Two Stage Least Squares Econometrics I

Ricardo Mora

Department of Economics Universidad Carlos III de Madrid Master in Industrial Economics and Markets

2 Reduced Form Equations

- Two Stage Least Squares
- 4 Example: Errors in variables

Motivation

Reduced Form Equations Two Stage Least Squares Example: Errors in variables Summary

Motivation

Ricardo Mora 2SLS

æ

・ロト ・部ト ・ヨト ・ヨト

One IV Estimator per Instrument

 it is possible to have more than one instrument for each variable

 $wages = \beta_0 + \beta_1 educ + u$

• $cov(educ, u) \neq 0$

Two instruments:

- father's education: fed
- mother's education: med

which instrument should we use?

$$\hat{\beta}_{1}^{\textit{fed}} = \tfrac{c \hat{o} v(\textit{wages},\textit{fed})}{c \hat{o} v(\textit{educ},\textit{fed})} \neq \hat{\beta}_{1}^{\textit{med}} = \tfrac{c \hat{o} v(\textit{wages},\textit{med})}{c \hat{o} v(\textit{educ},\textit{med})}$$

< ロ > < 同 > < 回 > .

Which Instrument Should We Use?

using only one instrument is inefficient

•
$$\hat{eta}_1^{fed}$$
 only exploits $cov(fed,u)=0$

•
$$\hat{eta}_1^{med}$$
 only exploits $cov(med,u)=0$

the most efficient estimator uses a combination of both

$$\alpha * cov(fed, u) + (1 - \alpha) * cov(med, u) = 0$$

• this is the "two stage least squares" estimator, 2SLS

Reduced Form Equations

æ

Image: Image:

IV estimation in the general case

 $y_1 = \beta_0 + \beta_2 y_2 + \beta_1 z_1 + u$ $cov(z_1, u) = 0, cov(y_2, u) \neq 0$

- y₂ is endogenous: OLS estimation gives inconsistent estimates because y₂ is correlated with u
- we need an instrument, say z_2 , to be relevant (correlated with y_2) and to be exogenous (i.e. $cov(z_2, u) = 0$)
- consider the best linear predictor of y_2 given z_1 and z_2 :

$$y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + v$$

Reduced form equation

the reduced form equation of y_2

 $y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + v$

- it decomposes y_2 in two orthogonal terms
 - $\pi_0 + \pi_1 z_1 + \pi_2 z_2$ captures the part of y_2 which is exogenous (uncorrelated with u)
 - v captures the part of y_2 potentially correlated with u
- for z_2 to be a valid instrument it must be
 - partially correlated with y_2 : $\pi_2 \neq 0$
 - uncorrelated with u: $cov(z_2, u) = 0$ (also referred to as "exclusion restriction")

Adding more exogenous regressors

a model with one endogenous and many exogenous regressors $y_1 = \beta_0 + \beta_k y_2 + \beta_1 z_1 + ... + \beta_{k-1} z_{k-1} + u$ $cov(z_j, u) = 0, \qquad j = 1, ..., k - 1$ $cov(y_2, u) \neq 0$

the reduced form equation of y_2

 $y_2 = \pi_0 + \pi_1 z_1 + \ldots + \pi_k z_k + v$

- z_k is a good instrument for y_2 when
 - it is exogenous: $cov(z_k, u) = 0$
 - it is relevant: $\pi_k
 eq 0$

Adding more instruments

$$y_1 = eta_0 + eta_k y_2 + eta_1 z_1 + ... + eta_{k-1} z_{k-1} + u$$

 $cov(z_j, u) = 0, \qquad j = 1, ..., k-1$
 $cov(y_2, u) \neq 0$

- consider two potentially good instruments for y_2 : z_k and z_{k+1}
 - both are exogenous: $cov(z_k, u) = cov(z_{k+1}, u) = 0$
 - in $y_2 = \pi_0 + \pi_1 z_1 + \ldots + \pi_k z_k + \pi_{k+1} z_{k+1} + v$ we have that $\pi_k \neq 0$, or $\pi_{k+1} \neq 0$, or both

Which instrument should we use as instrument for y_2 ?

- for z_k and for z_{k+1} we can compute one IV estimator
- each of them exploits important information, but also neglects some information
 - for example, when we use z_k , we do not exploit the fact that $cov(z_{k+1}, u) = 0$.
- in addition, any linear combination of z_k and z_{k+1} ,
 - $z = \alpha_1 z_k + \alpha_2 z_{k+1}$ is also a good instrument of y_2 :
 - it is exogenous: $cov(z, u) = \alpha_1 cov(z_k, u) + \alpha_2 cov(z_{k+1}, u) = 0$
 - it is relevant: $cov(z, y_2) \neq 0$ if $\pi_k \neq 0$ or $\pi_{k+1} \neq 0$

The best instrument is the linear combination that is the most highly correlated with y_2 :

$$y_2^* = \pi_0 + \pi_1 z_1 + \ldots + \pi_k z_k + \pi_{k+1} z_{k+1}$$

Two Stage Least Squares

æ

First Stage

- the best instrument y₂^{*} is the best linear predictor of all exogenous variables (note that y₂^{*} is not relevant if π_k = π_{k+1} = 0)
- although we cannot compute y_2^* because we do not know the parameters π_j , we can consistently estimate them by OLS

$$\hat{y}_2 = \hat{\pi}_0 + \hat{\pi}_1 z_1 + \ldots + \hat{\pi}_k z_k$$

where $\hat{\pi}_i$ are the OLS estimates. This is called "the first stage".

• After the first stage, we should test $H_0: \pi_k = \pi_{k+1} = 0$ with an F statistic

Using \hat{y}_2 as instrument

• After the First Stage, we can use \hat{y}_2 as the instrument imposing in the sample the orthogonality conditions of the population

$$\sum \left(y_1 - \hat{\beta}_0 - \hat{\beta}_k y_2 - \hat{\beta}_1 z_1 - \dots \hat{\beta}_{k-1} z_{k-1} \right) = 0$$

$$\sum z_j \left(y_1 - \hat{\beta}_0 - \hat{\beta}_k y_2 - \hat{\beta}_1 z_1 - \dots \hat{\beta}_{k-1} z_{k-1} \right) = 0, \qquad j = 1, \dots k - 1$$

$$\sum \hat{y}_2 \left(y_1 - \hat{\beta}_0 - \hat{\beta}_k y_2 - \hat{\beta}_1 z_1 - \dots \hat{\beta}_{k-1} z_{k-1} \right) = 0$$

• solving the k + 1 equations with k + 1 unknowns gives us the IV estimator using \hat{y}_2 as the instrument for y

The Second Stage

- two alternative ways to compute the IV estimator using \hat{y}_2 :
 - solving the k+1 equations with k+1 unknowns
 - regress $y_1 \ \hat{y} \ z_1 \ \dots \ z_{k-1}$
- this implies that we can obtain the best IV estimator when we have several instruments for each endogenous variable using a two-stage procedure:
 - In the first stage, we regress each endogenous regressor on all exogenous variables and compute the predictions \hat{y}_i
 - In the second stage, we regress the dependent variable on all exogenous regressors and the predictions \hat{y}_i
- this is called the Two Stage Least Squares (2SLS) estimator

Computing the 2SLS estimates

- note that the standard errors obtained in the second stage using a command as regress are not valid because they do not take into account that \hat{y}_2 is an estimate itself
- most econometrics packages, including Stata, have special commands for 2SLS
 - they get correct standard errors for the procedure
 - you need to specify the dependent variable, the list of regressors and the list of exogenous variables
- you need at least as many instruments as there are endogenous variables

Multicollinearity

• the asymptotic variance of the 2SLS estimator of β_k can be approximated as

$$\frac{\sigma^2}{S\hat{S}T_{\hat{y}}\left(1-R_2^2\right)}$$

where R_2^2 is the R^2 from regressing y_2 on all exogenous regressors

- 2SLS is less precise than OLS because
 - \hat{y}_2 has less sample variation than y_2
 - \hat{y}_2 has more correlation with all exogenous regressors than y_2

Errors in variables

æ

イロト イポト イヨト イヨト

Example: Savings equations

savings equation: $sav = \beta_0 + \beta inc^* + u$

• really estimating:
$$sav = \beta_0 + \beta inc + (u - \beta e)$$

2SLS and errors in variables

• if measurement error is uncorrelated with true income,

 $cov(inc, e) = var(e) \neq 0 \Rightarrow cov(inc, u - \beta e) = -\beta var(e)$

- OLS inconsistent: $plim(\hat{\beta}_{OLS}) = \beta \left(1 \frac{var(e)}{var(inc)}\right) < \beta$ (attenuation bias)
- any variable correlated with true income and uncorrelated with the measurement error in observed income will be a valid instrument
- when we have a measure of income plus several proxies, we can use the proxies as instruments and compute the 2SLS estimator

- we can use more than one instrument efficiently using 2SLS
- if one regressor is measured with error, then it may be endogenous. If we have additional variables which act as proxies for the regressor, we could implement 2SLS