The roots are real. Then the general solution is

C1e
r1t + C2e

r2t +
b

a0

if r1 6= r2 or

C1e
rt + C2te

rt +
b

a0

if r1 = r2 = r. In both cases the exponential tends to 0 as t ! 1 i↵ the exponent is
negative. Moreover,

lim
t!1

tert = lim
t!1

t

e�rt

= lim
t!1

1
�re�rt

=
1
1 = 0.

Then, in both cases any solution tends to b/a0 i↵ r1 < 0 and r2 < 0.
(2) The roots are complex, ↵ + i�. Then the general solution is

e↵t(C1 cos �t + C2 sin bt) +
b

a0
,

that tends to b/a0 i↵ a < 0.
⇤

The next proposition gives an immediate criterium to check the sign of the real part of the roots
of the characteristic equation.

Proposition 4.12. The equilibrium point x0 = b/a0 is globally asymptotically stable i↵ a0 > 0 and
a1 > 0.
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Proof. Suppose that r1 and r2 are the roots of the equation (real or complex). Then

r2 + a1r + a0 = (r � r1)(r � r2) = r2 � (r1 + r2)r + r1r2,

from which we find

(4.3)
a1 = �(r1 + r2),
a0 = r1r2.

We have two cases to consider:
(1) The roots are real. Then, if b/a0 is g.a.s., both roots are negative, thus from (4.3) both a1

and a0 are positive. Reciprocally, if both a1 and a0 are positive, then a0 = r1r2 > 0 implies
r1, r2 > 0 or r1, r2 < 0. But we know a1 = �(r1 + r2) > 0, thus r1 + r2 < 0, and since both
roots have the same sign, both are negative.

(2) The roots are complex. Then, if b/a0 is g.a.s., the real part ↵ < 0. Hence a0 = �2↵ > 0
and

a1 = (↵ + i�)(↵� i�) = ↵2 + �2 > 0.

Reciprocally, if both a1 and a0 is positive (as we have just seen, when the there are complex
roots, a1 is necessarily positive), then ↵ = �a0/2 < 0.

⇤
Example 4.13. Study the asymptotic properties of the equation

ẍ + (4� a2)ẋ + (a + 1)x = 1, a 6= �1.

Solution: The equilibrium 1/(a + 1) is g.a.s. i↵ 4� a2 > 0 and a > �1. These conditions hold
i↵ |a| < 2 and a > �1, thereby the equilibrium is g.a.s. i↵ a 2 (�1, 2).
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5. Systems of first order ODEs

5.1. Linear systems. Consider the n–dimensional linear system of constant coe�cients

Ẋ(t) = AX(t) + B,

where

X(t) =

0

B@
x1(t)

...
x

n

(t)

1

CA , A =

0

B@
a11 . . . a1n

...
. . .

...
a

n1 . . . a
nn

1

CA , B(t) =

0

B@
b1
...

b
n

1

CA .

The unknowns are the functions x1(t), . . . , xn

(t). We are interested only in studying the stability
properties of the equilibrium points.

Definition 5.1. A constant vector X0 is an equilibrium point i↵ AX0 + B = 0.

To assure that only one equilibrium exists, we will impose in the following the condition

|A| 6= 0.

Then the equilibrium is given by
X0 = �A�1B.

Most often, it is better finding X0 by solving directly the algebraic system than using the inverse
matrix.

We center on the two dimensional case n = 2, that is, in systems of the form

(5.1)
⇢

ẋ = a11x + a12y + b1,

ẏ = a21x + a22y + b2.

where ����
a11 a12

a21 a22

���� 6= 0.

Let �1, �2 be the roots (real or complex) of the characteristic polynomial of A, that is, of the
equation

p
A

(�) = |A� �I2| = 0.

We have the following cases:
(1) �1 6= �2 are real (A is diagonalizable). Let v1 2 S(�1) and v2 2 S(�2) be eigenvectors.

Then, the general solution is

X(t) = C1e
�1tv1 + C2e

�2tv2 + X0.

(2) �1 = �2 = �.
(a) A is diagonalizable. Let v1,v2 2 S(�) two independent eigenvectors. Then, the general

solution is
X(t) = e�t(C1v1 + C2v2) + X0.

(b) A is not diagonalizable. Let v 2 S(�) the only independent eigenvector corresponding
to �, and let w another vector satisfying

(A� �I2)w = v.

Then, the general solution is

X(t) = e�t(C1v + C2w + C2tv) + X0.



45

(3) �1 = ↵ + i�, �2 = ↵ � i�, with � 6= 0. Then, there are non trivial vectors v and w such
that the general solution is3

X(t) = e↵tC1(w cos �t� v sin �t) + e↵tC2(w sin �t + v cos �t) + X0.

Using this we can deduce the asymptotic behavior of the solutions.
(1) �1 6= �2 are real.

(a) �1, �2 < 0. The equilibrium is globally asymptotically stable. It is called an stable
node.

(b) �1 < 0 < �2. The equilibrium is unstable, but solutions for which C2 = 0 converges
to X0. We say that X0 is a saddle point. Initial conditions X0 = (x0, y0) from which
the corresponding solution converges form the stable manifold, and it is given by the
eigenspace S(�1).

(c) �1, �2 > 0. The equilibrium is unstable. It is called an unstable node.
(2) �1 = �2 = �. The equilibrium is g.a.s. i↵ � < 0. In this case it is called an improper stable

node. In the case � > 0 the system is unstable. In the case � = 0, the system is in fact the
trivial system ẋ = 0, ẏ = 0, which is not interesting.

(3) �1 = ↵ + i�, �2 = ↵� i�, with � 6= 0. Notice that the two functions w cos �t� v sin �t and
w sin �t + v cos �t are periodic functions with period 2⇡/�
(a) The real part ↵ = 0. The solution oscillates around X0 with constant amplitude. It is

said that X0 is a center. It is stable, but not g.a.s.
(b) The real part ↵ < 0. The solution oscillates with a decreasing amplitude towards X0,

hence it is g.a.s. and it is called an spiral point.
Summarizing:

Theorem 5.2. The equilibrium point of the system (5.1) is stable if and only if the eigenvalues of
A have non–negative real parts; it is g.a.s. if and only if the eigenvalues have negative real parts.

Example 5.3. Determine the behavior of solutions near the origin for the system

ẋ = 3x� 2y,

ẏ = 2x� 2y.

Find the general solution.

Solution: The coe�cient matrix

A =
✓

3 �2
2 �2

◆

has characteristic equation ����
3� � �2

2 �2� �

���� = �2 � �� 2,

and therefore the eigenvalues are �1 and 2. Therefore the origin is an unstable saddle point.
To find the solution, we need the eigenvectors associated to the eigenvalues, and they are found

by solving the homogeneous system
✓

3� � �2
2 �2� �

◆ ✓
v1

v2

◆
=

✓
0
0

◆
.

3
The vectors can be obtained as solutions to the (complex) linear system (A � (↵ + i�)I2)(v + iw) = 0. We are

not interested in how to find these vectors, but it can be proved that they satisfy

�
(2A� ↵I2)

2
+ �

2
I2

⇥
v = 0, w =

1

�

(2A� ↵I2)v.
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For � = �1
4v1 � 2v2 = 0, 2v1 � v2 = 0.

and an eigenvector associated to �1 = �1 is v1 = (1, 2). When � = 2

v1 � 2v2 = 0, 2v1 � 4v2 = 0,

which gives v2 = (2, 1). The general solution to the system is
✓

x(t)
y(t)

◆
= C1e

�t

✓
1
2

◆
+ C2e

2t

✓
2
1

◆
.

Example 5.4. Determine the behavior of solutions near the origin for the system

Ẋ(t) =
✓

3 b
1 1

◆
X(t).

Solution: The characteristic equation is

�2 � 4� + (3� b) = 0.

The solutions are
�1 = 2 +

p
1 + b, �2 = 2�

p
1 + b.

Note that b < �1 implies that �1, �2 are both complex, with real part ↵ = 2 > 0, and that b � �1
gives �1 > 0 for all b, hence the origin is unstable for all b. However, �2 < 0 for b > 3, hence for
these values of b the origin is an unstable saddle point.

Example 5.5. Determine the behavior of solutions near the origin for the system

Ẋ(t) =
✓
�a �1
1 �a

◆
X(t).

Solution: The characteristic equation is

�2 + 2a� + a2 + 1 = 0,

with solutions
�1,2 =

1
2
(�2a±

p
4a2 � 4a2 � 4) = �a± i.

The real part is ↵ = �a, thus the origin is a g.a.s. spiral for a > 0, a center for a = 0 and it is an
unstable spiral for a > 0.

5.2. Nonlinear systems. Consider the two dimensional nonlinear system

(5.2)
ẋ = P (x, y),
ẏ = Q(x, y).

We want to study the stability properties of the equilibrium points of the system. We will use for
this a technique that consists in substituting the non–linear system for another that is linear, and
that constitutes a local approximation near the equilibrium point of the original system. Then, we
will apply, if possible, Theorem 5.2.

The linearization of the non–linear system around the equilibrium point (x0, y0) is the linear
system

(5.3)
u̇ =

@P

@x
(x0, y0) u +

@P

@y
(x0, y0) v,

v̇ =
@Q

@x
(x0, y0)u +

@Q

@y
(x0, y0) v.
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We call the matrix

A(x0, y0) =
✓

P
x

(x0, y0) P
y

(x0, y0)
Q

x

(x0, y0) Q
y

(x0, y0)

◆

the Jacobian matrix of the system (5.2).

Example 5.6. The system

ẋ = y � x,

ẏ = �y +
5x2

4 + x2

has three equilibrium points, that is, there are three solutions of the equations

0 = y � x,

0 = �y +
5x2

4 + x2
,

(0, 0), (1, 1) and (4, 4). The linearization of the system about the di↵eren equilibrium points can be
computed as follows. The partial derivatives are

P
x

(x, y) = �1, P
y

(x, y) = 1,

Q
x

(x, y) =
40x

(x2 + 4)2
, Q

y

(x, y) = �1.

Hence, the Jacobian matrices are

A(0, 0) =
✓
�1 1
0 �1

◆
, A(1, 1) =

✓
�1 1
8
5 �1

◆
, A(4, 4) =

✓
�1 1
2
5 �1

◆
,

and the associated linear systems are
(

u̇ = �u + v

v̇ = u� v
,

8
<

:

u̇ = �u + v

v̇ =
8
5
u� v

,

8
<

:

u̇ = �u + v

v̇ =
2
5
u� v

,

respectively. Hence, the linearization depends on the equilibrium point.

Theorem 5.7. Let (x0, y0) an isolated equilibrium point for the nonlinear system (5.2) and let
A = A(x0, y0) be the Jacobian matrix for linearization (5.3), with |A| 6= 0. Then (x0, y0) is an
equilibrium point of the same type as the origin (0, 0) for the linearization in the following cases.

(1) The eigenvalues of A are real, either equal or distinct, and have the same sign (node).
(2) The eigenvalues of A are real and have opposite signs (saddle).
(3) The eigenvalues of A are complex, but not purely imaginary (spiral)

Therefore, the exceptional case is when the linearization has a center. The structure for the
nonlinear system near the equilibrium points mirrors of the linearization in the non–exceptional
cases.

Example 5.8. The nonlinear system

ẋ = �y � x3, ẏ = x,

has Jacobian matrix

A =
✓

0 �1
1 0

◆

at the origin (0, 0), which has imaginary eigenvalues ±i, and hence (0, 0) is a center for the lineariza-
tion. This is the exceptional case in the theorem, thus we cannot assure that the nonlinear system
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had a center at (0, 0) based in the associated linear system. However, it is possible to show that
(0, 0) is an asymptotically stable spiral for the non–linear system.

Theorem 5.9. If (0, 0) is a globally asymptotically stable equilibrium point for (5.3), then it is
locally asymptotically stable for (5.2).

Example 5.10. Consider the nonlinear system

ẋ = 2x + 3y + xy, ẏ = �x + y � 2xy3,

which has an isolated critical point at (0, 0). The Jacobian matrix at the origin is

A =
✓
�2 3
�1 1

◆

and it has eigenvalues � 1
2 ± (

p
3

2 )i. Thus the linearization has an asymptotically stable spiral at
(0, 0), and thus the nonlinear system has an asymptotically stable spiral at (0, 0).

Example 5.11. The system (
ẋ = x(⇢1 � 1x)
ẏ = y(⇢2 � 2y)

models two populations governed by the logistic equation that does not interact to each other. Here
⇢

i

is the growth rate and ⇢
i

/
i

is the saturation level. When both species are present, they compete
for a limited amount of available food. To capture the e↵ect of competition, we modify the growth
rate factor by �↵1y and �↵2x respectively, where ↵

i

is a measure of the e↵ect of one of the species
on the other. The system modifies to

(
ẋ = x(⇢1 � 1x� ↵1y)
ẏ = y(⇢2 � 2y � ↵2x)

.

Suppose that ⇢1 = 1, ⇢2 = 0.75, 1 = 2 = 1, ↵1 = 1 and ↵2 = 0.5. There are four equilibrium
points: (0, 0) (extinction of both species), (0, 0.75) (extinction of population x), (1, 0) (extinction of
population y), and (0.5, 0.5) (long–term survival of both species).

Let us study the stability properties of the equilibrium points. The Jacobian matrix of the system
is

A = A(x, y) =
✓
�2x� y �x
�0.5y 0.75� 2y

◆
.

We analyze the qualitative behavior of the system around the equilibrium points. Recall that �(A)
denotes the set of eigenvalues of A.

• (0,0). �(A) = {1, 0.75}, thus the origin is an unstable node of both the linear and the
nonlinear system.

• (1,0). �(A) = {�1, 0.25} and it is a saddle point. The stable manifold is the line trough
(1, 0) in the direction v1 = (1, 0) and the unstable manifold is generated by v2 = (4,�5).
Every solution with the initial condition not in the stable manifold depart from (1, 0).

• (0,0.75). �(A) = {0.25,�0.75}, hence again it is a saddle point. The stable manifold is
generated by v1 = (0, 1) and the unstable manifold by v2 = (8,�3).

• (0.5,0.5). �(A) = {�0.5 ±
p

2/4}, the eigenvalues are negative, thus this is a stable node.
All trajectories near (0.5, 0.5) converge asymptotically to the equilibrium point of the linear
and the nonlinear system.

We conclude that for every initial condition with positive population for both species the dynamical
process converges to the coexistence equilibrium.


