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Introduction

The Ordered Probit Model with 3 possible outcomes

U=x'B+e,e~N(0,1)

y=0it U<
y=lifou <U<m
y=2ifop < U

@ We do not observe U, but the choice of each individual among
the three alternatives

@ This choice is represented by y, which is an ordinal variable
(i.e. it does not have cardinal interpretation)

@ The aim is to obtain estimates for 8, o1, and o
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Introduction

Multinomial logit with three alternatives

Pr(y =0|x) =1—Pr(y =1|x) —Pr(y =2|x)

T exp(X'ﬁl)
P =) = e 0B + exp (VB)
oy — 20e) exp (x'B2)

~ 1+exp(X'B1)+exp(x'Bo)

@ The choice is represented by y, which is a qualititative variable
(i.e. it has neither cardinal nor ordinal interpretation)

@ The aim is to obtain estimates for B; and 3,
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Ordered Response Estimation

Example: No-work, part-time, and full-time

h*: desired weekly time of work (in tens of hours)
h* =—0.5+0.07 x educ — 1.0« kids + &, ~ N (0,1)

@ Suppose there are only two possible labor contracts: part-time
and full-time contracts:

e part-time contracts have working time of at most 20 hours per
week

o full-time contracts have working time larger than 20 hours per
week

@ In our data, we do not observe h*. We observe:

e y =0 for all individuals who choose not to work (h* < 0).
e y =1 for those who work part-time (0 < h* < 2).
e y =2 for those who work full time (2 < h*).
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Ordered Response Estimation

Normalization

o Let y* =0.07xeduc — 1.0 kids + € so that h* = —0.5+ y*

@ Not working implies that

—05+y*<0=y* <05
(061 = 0.5)

e Working full time implies that

—05+y">2=y">25
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Ordered Response Estimation

Model without constant

The model can be normalized without a constant

y*=0.07xeduc — 1.5« kids+¢€, € ~ N(0,1)

y=0if y* <0.5
y=1if0.5<y* <25
y=2if 2.5 < y*
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Ordered Response Estimation

Probabilities in extremes

Pr(y =0|x) = Pr(x’B +e< Oc1|x)
—o(- (B -aw)
10 (B )

Pr(y =2|x) =Pr (o2 <x'B+elx)
=Pr(e>—(x¥'B—m)|x)
=9 ((x'B - o))

(Note that ¢ (a) =1 — ®(—a), because the normal distribution is
symmetric)
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Ordered Response Estimation

Intermediate Probabilities

@ In the 3-alternative example, there is only one intermediate
probability:

Pr(yzl\x):Pr(al <x’[3—|—8§0¢2\x)
=Pr(e>—(xXB—0q),e<—(x'B—0r)x)
@ Since —(xX'B—a) < —(X'B—p):
Pr (8 < — (x’ﬁ —Otg) \x) — Pr(s < — (X/ﬁ — 061) ]x)
=0 (= (XB-0g)) = (= (XB-a))

Pr(y =1|x) = & (x'B —0a) - ¢ (x'B — ) ]
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Ordered Response Estimation

Conditional Expectation and OLS

Pr(y =0|x) = 1—¢((X'B —061))
+Pr(y =1|x) = (xX'B—0y) — ¢ (xX'B— )
+Pr(y=2|x)=¢ ((X’B —062))

ZPr(y = j|x) =1 (Probabilities sum to one)

@ In general, OLS does not work because the conditional
expectation of the dependent variable is not linear any more:

E(y|x) =0xPr(y =0[x)+1xPr(y =1[|x)+2xPr(y =2|x)
=Pr(y =1|x)+2xPr(y =2|x)
=0(X'B—0n)+®(XB— )
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Ordered Response Estimation

ML Estimation

The probability of any observation can be expressed as
Pr(y|x) = (1 -0 (X’B — Ocl))l(yzo) X
((XB—0u) = (xXB—a)) ¥ x
(0 (B @)~

Thus, for a sample of N observations, the likelihood is:
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Ordered Response Estimation

Marginal Effects

Options for reporting results:

@ When the latent variable equation has a simple interpretation,
this is probably a good way of reporting the model.

@ Alternatively, marginal effects for the probabilities of each of
the categories can be computed.

e When the independent variable is discrete, marginal effects can
be computed as in the binary case.

e Finally, we can estimate the effect on the expected value of
the observed variable.
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Ordered Response Estimation

Marginal Effects when regressor is continuous

Marginal effects when regressor is continuous

w:_(p(%ﬁ—m)ﬁj

Xj

8Pr<g; 1) _ (6 (B — o) — 6 (<B — ) B;
JPr(y =2|x /

P (ng | ):(/’)(Xﬁ*(b)ﬁ'
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The Multinomial Model

Random Utility Model

@ Assume that there are three transport alternatives: bus, car,
train:

Up = x,Bp + &

Uc = éﬁc + €&

Ut = X{»Bt + &t
where {&p,€c,€:} are the effects on utility unobserved by the
econometrician

@ Let y =0 if bus is chosen, y =1 if car is chosen, and y =2 if
train is chosen.

e y does not have any cardinal or ordinal meaning!
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The Multinomial Model

Model re-parametrization

€01 = €p — &, Epp =€p— &

X’ﬁm = X;;Bb - Xéﬁm X/Boz = Xz’,ﬁb - X;Bt

o Assumption: {€p1,€02} ~ F, where F is symmetric.

Pr(y = 0[x) = F (x'Bo1,x'Bo2)
Pr(y = 1|x) = F (—x'Bo1, X" (Bo2 — Bo1))
Pr(y = 2|x) = F (—x'Bo2, —x" (Boz — Bo1))
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The Multinomial Model

The Multinomial Logit

When vector {&p,&c, €} has a extreme value distribution, then we
have the Multinomial Logit:

Pr(y =0|x) =1—Pr(y =1|x) —Pr(y = 2|x)

- exp(X,ﬁl)
Pr(y =1Jx) = 1+exp(x'B1) +exp(x'B2)
Pr(y =2|x) = o)

~ 14exp(X'Br) +exp(x'Bo)

@ OLS does not work because the conditional expectation is not
linear

@ ML estimation gives consistent and asymptotically normal
estimates

o In gretl, the logit command estimates the multinomial logit
model when the dependent variable is not binary and is
discrete if we use the --multinomial option
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The Multinomial Model

Example: Car, Bicycle, Train

Pr(car|x) = 1 — Pr(bicycle|x) — Pr(train|x)
exp (x'B1)
1+exp(x'B1) +exp(x'B2)
exp (x'B2)
1+exp(x'B1) +exp(x'B2)

Pr(bicycle|x) =

Pr(train|x) =

where

x'By =1—0.1xage—.1*income — 3 * kids + 5 * center
x'Bpy =1—.1xincome + 1.5 kids + 2 x center

Note that fB; = Bbicycle — Bear and that B2 = Btrain — Bear-
What is the relative value of train against bicycle?
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The Multinomial Model

x'B1 =1—0.1xage—.1*income — 3 * kids + 5 * center
x'B2 =1 —.1%income + 1.5 kids + 2 * center

® Piage = —.1 <0: As people age, it brings more value to use
the car than the bicycle.

® Bi.income = B2.income = —-1 < 0: The higher the income, , the
more likely is car over train and bicycle.

® i kids = =3, B2,kigs = 1.5: then Bear kids — Btrain kids = —1.5 <0
Y Bbicycle kids — Btrain kids = —3 — 1.5 = —4.5 < 0: The more
kids, the more likely is train over car and bicycle.

@ If the journey goes through the city center, train and bicycle
are more likely than car (and how is train valued versus
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The Multinomial Model

logit transport const age income kids center --multinomial

Model 3: Multinomial Logit, using observations 1-5000
Dependent variable: transport, Standard errors based on Hessian
Coefficient Std. Error z p-value
transport = 2
const 0.522376 0.501274 1.0421 0.2974
age —0.0969857 0.00890363 —10.8928 0.0000
income  —0.0957303 0.00589953 —16.2268  0.0000
kids —2.78035 0.222090 —12.5190 0.0000
center 5.29508 0.422875 12.5216  0.0000
transport = 3
const 0.867895 0.197401 4.3966 0.0000
age 0.00590025  0.00495462 1.1909 0.2337
income  —0.100911 0.00351216  —28.7320  0.0000
kids 1.42980 0.0869553 16.4429  0.0000
center 1.89417 0.0899837 21.0502 0.0000
Mean dependent var 2.253800 S.D. dependent var  0.915616
Log-likelihood —2687.761  Akaike criterion 5395.521
Schwarz criterion 5460.693 Hannan—Quinn 5418.363
Number of cases ‘correctly predicted’ = 3787 (75.7 percent)
Likelihood ratio test: x2(8) = 3712.464 [0.0000]
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Summary

@ We cannot estimate ordered or multinomial logit by OLS.

@ Maximum Likelihood estimation gives consistent and
asymptotically normal results.

@ Marginal effects can be computed as in the simpler binary
cases.
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