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Motivation

Notes

General Approaches to Parameter Estimation

@ are there general approaches to estimation that produce

estimators with good properties, such as consistency, and

efficiency?
@ Least Squares: OLS, FGLS, FE

o Method of Moments: Assume 6 = g(E(Y)).

o replaces population by sample moments: 8 = g (En[yi]).
e OLS, FGLS, IV, FE

o Maximum Likelihood (ML): loosely speaking, it chooses 6
which maximizes the estimate of the empirical density
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Motivation

Notes

Why Should We Use ML?

@ Nice asymptotic results under mild conditions

e Easy to implement for “non-linear” models:

labor force participation decision, employment decision
marriage/divorce decisions, number of kids a couple want

big investment project decision
means of transport choice...

o that is, useful for discrete choices...
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Definition & a Basic Example

Notes

Basic Setup

o Let {y1,y2,...,yn} be a sample from a population each with a

probability f(Y;6y). We know f() but do not know 6y

@ We assume that observations {yi,ys,...,yn} are independent,

so that

f(yi,y2,--.,yn; 60) =f(y1;60)f (y2; 60)...f (yn; 60)

@ Likelihood function: the function obtained for a given sample

after replacing true 6y by any 6

L(6) =1f(y1;0)f(y2:0)...f(yn; 0)

@ L(0) is a random variable because it depends on the sample
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Definition & a Basic Example

Notes

Definition

The maximum likelihood estimator of 6y, 6ML, is the value of 6
that maximizes the likelihood function L(6).

@ usually, it is more convenient to work with the logarithm of the
likelihood function

1(6) = log(L(6)) = L1, log ((y::6))
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Definition & a Basic Example

Notes
Example: Bernoulli (1/4)
) .| takes value 1 with probability pg
° Y is Bernoulli { takes value 0 with probability 1 — pg
o likelihood for observation i : po if yi.: 1
1—po ifyj=0
@ let ny be the number of observations with 1. Then, under iid
sampling
Lp)=pm(1—p)" ™
Definition & a Basic Example

Notes

Example: Bernoulli (2/4)

Each sample gives us one likelihood function

Suppose we observe this: {0,1,0,0,0}

Then we have this likelihood: L(p) = p(1—p)*

Suppose we observed instead this sample:{1,0,0,1,1} (ones
are more frequent)

Now we have a different likelihood: L(p) = p*(1— p)?
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Definition & a Basic Example

Notes
Example: Bernoulli (3/4)
Sample: {0,1,0,0,0} Sample: {1,0,0,1,1}
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@ with the first sample, p =0.2
@ with the second sample, p =0.6
Definition & a Basic Example
Notes

Example: Bernoulli (4/4)

the maximum likelihood estimator is the value that maximizes

L(p)=p™(1—p)" ™

the same p maximizes the logarithm of the likelihood function

I(p) = nilog(p)+ (n— n1)log (1 —p)
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with {0,1,0,0,0}=p=1=0.2

with{1,0,0,1,1}=p=3 =06
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Definition & a Basic Example

Notes
Computing the MLE
o ML estimates are sometimes easy to compute, as in the
previous example
@ in the linear regression model with normal errors, ML coincides
with OLS
@ sometimes, however, there is no algebraic solution to the
maximization problem
@ It is necessary to use some sort of nonlinear maximization
procedure: STATA will take care of this
Linear Regression Model & ML
Notes

Classical Assumptions

Gauss-Markov Assumptions

Al: Linearity: y = Pox+¢€

A2: Random Sampling

A3: Conditional Mean Independence: E[y |x] = Box

A4: Invertibility of Variance-covariance Matrix

A5: Homoskedasticity: Var[e|x] = o7

: Normality: y |x ~ N(Box,03)
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Linear Regression Model & ML
Notes

Basic Setup

o Let {y1,y2,...,yn} be an iid sample from the population with

density y |x ~ N (Box,0¢).
o We aim to estimate 6y = (o, 0¢)

@ Because of the iid assumption, the joint distribution of

{y1,y2,-..,yn} is simply the product of the densities:

f(y1,y2, - yn|xt, ... xn; 60) =
f(y1lx1; 60)f (y2|x2; 60)...f (yn|xn; 60)

o Note that y|x ~ N (Box,cg) =e~N (0,63). This implies
that

fyix (vilxi; 80) = fe (vi — Bxi; 60)
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Linear Regression Model & ML
Notes

Density of the Error Term

o We have that € ~ N (0,68), so what is its density?

@ We can use the following trick:

€~ N (0,08) implies that =~ N(0,1)

Gio ~ N(0,1) implies that CDF, (z) = Pr (i < z) =0 ( z>

oo = 0o Go

© ©0 ©

since the density of any continuous random variable is the first
derivative of its CDF:

f(z:60)=(£)9(3)
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Linear Regression Model & ML

Notes
Density of the Sample
@ Since
cem=(5)0(2)
@ and
fyix (vilxi; 60) = fe (yi — Bxi; 60)
@ and
f(y1,y2,- - ynlxi, . xwi 60) = f(y1[x1; 60)f (y2[x2: 60)...f (yn|xn: 60)
@ then we have that
1 i — Boxi
f XN 6) = — e
(Y1,¥2,- - YnIX15 - X; 60) H{<Go) () ( o >}
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Linear Regression Model & ML
Notes

The Log-likelihood (1/2)

@ The likelihood replaces the actual values of the parameters for
real variables:

0-{(2) ()

o taking the log makes the problem easier

(10 = E o () s o (57 ) |

]
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Linear Regression Model & ML

Notes
The Log-likelihood (2/2)
o the first term inside the sum is a constant for all observations
ﬁXI
log (L(B,0)) = —Nilog (o +Z log | ¢
2
e and given that ¢ (”%f”) = (2717)_% exp [(y’f)“) ] we have
that
_ Yi— ﬁxl
log (L(B. @) = —Niog ( 62 53
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Linear Regression Model & ML
Notes

The ML Estimator: FOC

@ The ML estimator is the value for (f,0) such that the
log-likelihood is maximized

@ We obtain the maximum of the likelihood by setting the partial
derivatives with respect to (f3,0) to zero

e With respect to 3, this implies

Azz ( Bx’) =0

@ which implies

Y xi (yi —3Xi) =0

o With respect to o, this implies

1

62= 5L (v~ Bx)
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Linear Regression Model & ML
Notes

Some Final Comments

e MLE for 3 is exactly the same estimator as OLS

2

@ 6° is not the same as the unbiased estimator

&= gL (5 )

o 62 = NZ1g2 s biased, but the bias disappears as N increases
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Asymptotic Results for ML

Notes

Consistency

o finite-sample identification: /(6) takes different values for
different 0

@ sampling: a law of large numbers is satisfied by %Z,—I,-(é)

@ asymptotic identification: max /(0) provides a unique way to

determine the parameter in the limit as the sample size tends
to infinity.

@ Under these conditions, the ML estimator is consistent

plim <éML> =0
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Asymptotic Results for ML

Notes

Asymptotic Normality

@ consistency

e /(0) is differentiable and attains an interior maximum

@ a Central Limit Theorem can be applied to the gradient

@ Under these conditions the ML estimator is asymptotically
normal

n'/? (é—@) — N(0,X)) asn—oo

1

where ¥ = — (plimL ¥ H;)~
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Asymptotic Results for ML

Notes

Asymptotic Efficiency and Variance Estimation

If /(0) is differentiable and attains an interior maximum

@ the MLE must be at least as asymptotically efficient as any
other consistent estimator that is asymptotically unbiased

Consistent estimators of the Variance-Covariance Matrix

A =il
e empirical hessian: vary(0) =— [%ZHi_l(@)]

o BHHH, vargynu(6) = [(izg"(é))T G’Zgi(é)ﬂ_l

o the sandwich estimator: valid even if the model is misspecified

(robust option in STATA)
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Summary Notes

Summary

@ ML estimates are the values which maximize the likelihood

function

@ under the Gauss-Markov assumptions plus normality of the
error term, BML is exactly the same estimator as 3OL°

@ under general assumptions, ML is consistent, asymptotically

normal, and asymptotically efficient
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