Introduction Probit in gret1 The Logit Model Summary

Probit Estimation in gret1 Quantitative Microeconomics

R. Mora

Department of Economics Universidad Carlos III de Madrid

Outline

- Introduction
- 2 Probit in gret1
- The Logit Model

The Probit Model and ML Estimation

The Probit Model

- $U_m = \beta_m x_m + \varepsilon_m$
- $U_h = \beta_h x_h + \varepsilon_h$
- $\varepsilon_h, \varepsilon_m \sim N(0, \Sigma)$ such that $\varepsilon \sim N(0, 1)$
- ullet $Pr\left(y=1
 ight)=\Phi(eta x)$ where Φ is the cdf of the standard normal

$$\hat{\beta}^{ML} = \argmax \sum_{i} \left\{ y_{i} \log \left(\Phi(\beta x_{i}) \right) + \left(1 - y_{i} \right) \log \left(1 - \Phi(\beta x_{i}) \right) \right\}$$

in gret1, a quasi-Newton algorithm is used (the BFGS algorithm)

Basic Commands in gret1 for Probit Estimation

- probit: computes Maximum Likelihood probit estimation
- omit/add: tests joint significance
- \$yhat: returns probability estimates
- \$1n1: returns the log-likelihood for the last estimated model
- logit: computes Maximum Likelihood logit estimation
- in this Session, we are going to learn how to use probit,
 \$\text{yhat}\$, and logit

$egin{array}{lll} {\sf probit} & depvar & indvars & -- {\sf robust} & -- {\sf verbose} \ -- {\sf p-values} \end{array}$

- depvar must be binary $\{0,1\}$ (otherwise a different model is estimated or an error message is given)
- slopes are computed at the means
- by default, standard errors are computed using the negative inverse of the Hessian
- ullet output shows χ_q^2 statistic test for null that all slopes are zero
- options:
 - --robust: covariance matrix robust to model misspecification
 - 2 --p-values: shows p-values instead of slope estimates
 - 3 --verbose: shows information from all numerical iterations

Example: Simulated Data

The Probit Model

- $U_m = 0.3 + 0.05 * educ + 0.5 * kids + \varepsilon_m$
- $U_h = 0.8 0.02 * educ + 2 * kids + \varepsilon_h$
- $\varepsilon_h, \varepsilon_m \sim N(0, \Sigma)$ such that $\varepsilon \sim N(0, 1)$
- education brings utility if you work, dissutility if you don't
- having a kid brings more utility if you don't work
- $\beta x = -0.5 + 0.07 * educ 1.5 * kids$

probit Output

probit work const educ kids

Convergence achieved after 6 iterations

Model 1: Probit, using observations 1-5000 Dependent variable: work

	coefficient	sta. error	t-ratio	stope
const educ kids	-0.434462 0.0659247 -1.47598	0.0812490 0.00576068 0.0407604	-5.347 11.44 -36.21	0.0240325 -0.521270

 Mean dependent var McFadden R-squared Log-likelihood
 0.366800 0.233290
 S.D. dependent var Adjusted R-squared
 0.364545 0.232378

 Log-likelihood Schwarz criterion
 -2519.525 5064.601
 Akaike criterion Hannan-Quinn
 5045.049 5051.902

Number of cases 'correctly predicted' = 3859 (77.2%) f(beta'x) at mean of independent vars = 0.365 Likelihood ratio test: Chi-square(2) = 1533.26 [0.0000]

Predicted 0 1 Actual 0 2495 671 1 470 1364

Predicting the Probabilities

Computing $\hat{\Pr}(y_i = 1 | x_i)$

genr
$$p_hat =$$

- for each observation, if $\hat{Pr}(y_i = 1 | x_i) > 0.5$ then $\hat{y}_i = 1$
- the percent correctly predicted is the % for which \hat{y}_i matches y_i
- it is possible to get high percentages correctly predicted in useless models
 - suppose that $Pr(y_i = 0) = 0.9$
 - always predicting $\hat{y}_i = 0$ will lead to 90% correctly predicted!

Understanding the Coefficients and the Slopes

- ullet the column "coefficient" refers to the ML estimates \hat{eta}^{ML}
- in contrast to the linear model, in the probit model the coefficients do not capture the marginal effect on output when a control changes
 - if control x_j is continuous, $\frac{\partial Pr(y=1)}{\partial x_j} = \phi(\beta x)\beta_j$
 - if control x_j is discrete, $\Delta Pr(work = 1) = \Phi(\beta x_1) \Phi(\beta x_0)$
- since the model is non-linear, marginal effects depend on the values of the other controls
- the column "slopes" refers to marginal effects computed at the sample average values for all controls

Individual Marginal Effects: Discrete Change

we want to estimate the change in probability when x changes from x_0 to x_1

Discrete change

- ullet after estimation of the model, store estimated coefficients \hat{eta}^{ML} in a vector
- generate a matrix with the controls under scenario 0, x_0 , and another one with the controls under scenario 1, x_1
- ullet predict index functions $\hat{eta}^{ML}x_0$ and $\hat{eta}^{ML}x_1$
- generate the individual marginal effects

$$\Phi\left(\hat{\beta}^{ML}x_1\right) - \Phi\left(\hat{\beta}^{ML}x_0\right)$$

Example: The Effect of Having A Kid

```
# marginal effects of having a kid
genr beta=$coeff
series kids0=0
matrix x0={const,educ,kids0}
series kids1=1
matrix x1={const,educ,kids1}
series x1b = x1*beta
series x0b = x0*beta
series Mg_kid = cdf(N,x1b)-cdf(N,x0b)
summary Mg_kid --by=educ --simple
summary Mg_kid --simple
```

$\overline{\text{summary } Mg_kid}$ --by=educ --simple

```
educ = 8 (n = 759): -0.45370

educ = 12 (n = 2279): -0.50782

educ = 16 (n = 1499): -0.53638

educ = 21 (n = 463): -0.52950
```

- although the index function is linear, the effect of having a kid changes with education
- higher education makes individuals more likely to have indexes βx closer to 0.5 (the probit slope is largest at 0.5)
- the model as it stands does not make the "kid" effect smaller with higher education
- how would you create that effect?

Individual Marginal Effects: Infinitessimal Change

Calculus approximation

- ullet store estimated coefficients \hat{eta}^{ML} in a vector
- generate a matrix with the values for all controls, x
- predict the index function $\hat{\beta}^{ML}x$
- ullet generate the calculus approximation: $\phi\left(\hat{eta}^{ML}x
 ight)\hat{eta}_{j}^{ML}$

Example of Calculus Approximation

```
genr beta=$coeff
matrix x={const,educ,kids}
series xb=x^beta
genr meanXb=mean(xb)
series Mg_educ_slope=pdf(N,meanXb)*$coeff(educ)  # this is the slope in gretl output
series Mg_educ_cal=pdf(N,xb)*$coeff(educ)  # this is the individual's marginal effect
summary Mg_educ_slope Mg_educ_cal --by=kids --simple
```

```
kids = 0 (n = 2035):
                          Mean
                                      Minimum
                                                      Maximum
                                                                    Std. Dev.
Mg educ slope
                      0.025214
                                     0.025214
                                                     0.025214
                                                                       0.0000
Mg educ cal
                      0.024004
                                      0.016797
                                                     0.027284
                                                                    0.0028914
kids = 1 (n = 2965):
                          Mean
                                      Minimum
                                                      Maximum
                                                                    Std. Dev.
                      0.025214
                                     0.025214
                                                     0.025214
                                                                       0.0000
Mg educ slope
Mg educ cal
                      0.016362
                                      0.010516
                                                     0.024298
                                                                    0.0038762
```

The Logit Assumption

•
$$U_m = \beta_m^0 + \beta_m^e educ + \beta_m^k kids + \varepsilon_m$$

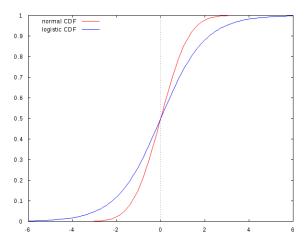
•
$$U_h = \beta_h^0 + \beta_h^e educ + \beta_e^k kids + \varepsilon_h$$

Logit Assumption: $\varepsilon_h - \varepsilon_m = \varepsilon \sim$ Logistic

- $Pr(work = 1) = \frac{exp(\beta_0 + \beta_e educ + \beta_k kids)}{1 + exp(\beta_0 + \beta_e educ + \beta_k kids)}$
- Easy computation!

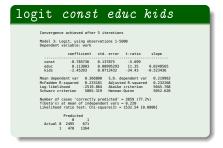
Logit vs. Probit

Tails are thicker in the logit



Logit & Probit Beta Estimates are not Directly Comparable...

```
probit const educ kids
         Convergence achieved after 6 iterations
         Model 1: Probit, using observations 1-5000
         Dependent variable: work
                    coefficient std. error t-ratio
          const -0.434462
                                0.0812490 -5.347
                    0.0659247 0.00576068 11.44
                                                     0.0240325
          aduc
          kids
                   -1.47598
                                0.0407604 -36.21
         Mean dependent var 0.366800 S.D. dependent var 0.364545
         McFadden R-squared 0.233290 Adjusted R-squared
                                                     0.232378
         Log-likelihood -2519.525 Akaike criterion
                                                      5845.849
         Schwarz criterion 5064.601 Hannan-Quinn
                                                      5051.902
         Number of cases 'correctly predicted' = 3859 (77.2%)
         f(beta'x) at mean of independent vars = 0.365
         Likelihood ratio test: Chi-square(2) = 1533.26 [0.0000]
          Actual 0 2495 671
                1 470 1364
```



but marginal effects, the "slope" columns, are

Summary

- gret1 allows for probit estimation of the random utility model by ML
- not all parameters of the RUM can be estimated
- ullet the Probit model identifies how each control affects the probability of y=1
- logit estimation estimation of random utility model by ML can also be conducted in gret1