Instrumental Variables Econometrics II

R. Mora

Department of Economics Universidad Carlos III de Madrid Master in Industria| Organization and Markets

Outline

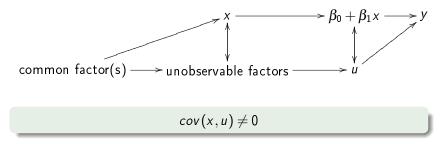
2 Some Examples of Instruments


Motivation

Some Examples of Instruments IV Estimation & Inference Summary

Motivation

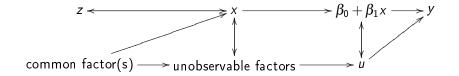
OLS


$$y = \beta_0 + \beta_1 x + u$$
, $cov(x, u) = 0$

- For the population, the effect on y of unobserved factors is unrelated to the controls
- OLS obtains the estimates of β by imposing this property in the sample

Why Use Instrumental Variables?

Suppose that both x and the unobservable factors are affected by one common factor:



• OLS exploits in the sample a property which is false for the population

Motivation

Some Examples of Instruments IV Estimation & Inference Summary

Using an Instrument

$$y = \beta_0 + \beta_1 x + u$$
, $cov(z, u) = 0$

- z is related to x
- z is unrelated to u (z only affects y through x)
 - we can exploit this property in the sample

Instruments

$$y = \beta_0 + \beta_1 x + u, \qquad cov(x, u) \neq 0$$

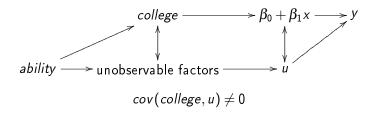
An instrument z must be relevant and exogenous

• z is relevant if it correlates with controls:

$$cov(x,z) \neq 0$$

• z is exogenous if controls capture all its effects on the dependent variable:

$$cov(u,z) = 0$$


• each exogenous control is an instrument of itself

Some Examples of Instruments

Returns to College Education

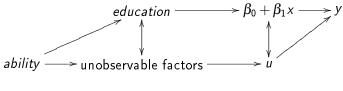
• wages = $\beta_0 + \beta_1$ college + u

- people freely choose to go to college:
 - people with larger ability are more likely to go to college: *cov(college, ability)* ≠ 0
 - ability affects wages independently from college: *cov(ability,u)* ≠ 0

Two examples in College Education

• A good instrument:

- makes going to college more likely (relevant)
- does not affect wages directly (exogenous)


Distance between pre-college residence and college

- proximity makes college more likely (relevance)
- residence is usually the parents' decision (exogeneity)

Father's education

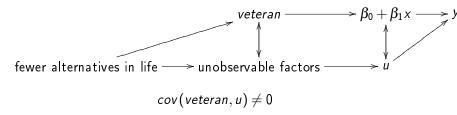
- an educated father will tend to inform the child better about the profits of education (relevance)
- father's education is father's decision (exogeneity)

The returns to Compulsory Attendance Laws in the US

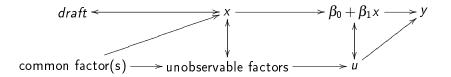
 $cov(education, u) \neq 0$

Unobservable ability is likely related to years of education, but...

- children start schooling in the academic year they are 6 BY JANUARY 1ST
- children must remain in school until they are 16 BY THE SCHOOL ENTRY DATE


Month of Birth as Instrument

- Suppose you want to study the returns of those who do not want to continue studying after primary education:
- Month of birth correlates with years of education (relevance):
 - Children born in December enter schooling younger than children born in January
 - Children born in January require less schooling than those born in December to attain the legal dropout age
- Month of birth (presumably) does not correlate with ability (exogeneity)
- Month of birth is a good instrument for years of education


Lifetime Earnings and War Veterans in the US

What is the effect of going to war on future earnings?

- Individuals with fewer alternatives in life are more likely to join the army and go to war and, independently, have lower future earnings
- Veteran status is likely to be correlated with unobservables:

The draft

The Draft

- being drafted affects the probability of going to the war (relevance)
- being drafted is purely random (exogeneity)

Checking the Validity of the Instruments

Exogeneity

• use common sense and economic theory to decide if it makes sense to assume

$$cov(z,u) = 0$$

Relevance

- regress $x = \alpha_0 + \alpha_1 z + \varepsilon$
- test $H_0: \alpha_1 = 0$

Now suppose we have a valid instrument z, what do we do with it?

IV Estimation & Inference

IV Estimation in the SRM

$y = \beta_0 + \beta_1 x + u$

- $cov(x, u) \neq 0$ (x is endogenous and OLS is inconsistent)
- $cov(x,z) \neq 0$ (z is relevant)

•
$$cov(z, u) = 0$$
 (z is exogenous)

• given these assumptions, $cov(y,z) = \beta_1 cov(x,z)$

• thus
$$eta_1=rac{cov(y,z)}{cov(x,z)}$$

$$\hat{\beta}_1^{IV} = \frac{c\hat{o}v(y_i, z_i)}{c\hat{o}v(x_i, z_i)}$$

Inference with IV Estimation

IV estimates are asymptotically normal

under homoskedasticity

AsyVar
$$(\beta_1) = rac{\sigma^2}{N\sigma_x^2
ho^2}$$

ullet where ho^2 is the square of the correlation between x and z

• the estimate of the variance would be the sample analog

IV versus OLS estimation

- standard errors in IV case differs from OLS only in R² from regressing x on z
- since $R^2 < 1$, IV standard errors are larger
- however, IV is consistent, while OLS is inconsistent
- the stronger the correlation between z and x, the smaller the IV standard errors

The Effect of Poor Instruments

- what if $cov(z, u) \neq 0$?
- the IV estimator will be inconsistent
- however, it can still be better than OLS
- asymptotic bias in IV will be smaller than asymptotic bias in OLS if

$$\frac{corr(z,u)}{corr(x,u)} < corr(x,u)$$

IV estimation in the general case

$$y_1 = \beta_0 + \beta_1 z_1 + \beta_2 y_2 + u$$
$$cov(z_1, u) = 0$$
$$cov(y_2, u) \neq 0$$

• y_2 is endogenous, but there is an instrument for each endogenous variable in y_2 , $cov(z_2, u) = 0$

IV estimation in the general case

• the IV estimator exploits in the sample the population conditions

$$cov(z_1,u)=0$$

$$cov(z_2, u) = 0$$

$$\sum \left(y_{1i} - \hat{\beta}_0 - \hat{\beta}_1 z_1 - \hat{\beta}_2 y_2 \right) = 0$$
$$\sum z_{1ij} \left(y_{1i} - \hat{\beta}_0 - \hat{\beta}_1 z_1 - \hat{\beta}_2 y_2 \right) = 0$$
$$\sum z_{2ij} \left(y_{1i} - \hat{\beta}_0 - \hat{\beta}_1 z_1 - \hat{\beta}_2 y_2 \right) = 0$$

A simple example: estimating a demand function

a supply and demand system of equations

- supply function: $q = \gamma_0 + \beta^s p + \gamma x^s + u^s$
- demand function: $q = lpha_0 + eta^d p + lpha x^d + u^d$

At equilibrium,
$$q = q(x^s, x^d, u^s, u^d), \ p = p(x^s, x^d, u^s, u^d)$$

 $cov(p, u^d) \neq 0$

"identification" of $oldsymbol{eta}^d$ using a "supply shifter"

- $cov(x^s, p) \neq 0$ (relevance) (because p is a function of x^s)
- cov(x^s, u^d) = 0 (exogeneity) (otherwise, x^s is not really a "supply shifter")

Summary

- When a control is correlated with the error term, then OLS is inconsistent
- To implement IV we need an instrument: a variable which affects the dependent variable only via the control
- For example, if we want to estimate the price elasticity in a demand equation, we need a "supply shifter"