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Motivation

General Approaches to Parameter Estimation

There are estimation criteria that produce estimators with good
properties

Least Squares (OLS or GLS) J

Method of Moments (OLS, GLS, and IV):

6 =g(E(Y))=6=g(Enlyl)

Maximum Likelihood (ML)

It chooses the vector & which makes the estimation of the
probability of the sample most likely
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Definition

Basic Setup

o Let {y1,y2,...,yn} be an iid sample from the population with
density 7(Y;6y). We aim to estimate 6

@ Because of the iid assumption, the joint distribution of
{v1,¥2,...,yn} is simply the product of the densities:

f(yi,y2,--.,yn;60) =f(y1;60)f (y2; 60)...f (¥n; 60)

o The Likelihood Function is the function obtained for a given
sample after replacing true 6y by any 6

L(0) =f(y1;0)f(y2:0)...f(yn; 0)

@ L(6) is a random variable because it depends on the sample
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Definition

Definition

The maximum likelihood estimator of 6y, OML, is the value of 6
that maximizes the likelihood function L(6)

@ It is more convenient to work with the logarithm of the
likelihood function

1(6) =XL, log (f(y:;6))

@ Since the logarithmiic transform is monotonic, OML also
maximizes /(0)
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Definition

Example: Bernoulli (1/3)

1 with probability pg

@ Assume that Y is Bernoulli: { 0 with probability 1 — pp

o Likelihood for observation i : po if y,'.: L
1—po ifyi=0

o Let n; be the number of observations with 1. Then, under iid
sampling

L(p) =pm(1—p)" ™

We have a likelihood for each sample
o With {0,1,0,0,0} = L(p) =p(1—p)*
o With {1,0,0,1,1} = L(p) = p* (1 —p)?
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Definition

Example: Bernoulli (2/3)

Sample: {0,1,0,0,0} Sample: {1,0,0,1,1}
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e With {0,1,0,0,0} = p=0.2
e With {1,0,0,1,1} = pMt =06
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Definition

Example: Bernoulli (3/3)

@ The maximum likelihood estimator is the value that maximizes
L(p)=p™(1—p)™™

o The same pML maximizes the logarithm of the likelihood

function
I(p) = mlog(p)+(n—n)log(1—p)

Tt =0 g = (= M = ]
o With {0,1,0,0,0} = pM- =1 =0.2
o With {1,0,0,1,1} == pM =2 =06
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The Linear Regression Model

Basic Setup

o Let {y1,y2,...,yn} be an iid sample from y [x ~ N (Box,08).

e We aim to estimate 6y = (o, 0%)

@ Because of the iid assumption, the joint distribution of
{v1,¥2,...,yn} is simply the product of the densities:

f(yi,y2,- -, yn|xt, ..., xn; 6p) =
f(y1]x1; 60)f (y2|x2; 60)...f (yn|xn; 60)

o Note that y[x ~ N (Box,0¢) =y —Box =& ~ N (0,6¢). This
implies that

fyix (vilxi; 60) = fe (vi — Bxi; 6o)
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The Linear Regression Model

Density of the Error Term

o We have that € ~ N (0,6¢), so what is its density f; (z;6p)?
Q@ £~ N(0,05) - & ~N(0,1)

@ CDF.(z)=Pr(e<z)= p,(g < ;)
© Hence, CDF.(z) = (Gio)

Q@ The density of a continuous random variable is the first
derivative of its CDF;:

f(z:00)= (&) (2)
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The Linear Regression Model

Density of the Sample

@ Since
fo(z:00) = (5)0(2)
@ and
fy1x (vilxi; 60) = fe (vi — Bxi; 6o)
@ and

f(yi,y2, - ynIXL, - xn; 60) = f(ya|x1; 80)f (y2]x2; 60)...f (yn |xw; 6o)

@ then we have that

N L .
f(y1,y2,- -, Yn|X1, - xpn; 60) = H{(;) ¢ (ylcfoxl>}
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The Linear Regression Model

The Log-likelihood function

o The likelihood replaces the actual values of the parameters for
real variables:

- H{(0)e ()

o taking the log makes the problem easier

log (L($,0)) = é s () +o[o (")

2
@ and given that ¢ (”'*TBX') = (Qﬂ)f%exp [_ (H*Gﬂxi) } we
have that

log (L(B,0)) = Nlog mo?) Z
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The Linear Regression Model

The ML Estimator: FOC

e With respect to f3:

@ which implies
N ~
Zx,- (y;—ﬁxi) =0
i=1
@ With respect to o, this implies
R A \2
62==Y) (}’i_BXi>
N i=1
N-1 .2

o MLE for B is exactly the same estimator as OLS;2 = NS
is biased, but the bias disappears as N increases
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Computation

Computing the MLE

@ ML estimates are often easy to compute, as in the two
previous examples

@ Sometimes, however, there is no algebraic solution to the
maximization problem

@ It is then necessary to use some sort of numerical
maximization procedure
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Computation

Numerical Maximization Procedures

Newton's method

@ Start with an initial value §°
o At any iteration, /Tl =8/ — H 1g

e g is the first derivative of the likelihood (i.e. the gradient)
o H is the second derivative (the Hessian)

@ Check if there is convergence

@ Which A8 increases the most the quadratic Taylor
approximation of L <é —l—Aé),

L(6+06)=1(8)+g(8)nb+1H(8)n6%
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Computation

Quasi-Newton Methods

@ Newton's Method will not work well when the Hessian is not
negative definite.

@ In such cases, one popular way to obtain the MLE is to replace
the Hessian by a matrix which is always negative definite

@ These approaches are referred to as quasi-Newton algorithms

@ gretl uses one of them: the BFGS algorithm (Broyden,
Fletcher, Goldfarb and Shanno)
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Asymptotic Results for ML
nm

Consistency

© Finite-sample identification: /(0) takes different values for
different 6

@ Sampling: a law of large numbers is satisfied by %Z,-l,-(é)

© Asymptotic identification: max /(0) provides a unique way
to determine the parameter in the limit as the sample size
tends to infinity.

@ Under these conditions, the ML estimator is consistent

plim (éML) =6
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Asymptotic Results for ML

|dentificacién

@ These are the crucial assumptions to exploit the fact that the
expected maximum likelihood attains its maximum at the true
value 6

o If these conditions did not hold, there would be some value 6;
such that 6y and 6; generate an identical distribution of the
observable data

@ Then we wouldn’t be able to distinguish between these two
parameters even with an infinite amount of data

@ We then say that these parameters are observationally
equivalent and that the model is not identified
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Asymptotic Results for ML

Asymptotic Normality

© Consistency
@ /(0) is differentiable and attains an interior maximum
© A CLT can be applied to the gradient

@ Under these conditions the ML estimator is asymptotically
normal

2 (é—e) S N(0,%)) asn— oo

1

where & = — (plimL Y H;)~
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Asymptotic Results for ML

Asymptotic Efficiency and Variance Estimation

If /(0) is differentiable and attains an interior maximum

@ the MLE must be at least as asymptotically efficient as any
other consistent estimator that is asymptotically unbiased

Consistent estimators of the Varianze-Covariance Matrix

e empirical hessian: vary(8) = [ YH1(8 )}71

-1

o BHHH, vargumn(6) = [( r&i(o ))T(},ng(é))]

@ the sandwich estimator: valid even if the model is misspecified
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Summary

@ ML estimates are the values which maximize the likelihood
function

@ under general assumptions, ML is consistent, asymptotically
normal, and asymptotically efficient
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