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General Approaches to Parameter Estimation

are there general approaches to estimation that produce

estimators with good properties, such as consistency, and

e�ciency?

Least Squares: OLS, FGLS, FE

Method of Moments: Assume θ = g (E (Y )).

replaces population by sample moments: θ̂ = g (EN [yi ]).
OLS, FGLS, IV, FE

Maximum Likelihood (ML): loosely speaking, it chooses θ̂

which maximizes the estimate of the empirical density
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Why Should We Use ML?

Nice asymptotic results under mild conditions

Easy to implement for �non-linear� models:

labor force participation decision, employment decision
marriage/divorce decisions, number of kids a couple want
big investment project decision
means of transport choice...

that is, useful for discrete choices...
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Basic Setup

Let {y1,y2, . . . ,yN} be a sample from a population each with a

probability f (Y ;θ0). We know f () but do not know θ0

We assume that observations {y1,y2, . . . ,yN} are independent,

so that

f (y1,y2, . . . ,yN ;θ0) = f (y1;θ0)f (y2;θ0)...f (yN ;θ0)

Likelihood function: the function obtained for a given sample

after replacing true θ0 by any θ

L(θ) = f (y1;θ)f (y2;θ)...f (yN ;θ)

L(θ) is a random variable because it depends on the sample
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De�nition

The maximum likelihood estimator of θ0, θ̂ML, is the value of θ

that maximizes the likelihood function L(θ).

usually, it is more convenient to work with the logarithm of the

likelihood function

l (θ) = log(L(θ)) = ∑
N
i=1 log (f (yi ;θ))
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Example: Bernoulli (1/4)

Y is Bernoulli:

{
takes value 1 with probability p0
takes value 0 with probability 1−p0

likelihood for observation i :

{
p0 if yi = 1

1−p0 if yi = 0

let n1 be the number of observations with 1. Then, under iid

sampling

L(p) = pn1(1−p)n−n1
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Example: Bernoulli (2/4)

Each sample gives us one likelihood function

Suppose we observe this: {0,1,0,0,0}
Then we have this likelihood: L(p) = p(1−p)4

Suppose we observed instead this sample:{1,0,0,1,1} (ones
are more frequent)

Now we have a di�erent likelihood: L(p) = p3(1−p)2
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Example: Bernoulli (3/4)
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with the second sample, p̂ = 0.6

Ricardo Mora Max. Likelihood Estimation

Motivation
De�nition & a Basic Example

Linear Regression Model & ML
Asymptotic Results for ML

Summary

Example: Bernoulli (4/4)

the maximum likelihood estimator is the value that maximizes

L(p) = pn1(1−p)n−n1

the same p̂ maximizes the logarithm of the likelihood function

l(p) = n1log(p) + (n−n1)log(1−p)

∂ l(p)
∂p

= 0⇔n1
p̂

= n−n1
1−p̂ ⇒ p̂ = n1

n

with {0,1,0,0,0}⇒ p̂ = 1
5

= 0.2

with{1,0,0,1,1}⇒ p̂ = 3
5

= 0.6
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Computing the MLE

ML estimates are sometimes easy to compute, as in the

previous example

in the linear regression model with normal errors, ML coincides

with OLS

sometimes, however, there is no algebraic solution to the

maximization problem

It is necessary to use some sort of nonlinear maximization

procedure: STATA will take care of this
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Classical Assumptions

Gauss-Markov Assumptions

A1: Linearity: y = β0x + ε

A2: Random Sampling

A3: Conditional Mean Independence: E [y |x ] = β0x

A4: Invertibility of Variance-covariance Matrix

A5: Homoskedasticity: Var [ε |x ] = σ2
0

Normality

A6: Normality: y |x ∼ N(β0x ,σ
2
0 )
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Basic Setup

Let {y1,y2, . . . ,yN} be an iid sample from the population with

density y |x ∼ N
(
β0x ,σ

2
0

)
.

We aim to estimate θ0 =
(
β0,σ

2
0

)
Because of the iid assumption, the joint distribution of

{y1,y2, . . . ,yN} is simply the product of the densities:

f (y1,y2, . . . ,yN |x1, ...,xN ;θ0) =
f (y1|x1;θ0)f (y2|x2;θ0)...f (yN |xN ;θ0)

Note that y |x ∼ N
(
β0x ,σ

2
0

)
⇒ ε ∼ N

(
0,σ2

0

)
. This implies

that

fY |X (yi |xi ;θ0) = fε (yi −βxi ;θ0)
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Density of the Error Term

We have that ε ∼ N
(
0,σ2

0

)
, so what is its density?

We can use the following trick:

1 ε ∼ N
(
0,σ2

0

)
implies that ε

σ0
∼ N (0,1)

2 ε

σ0
∼ N (0,1) implies that CDFε (z) = Pr

(
ε

σ0
≤ z

σ0

)
= Φ

(
z

σ0

)
3 since the density of any continuous random variable is the �rst

derivative of its CDF:

fε (z ;θ0) =
(

1
σ0

)
φ

(
z

σ0

)
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Density of the Sample

Since

fε (z ;θ0) =
(

1
σ0

)
φ

(
z

σ0

)
and

fY |X (yi |xi ;θ0) = fε (yi −βxi ;θ0)

and

f (y1,y2, . . . ,yN |x1, ...,xN ;θ0) = f (y1|x1;θ0)f (y2|x2;θ0)...f (yN |xN ;θ0)

then we have that

f (y1,y2, . . . ,yN |x1, ...,xN ;θ0) = ∏
i

{(
1

σ0

)
φ

(
yi −β0xi

σ0

)}
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The Log-likelihood (1/2)

The likelihood replaces the actual values of the parameters for

real variables:

L(β ,σ) = ∏
i

{(
1

σ

)
φ

(
yi −βxi

σ

)}
taking the log makes the problem easier

log (L(β ,σ)) = ∑
i

{
log

(
1

σ

)
+ log

[
φ

(
yi −βxi

σ

)]}
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The Log-likelihood (2/2)

the �rst term inside the sum is a constant for all observations

log (L(β ,σ)) =−Nlog (σ) +∑
i

{
log

[
φ

(
yi −βxi

σ

)]}

and given that φ

(
yi−βxi

σ

)
= (2π)−

1
2 exp

[(
yi−βxi

σ

)2]
we have

that

log (L(β ,σ)) =−Nlog
(

1

2πσ2

) 1
2

+∑
i

(
yi −βxi

σ

)2
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The ML Estimator: FOC

The ML estimator is the value for (β ,σ) such that the

log-likelihood is maximized

We obtain the maximum of the likelihood by setting the partial

derivatives with respect to (β ,σ) to zero

With respect to β , this implies

2

σ̂²
∑xi

(
yi − β̂xi

σ̂

)
= 0

which implies

∑xi

(
yi − β̂xi

)
= 0

With respect to σ , this implies

σ̂² =
1

N ∑
i

(
yi − β̂xi

)2
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Some Final Comments

MLE for β̂ is exactly the same estimator as OLS

σ̂2 is not the same as the unbiased estimator

s2 =
1

N−1 ∑
i

(
yi − β̂xi

)2

σ̂2 = N−1
N

s2 is biased, but the bias disappears as N increases
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Consistency

Assumptions

�nite-sample identi�cation: l(θ) takes di�erent values for

di�erent θ

sampling: a law of large numbers is satis�ed by 1
n

Σi li (θ̂)

asymptotic identi�cation: max l(θ) provides a unique way to

determine the parameter in the limit as the sample size tends

to in�nity.

Under these conditions, the ML estimator is consistent

plim
(

θ̂ML
)

= θ
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Asymptotic Normality

Assumptions

consistency

l(θ) is di�erentiable and attains an interior maximum

a Central Limit Theorem can be applied to the gradient

Under these conditions the ML estimator is asymptotically

normal

n
1/2
(

θ̂ −θ

)
→ N (0,Σ)) as n→ ∞

where Σ =−
(
plim 1

n ∑Hi

)−1
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Asymptotic E�ciency and Variance Estimation

If l(θ) is di�erentiable and attains an interior maximum

the MLE must be at least as asymptotically e�cient as any

other consistent estimator that is asymptotically unbiased

Consistent estimators of the Variance-Covariance Matrix

empirical hessian: varH(θ̂) = =

[
1
n ∑H−1i (θ̂)

]−1
BHHH, varBHHH(θ̂) =

[(
1
n ∑gi (θ̂)

)T (
1
n ∑gi (θ̂)

)]−1
the sandwich estimator: valid even if the model is misspeci�ed

(robust option in STATA)
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Summary

ML estimates are the values which maximize the likelihood

function

under the Gauss-Markov assumptions plus normality of the

error term, β̂ML is exactly the same estimator as β̂OLS

under general assumptions, ML is consistent, asymptotically

normal, and asymptotically e�cient
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