Ordered Response and Multinomial Logit Estimation Quantitative Microeconomics

R. Mora

Department of Economics
Universidad Carlos III de Madrid

Outline

- Introduction
- 2 Ordered Response Estimation
- The Multinomial Model

Introduction Ordered Response Estimation The Multinomial Model Summary

Introduction

The Ordered Probit Model with 3 possible outcomes

$$U = x'\beta + \varepsilon, \, \varepsilon \sim N(0,1)$$

$$y = 0 \text{ if } U \leq \alpha_1$$

$$y = 1 \text{ if } \alpha_1 < U \leq \alpha_2$$

$$y = 2 \text{ if } \alpha_2 < U$$

- ullet We do not observe U, but the choice of each individual among the three alternatives
- This choice is represented by y, which is an ordinal variable (i.e. it does not have cardinal interpretation)
- The aim is to obtain estimates for β , α_1 , and α_2

Multinomial logit with three alternatives

$$Pr(y = 0|x) = 1 - Pr(y = 1|x) - Pr(y = 2|x)$$

$$Pr(y = 1|x) = \frac{\exp(x'\beta_1)}{1 + \exp(x'\beta_1) + \exp(x'\beta_2)}$$

$$Pr(y = 2|x) = \frac{\exp(x'\beta_2)}{1 + \exp(x'\beta_1) + \exp(x'\beta_2)}$$

- The choice is represented by y, which is a qualititative variable (i.e. it has neither cardinal nor ordinal interpretation)
- ullet The aim is to obtain estimates for eta_1 and eta_2

Introduction
Ordered Response Estimation
The Multinomial Model
Summary

Ordered Response Estimation

Example: No-work, part-time, and full-time

h^* : desired weekly time of work (in tens of hours)

$$h^* = -0.5 + 0.07 * educ - 1.0 * kids + \varepsilon, \varepsilon \sim N(0, 1)$$

- Suppose there are only two possible labor contracts: part-time and full-time contracts:
 - part-time contracts have working time of at most 20 hours per week
 - full-time contracts have working time larger than 20 hours per week
- In our data, we do not observe h^* . We observe:
 - y = 0 for all individuals who choose not to work $(h^* \le 0)$.
 - y = 1 for those who work part-time $(0 < h^* \le 2)$.
 - y = 2 for those who work full time $(2 < h^*)$.

Normalization

• Let
$$y^* = 0.07 * educ - 1.0 * kids + \varepsilon$$
 so that $h^* = -0.5 + y^*$

Not working implies that

$$-0.5 + y^* \le 0 \Rightarrow y^* \le 0.5$$

($\alpha_1 = 0.5$)

Working full time implies that

$$-0.5 + y^* > 2 \Rightarrow y^* > 2.5$$

Model without constant

The model can be normalized without a constant

$$y^* = 0.07 * educ - 1.5 * kids + \varepsilon, \varepsilon \sim N(0,1)$$

 $y = 0 \text{ if } y^* \le 0.5$
 $y = 1 \text{ if } 0.5 < y^* \le 2.5$
 $y = 2 \text{ if } 2.5 < y^*$

Probabilities in extremes

$$\Pr(y = 0|x) = \Pr(x'\beta + \varepsilon \le \alpha_1|x)$$
$$= \Phi(-(x'\beta - \alpha_1))$$
$$= 1 - \Phi((x'\beta - \alpha_1))$$

$$Pr(y = 2|x) = Pr(\alpha_2 < x'\beta + \varepsilon|x)$$

$$= Pr(\varepsilon > -(x'\beta - \alpha_2)|x)$$

$$= \Phi((x'\beta - \alpha_2))$$

(Note that $\Phi(a) = 1 - \Phi(-a)$, because the normal distribution is symmetric)

Intermediate Probabilities

 In the 3-alternative example, there is only one intermediate probability:

$$\begin{split} \Pr \big(y = 1 | x \big) &= \Pr \big(\alpha_1 < x' \beta + \varepsilon \le \alpha_2 | x \big) \\ &= \Pr \big(\varepsilon > - \left(x' \beta - \alpha_1 \right), \varepsilon \le - \left(x' \beta - \alpha_2 \right) | x \big) \end{split}$$

• Since $-(x'\beta - \alpha_1) < -(x'\beta - \alpha_2)$:

$$\begin{split} \Pr\left(\varepsilon \leq & - \left(x'\beta - \alpha_2\right)|x\right) - \Pr\left(\varepsilon < - \left(x'\beta - \alpha_1\right)|x\right) \\ &= \Phi\left(-\left(x'\beta - \alpha_2\right)\right) - \Phi\left(-\left(x'\beta - \alpha_1\right)\right) \end{split}$$

$$Pr(y = 1|x) = \Phi(x'\beta - \alpha_1) - \Phi(x'\beta - \alpha_2)$$

Conditional Expectation and OLS

$$\begin{aligned} & \Pr(y=0|x) = 1 - \Phi\left(\left(x'\beta - \alpha_1\right)\right) \\ + & \Pr(y=1|x) = \Phi\left(x'\beta - \alpha_1\right) - \Phi\left(x'\beta - \alpha_2\right) \\ + & \Pr(y=2|x) = \Phi\left(\left(x'\beta - \alpha_2\right)\right) \end{aligned}$$

$$\sum \Pr(y=j|x) = 1$$
 (Probabilities sum to one)

 In general, OLS does not work because the conditional expectation of the dependent variable is not linear any more:

$$\begin{aligned} \mathsf{E}(y|x) &= \mathsf{0} \times \mathsf{Pr}(y = \mathsf{0}|x) + \mathsf{1} \times \mathsf{Pr}(y = \mathsf{1}|x) + \mathsf{2} \times \mathsf{Pr}(y = \mathsf{2}|x) \\ &= \mathsf{Pr}(y = \mathsf{1}|x) + \mathsf{2} \times \mathsf{Pr}(y = \mathsf{2}|x) \\ &= \Phi\left(x'\beta - \alpha_1\right) + \Phi\left(x'\beta - \alpha_2\right) \end{aligned}$$

ML Estimation

The probability of any observation can be expressed as

$$\begin{aligned} \Pr(y|x) = & \left(1 - \Phi\left(x'\beta - \alpha_1\right)\right)^{1(y=0)} \times \\ & \left(\Phi\left(x'\beta - \alpha_1\right) - \Phi\left(x'\beta - \alpha_2\right)\right)^{1(y=1)} \times \\ & \left(\Phi\left(x'\beta - \alpha_2\right)\right)^{1(y=2)} \end{aligned}$$

Thus, for a sample of N observations, the likelihood is:

$$L(b) = \prod_{i=1}^{N} \left\{ \left(1 - \Phi\left(x_i'b - \alpha_1\right) \right)^{1(y_i = 0)} \times \right.$$

$$\left. \left(\Phi\left(x_i'b - \alpha_1\right) - \Phi\left(x_i'b - \alpha_2\right) \right)^{1(y_i = 1)} \times \right.$$

$$\left. \left(\Phi\left(x_i'b - \alpha_2\right) \right)^{1(y_i = 2)} \right\}$$

Marginal Effects

Options for reporting results:

- When the latent variable equation has a simple interpretation, this is probably a good way of reporting the model.
- Alternatively, marginal effects for the probabilities of each of the categories can be computed.
 - When the independent variable is discrete, marginal effects can be computed as in the binary case.
- Finally, we can estimate the effect on the expected value of the observed variable.

Marginal Effects when regressor is continuous

Marginal effects when regressor is continuous

$$\begin{split} \frac{\partial \Pr\left(y=0|x\right)}{\partial x_{j}} &= -\phi\left(x'\beta - \alpha_{1}\right)\beta_{j} \\ \frac{\partial \Pr\left(y=1|x\right)}{\partial x_{j}} &= \left(\phi\left(x'\beta - \alpha_{1}\right) - \phi\left(x'\beta - \alpha_{2}\right)\right)\beta_{j} \\ \frac{\partial \Pr\left(y=2|x\right)}{\partial x_{i}} &= \phi\left(x'\beta - \alpha_{2}\right)\beta_{j} \end{split}$$

Introduction Ordered Response Estimation The Multinomial Model Summary

The Multinomial Model

Random Utility Model

 Assume that there are three transport alternatives: bus, car, train:

$$U_b = x_b' \beta_b + \varepsilon_b$$

$$U_c = x_c' \beta_c + \varepsilon_c$$

$$U_t = x_t' \beta_t + \varepsilon_t$$

where $\{\varepsilon_b, \varepsilon_c, \varepsilon_t\}$ are the effects on utility unobserved by the econometrician

- Let y = 0 if bus is chosen, y = 1 if car is chosen, and y = 2 if train is chosen.
 - y does not have any cardinal or ordinal meaning!

Model re-parametrization

$$\varepsilon_{01} \equiv \varepsilon_b - \varepsilon_c, \qquad \varepsilon_{02} \equiv \varepsilon_b - \varepsilon_t
x' \beta_{01} \equiv x'_b \beta_b - x'_c \beta_c, \qquad x' \beta_{02} \equiv x'_b \beta_b - x'_t \beta_t$$

• Assumption: $\{\varepsilon_{01}, \varepsilon_{02}\} \sim F$, where F is symmetric.

$$Pr(y = 0|x) = F(x'\beta_{01}, x'\beta_{02})$$

$$Pr(y = 1|x) = F(-x'\beta_{01}, x'(\beta_{02} - \beta_{01}))$$

$$Pr(y = 2|x) = F(-x'\beta_{02}, -x'(\beta_{02} - \beta_{01}))$$

The Multinomial Logit

When vector $\{\varepsilon_b, \varepsilon_c, \varepsilon_t\}$ has a extreme value distribution, then we have the **Multinomial Logit**:

$$\begin{aligned} & \Pr(y = 0 | x) = 1 - \Pr(y = 1 | x) - \Pr(y = 2 | x) \\ & \Pr(y = 1 | x) = \frac{\exp(x' \beta_1)}{1 + \exp(x' \beta_1) + \exp(x' \beta_2)} \\ & \Pr(y = 2 | x) = \frac{\exp(x' \beta_2)}{1 + \exp(x' \beta_1) + \exp(x' \beta_2)} \end{aligned}$$

- OLS does not work because the conditional expectation is not linear
- ML estimation gives consistent and asymptotically normal estimates
 - In gret1, the logit command estimates the multinomial logit model when the dependent variable is not binary and is discrete if we use the --multinomial option

Example: Car, Bicycle, Train

$$\Pr(\mathit{car}|x) = 1 - \Pr(\mathit{bicycle}|x) - \Pr(\mathit{train}|x)$$
 $\Pr(\mathit{bicycle}|x) = \frac{\exp(x'eta_1)}{1 + \exp(x'eta_1) + \exp(x'eta_2)}$
 $\Pr(\mathit{train}|x) = \frac{\exp(x'eta_2)}{1 + \exp(x'eta_1) + \exp(x'eta_2)}$

where

$$x'eta_1=1-0.1*age-.1*income-3*kids+5*center \ x'eta_2=1-.1*income+1.5*kids+2*center$$

Note that $\beta_1 = \beta_{bicycle} - \beta_{car}$ and that $\beta_2 = \beta_{train} - \beta_{car}$. What is the relative value of train against bicycle?

$$x'eta_1=1-0.1*age-.1*income-3*kids+5*center \ x'eta_2=1-.1*income+1.5*kids+2*center$$

- $eta_{1,age} = -.1 <$ 0: As people age, it brings more value to use the car than the bicycle.
- $\beta_{1,income}=\beta_{2,income}=-.1<0$: The higher the income, , the more likely is car over train and bicycle.
- $\beta_{1,kids} = -3$, $\beta_{2,kids} = 1.5$: then $\beta_{car,kids} \beta_{train,kids} = -1.5 < 0$ y $\beta_{bicycle,kids} \beta_{train,kids} = -3 1.5 = -4.5 < 0$: The more kids, the more likely is train over car and bicycle.
- If the journey goes through the city center, train and bicycle are more likely than car (and how is train valued versus bicycle?)

logit transport const age income kids center --multinomial

Model 3: Multinomial Logit, using observations 1–5000				
Dependent variable: transport, Standard errors based on Hessian				
	Coefficient	Std. Error	Z	p-value
transport = 2				
const	0.522376	0.501274	1.0421	0.2974
age	-0.0969857	0.00890363	-10.8928	0.0000
income	-0.0957303	0.00589953	-16.2268	0.0000
kids	-2.78035	0.222090	-12.5190	0.0000
center	5.29508	0.422875	12.5216	0.0000
transport = 3				
const	0.867895	0.197401	4.3966	0.0000
age	0.00590025	0.00495462	1.1909	0.2337
income	-0.100911	0.00351216	-28.7320	0.0000
kids	1.42980	0.0869553	16.4429	0.0000
center	1.89417	0.0899837	21.0502	0.0000
Mean dependent var 2.25		3800 S.D. o	dependent var	0.915616
Log-likelihood —268		7.761 Akaik	e criterion	5395.521
Schwarz crite	erion 5460	0.693 Hann	an-Quinn	5418.363

Number of cases 'correctly predicted' = 3787 (75.7 percent) Likelihood ratio test: $\chi^2(8) = 3712.464 [0.0000]$

R. Mora

Summary

- We cannot estimate ordered or multinomial logit by OLS.
- Maximum Likelihood estimation gives consistent and asymptotically normal results.
- Marginal effects can be computed as in the simpler binary cases.