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ABSTRACT 

Can We Measure Hospital Quality from Physicians' Choices?* 

In this paper, we propose an alternative methodology for ranking hospitals 
based on the choices of Medical School graduates over hospital training 
vacancies. Our methodology is therefore a revealed preference approach. Our 
methodology for measuring relative hospital quality has the following desirable 
properties: a) robust to manipulation from hospital administrators; b) 
conditional on having enough observations, it allows for differences in quality 
across specialties within a hospital; c) inexpensive in terms of data 
requirements, d) not subject to selection bias from patients nor hospital 
screening of patients; and e) unlike other rankings based on experts' 
evaluations, it does not require physicians to provide a complete ranking of all 
hospitals. We apply our methodology to the Spanish case and find, among 
other results, the following: First, the probability of choosing the best hospital 
relative to the worst hospital is statistically significantly different from zero. 
Second, physicians value proximity and nearby hospitals are seen as more 
substitutable. Third, observable time-invariant city characteristics are 
unrelated to results. Finally, our estimates for physicians' hospital valuations 
are significantly correlated to more traditional hospital quality measures. 
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1 Introduction

Assessing the quality of health care providers is a priority of many governments, state agencies, insurance
companies and often also patients. Accurate measures of providers’ quality can be used to establish
incentive mechanisms and to identify which providers need quality improvements. In addition, when
made public, these measures can increase market transparency and competition. Public report cards
in certain US states and the NHS ranking system in the UK are two attempts at constructing quality
rankings of health care providers. Although the need for such rankings is widely recognized, the number
of criticisms of these attempts reveal the difficulties involved in this task (see for example the review by
Shahian et al., 2001 and the references therein). Most criticisms warn of the inadequate risk-adjustment
and the potential for strategic behavior among providers, such as patient selection by hospitals (Dranove
et al., 2003, Moscucci et al., 2005), as well as hospital selection by patients based on poor information1.
Nonetheless, the available studies show that there is a wide variation in the performance of health care
providers (e.g. Shahian et al., 2001, and Burgess et al., 2003) and that, in some cases, differences among
providers have widened in the past decades (e.g. McLellan and Staiger, 1999a).

Hospital quality assessment is particularly complex due to several reasons: First, hospitals produce
a wide range of heterogeneous services, which makes it impossible to define “hospital production” in a
simple way (see, for instance, McClellan and Staiger, 1999b, Maxwell, 1984). Second, the randomness of
hospital output, e.g. because of a small number of patients or uncommon conditions, and the existence of
confounding factors, such as location-specific patient health characteristics, may lead to noisy measures
of hospital quality. Third, patient selection and other non-random sources of patients assignment (see,
for instance, Gowrisankaran and Town, 1999 and Geweke, Gowrisankaran and Town, 2003) will bias
estimates of hospital quality. Fourth, due to data collection costs, there is a lack of follow-up measures
of treatment results. Finally, in many countries, such as Spain, there is neither public hospital rankings
nor public data on hospital output measures such as mortality rates. In this paper, we provide a
methodology to rank hospitals which is not affected by these problems because it is based on publicly
available data on physicians’ labour market rather than on hospital output measures. More specifically,
we use data on the choices over hospital vacancies made by young physicians, hereafter referred to
as physicians, at the beginning of their specialized training. Our methodology is based on a revealed
preference argument similar to the one used in Avery et al. (2005) for US colleges.

The validity of our methodology for ranking hospitals lies in three assumptions. First, physicians
should aim to fill a vacancy in those hospitals that offer the best training, possibly after controlling for
personal factors; Second, physicians are well informed decision makers who are qualified to assess hospital
training quality; Third, higher quality hospitals provide on average higher quality training. Given these
three assumptions, we argue that hospital quality differentials can be inferred from physicians choices
of training vacancies.

1An interesting summary of report cards databases can be found in http://www.uihealthcare.com/
infofor/corporaterelations/reportcards.pdf.
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The first assumption is reasonable in this very competitive and tight labor market where the place of
training provides a signal to the post-training market.2 The second assumption relies on the importance
that this decision entails for the physicians’ career prospects. On the one hand, training usually lasts
for 3 to 5 years and is an essential component of the physicians’ formation, decisively affecting their
future income. On the other hand, the relative costs of gathering information on hospital training
quality seem to be relatively low within the physicians’ network.3 The third assumption can be relaxed,
in which case our ranking would simply reflect hospital training quality. Hospital quality stems from
the quality of hospital staff and equipment. Hence, our third assumption implies that staff and/or
equipment that contributes to higher hospital quality also provide better training on average. If our
three assumptions hold, then we would expect a positive high correlation between hospital quality and
our ranking based on the physician’s choices. We confirm this prediction by computing this correlation
in a small subsample of hospitals for which more traditional quality measures (i.e., aggregate mortality
rates and prevalence of nosocomial infections4) exist.

We adapt our methodology to the Spanish physicians labor market. In Spain, physicians willing to
start a career as specialists must sit a national exam after graduation from medical school. Physicians
are then ranked according to a weighted average of the exam grade and their GPA. Finally, physicians
choose hospital training vacancies sequentially according to this rank. The sequential structure of the
process implies dependence across choices. As physicians gradually fill in the vacancies, they decrease the
choice sets of remaining physicians. We propose a model similar in spirit to the sequence of “exploded”
conditional multinomial logit proposed by Bradlow and Fader (2001). Given our assumptions, physicians
who choose first are likely to grab the best vacancies while those who choose last are stuck with the
worst vacancies available. Naturally, physicians’ choices may also depend on personal considerations.
For example, when choosing a hospital, physicians are simultaneously choosing place of residence for as
long as the training period. To account for these effects, we complement our data with location-specific
characteristics. Our model is then extended, following McFadden’s nested logit, to account for different
patterns of substitutability across hospitals in different locations.

In short, we exploit the physicians’ sequence of hospital choices to infer quality differentials among
hospitals. Our methodology for measuring relative hospital quality has the following desirable properties:
a) robust to manipulation from hospitals’ administrators; b) conditional on having enough observations,
it allows for differences in quality across specialties within a hospital; c) inexpensive in terms of data
requirements, d) not subject to selection bias from patients (Gowrisankaran and Town, 1999) nor
hospital screening of patients; and e) unlike other rankings based on experts’ evaluations, it does not
require physicians to provide a complete ranking of all hospitals.

We expect property a) to hold because it should not be possible for hospitals to influence physicians’

2Specialist certificates, obtained after completing the training period, specify the hospital where the training took place.
The name of the training hospital is, therefore, used in the labor market as a signal of quality.

3For example, private agencies publish guides with information to help physicians with their vacancy choices.
4Nosocomial infections are defined as infections which are neither present nor in incubation at the moment of admission

into a hospital.
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choices but through their performance. Besides hospital quality, one could also claim that physicians
worry about tenure promotion. Physicians might trade-off quality for less future job uncertainty. Hos-
pital administrators could give informal assurances of future promotions to attract good candidates.5

Since this information is unobservable to the econometrician, a way to control for this effect would be to
proxy for future openings with a variable such as the number of tenured physicians per number of beds.
Unfortunately, this data are not available. Instead, in our regressions, we control for the number of
hospital beds, and the number of physicians per 1000 inhabitants at the local level. Property b) follows
because hospitals open vacancies in several specialties. Property c) holds because physicians’ choices are
routinely collected. With respect to property d), our relative quality measure is not subject to selection
bias because it is neither based on patients’ nor on hospitals’ decisions. As argued by Dranove et al.
(2003), report cards based on perfectly adjusted mortality rates would still cause hospital selection of
patients leading to biased inferences of hospital quality. Finally, physicians only need local information,
i.e. information on those hospitals which are more likely to be among the best in their expected choice
set given their rank. This local information is likely more precise than, for example, if they were asked
to provide a complete ranking of all hospitals.

We find that the probability of choosing the best hospital relative to the worst hospital is statisti-
cally significantly different from zero. In our different model specifications, this odds ratio ranges from
55.7 to 166.8. In all specifications, we control for interactions between gender and specialty dummies.
We find significant differences in the way different specialties are valued by male and female physicians.
Nevertheless, our results suggest that the sequential algorithm by which vacancies are chosen precludes
neither male nor female physicians from choosing according to their preferences. Specifications differ
in two dimensions: the inclusion of hospital characteristics and the treatment of location preferences.
Most hospital characteristics are not significant, and their inclusion has little effect on the rankings of
hospitals. In contrast, the estimates for the location parameters are very precisely estimated. More-
over, adding complexity to the modelling of location affects the ranking by more than the inclusion of
hospital controls. We find that physicians value proximity and that nearby hospitals are seen as more
substitutable. Overall, our rankings are very correlated across different model specifications.

To evaluate whether physicians’ choices are related to hospital quality, we perform two types of
checks. First, it could be argued that in our framework, time invariant city characteristics may be
confounded with hospital quality since they contribute to the appeal of hospitals in the city. We show
that observable time-invariant city characteristics are unrelated to our results. Moreover, to control for
unobservable time invariant city characteristics that contribute to the attractiveness of hospitals, we also
construct within-city rankings. Our results show that city-specific unobservable effects are unimportant.
Second, we test whether physicians’ choices are related to other traditional measures of hospital quality.
Specifically, we compare our rankings with rankings obtained from two alternative measures of hospital
quality which we gathered for a sub-sample of hospitals: the risk-adjusted prevalence of nosocomial
infections and mortality rates. The results of these tests corroborate that our estimates for physicians’

5Legally, these promises would not be implementable during our sample period as tenure decisions for specialists within
hospitals were not controlled by hospital administrators.
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hospital valuations are significantly correlated to more traditional hospital quality measures, which
supports the validity of our methodology to construct a ranking of hospital quality.

The remainder of this paper proceeds as follows. Section 2 describes the literature on hospital
evaluation. Section 3 sketches the institutional background in Spain. Section 4 describes the data set.
Section 5 provides the econometric framework while Section 6 presents our estimation results. Section
7 discusses and compares our ranking results with rankings based on alternative measures of hospital
quality. Section 8 concludes comments.

2 Literature Review

Early evaluations of hospital production were based on accounting exercises of the inputs used during
an average stay. As better data were made available, other hospital indicators, such as the length of
the average stay or the average turnover, were gradually incorporated in the studies. Yet, the use of
such indicators could be easily influenced by hospital administrators so that improvements in these
indicators might be unrelated to hospital quality variations. This was considered a serious drawback for
the practical usefulness of these indicators. Ideally, quality measures should not be easily manipulated
by hospital administrators (see for instance, Lu, 1999, for a description of this problem in the context
of substance abuse treatment).

More recently, some studies have used treatment results, such as hospitals’ disease-specific mortality
rates and nosocomial infection rates (Gaynes, 19976), to assess hospital quality after controlling for
observable characteristics. For instance, Normand et al. (1997) compare mortality rates for acute
myocardial infarction after using hospital and patient characteristics as risk-adjusters.

When using treatment results, two difficulties may still arise. First, since a patient’s health status
is not reflected in just one binary indicator, such as a imminent survival, the results are necessarily a
partial analysis of hospital quality. Recent studies have tried to address this limitation by incorporating
additional health measures over time (see, for instance, McClellan and Staiger, 1999a, 1999b, and
Ackerberg et al. 2006). Nonetheless, the potential for biased estimates of hospital quality due to
insufficient gathering of relevant health information remains.7 The obvious solution to this problem, i.e.
the exhaustive gathering of information regarding treatment results, does not seem practical as data
collection costs could increase substantially.

The second difficulty with simple risk-adjustment is that it fails to adjust for non-observable factors.
For example, Gowrisankaran and Town (1999) as well as McLellan and Staiger (1999a) argue that
the endogeneity in the process of patients’ assignment to hospitals is a source of bias when estimating

6See also references provided in Section 7 for more recent examples.
7McLellan and Staiger (1999a) find that hospital characteristics such as teaching institution status, for-profit organiza-

tion status, number of beds, and volume cannot explain all the differences in standardized mortality rates. This finding
suggests that unobservables may explain them.
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hospital quality because the best hospitals will usually be assigned the most severe cases. Gowrisankaran
and Town propose a simple linear instrumental variables approach to the mortality rate model using
distances to non-selected hospitals as instruments of hospital choice to deal with the endogeneity but,
they caution their method is not appropriate for constructing a ranking of hospitals due to the high
standard deviations of the estimated hospital-dummy coefficients . McLellan and Staiger, on the other
hand, decide to restrict their analyses to heart attack patients who have less of a possibility to choose
hospitals due to the urgency of treatment. Geweke, Gowrisankaran and Town (2003) go one step further
and jointly model the hospital choice and the mortality outcome for Medicare patients suffering from
pneumonia. They compute the probability of mortality under the hypothetical experiment of random
admission to hospitals using Bayesian Markov Chain Monte Carlo simulation techniques. In a somewhat
different vein, Ackerberg et. al. (2006) address the problem of endogeneity in their study on alcoholism
treatment by distinguishing between the intrinsic quality of the health provider and the effect of the
patient’s unobservable characteristics in the assignment to health providers.

In contrast to the previous studies where patient level data are used, we use public data on physicians’
choices over training vacancies at the beginning of their careers. Thus, our proposal relies on revealed
preference in the labor market for training vacancies. Avery et al. (2005) use a similar approach to
rank colleges in the United States. Our methodologies and applications, however, differ in several ways.
First, Avery et al. (2005) acknowledge a potential self-selection problem that would bias their ranking
results. In their application, students’ choice sets are not exogenous; instead they are a subset of colleges
pre-selected by the students. In our application, choice sets are given for each physician. Second, in their
data, students’ residence is exogenous and precisely recorded. As we argue in Section 5.2, information
on physicians’ residence in our dataset is measured with error and this error is potentially correlated
with physician’s ability. We control for location by using college location, which is precisely measured
but may be endogenous. As we explain in Section 5.2, we address the endogeneity issue by estimating
a nested logit model in contrast to the multinomial logit estimated by Avery et al. (2005).

3 The labor market for specialists

In Spain, it is mandatory for medical school graduates to complete training programs in hospitals during
a number of years before they can practice as specialist physicians. Not all hospitals open training
vacancies and hospitals must fulfill certain requirements before they can do so. These requirements
are established by the Ministries of Education and Health. The number of vacancies in each hospital
is determined by the government after consultation with hospital administrators and depends on the
hospital training capacity and the needs of the population in the surrounding area. In conversations
with a government official involved in the process we were told that hospitals seek to obtain as many
vacancies as they can manage as an inexpensive way of increasing staff. The data suggest that given
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hospital size, the number of vacancies is unrelated to hospital quality.8 Finally, across hospitals, the
total number of vacancies per specialty-year is very uneven.

Overall, according to data from the National Catalogue of Hospitals, only around 22% of health
care providers offer training programs for specialists. These providers share a number of features. All
of them are hospitals and, on average, are larger than those institutions which do not train specialists.
Training hospitals have, on average, 540 beds as opposed to an average of 117 beds for those hospitals
without training vacancies. In addition, training hospitals have special health care equipment, such as
extracorporeal shock wave lithotripsy, cobalt treatment equipment, and particle accelerators. Nearly
75% of training hospitals report having at least one type of special equipment while the figure for
non-training hospitals is only 36%. The percentage of private and public hospitals that open training
vacancies are 4.65% and 43%, respectively. These statistics suggest that our sample includes a large
proportion of the most important hospitals in the Spanish health care system.

The match between physicians and vacancies follows a serial dictator procedure. First, physicians are
ranked according to an average score, which is obtained as a weighted average between a standardized
national exam score9 –with a weight of 75%– and the medical school grade-point-average – with a
weight of 25%. Every year during our sample period, the number of physicians who take the exam
is higher than the total number of vacancies available.10 Physicians may choose a vacancy following
the sequence established by the rank. Some physicians, however, decide to drop out from the process.
Most of these have a low rank, which indicates that they prefer an outside option to the vacancies still
available to them (e.g. Gonzalez and Barber, 2004). Conditional on choosing a vacancy, physicians’
dominant strategy is to choose their best option from those still available.11

Wages for training positions are the same across all hospitals. Hence, differences in nominal salary
should not influence physicians’ choices. In order to control for real wage differences we include housing
prices in some of our regression specifications.

Future career considerations may also influence physicians’ choices. For example, the physicians
may trade a good training hospital for less future job uncertainty and better tenure prospects. In 1990,

8 In our data, the number of training vacancies is highly correlated (0.83) with the number of beds, a proxy for hospital
size. On the other hand, in a regression of the number of training vacancies per hospital on its lagged value, the number of
beds, and the lagged proxy for hospital quality (the rank of the first candidate who chooses that hospital) shows that the
latter is not significant. This suggests that the order in which physicians choose each hospital does not affect the number
of training vacancies per hospital during our sample period.

9The standardized national exam is called the MIR exam after the Spanish acronym for “hospital intern physician.”
10According to the Curso Intensivo Mir Asturias, a private academy that prepares candidates for the MIR exam,

the excess of physicians over vacancies fluctuates between 19% and 78% of the vacancies during the last years
(see http://www.curso-mir.com and tables: http://www.curso-mir.com/nuestros_result/01.htm and http://www.curso-
mir.com/nuestros_result/02.htm).
11González and Barber (2004) claims that physicians could choose from the available set any specialty in the hospital

where they wished to be located with the aim of requesting a change of specialty once the training period started. However,
they also report that regulation put in place in 1995 put an end to these short-cuts by making it very costly to change
specialties.
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the government tried to pass a law by which hospital tenure decisions were made in a centralized way.
Applicants would be evaluated according to the results of an exam and some other objective criteria
related to the applicants’ professional merits. However, due to the non-standard procedures carried
out for its approval, trade unions took this law to the constitutional high court. In 1998, the high
court finally declared it illegal. Because of this legal uncertainty, no tenure decisions were made during
our sample period. It was not until 2001 when a new law was enacted to regulate the tenure decision
process, which closely followed the initial law.

4 Data

We use several datasets in our estimations. The main dataset contains the sequence of hospital-specialty
choices made by physicians from 1995-2000. These data are publicly available from the Spanish Ministry
of Health and contain information on physician characteristics such as the physician’s rank, gender,
province of residence, college of graduation, and hospital-specialty choice.

As mentioned in the previous Section, physicians may drop out from the process and choose their
outside option. We can identify the rank of those individuals who drop out; however, there is neither
information on their other characteristics nor on their outside option. A particular example of an outside
option would be when physicians join the compulsory military/social service. They may exercise the
right to reserve a vacancy among those available to them. Because these physicians do not fill the vacancy
immediately, physicians who follow in the queue will fill it.12 This means that the set of vacancies
available is not affected by these reservations, which are, on average, around 6.8% of the vacancies in
any given year. As long as there are no informational cascades, choices made by reservationists do not
affect the other physicians’ choices and, therefore, the absence of this information does not result in a
bias.

After applying several filters to control for misspelling in the coding of the hospital or the specialty,
our main dataset has around 2, 585 vacancies each year totalling 15, 511 observations from 1995 to
2000.13 The total number of hospitals in the data set is 183. The number of hospitals varies by year
because some hospitals are merged while others are split into different hospitals. We treat hospitals
resulting from either merges or splits as new hospitals.14

Typically, for a particular hospital the number of vacancies per specialty per year is very small. Of
all hospital-specialty combinations available, roughly 85% correspond to a single vacancy being offered

12Reservations from previous years that are filled during any year in our sample period are dropped from the dataset
since those vacancies do not belong to the choice set of the other physicians in that year.
13After 1996, physicians who wished to become General Practitioners participated in a separate process which included

a different exam and a separate selection mechanism, which runs parallel to the other specialties. For this reason and
because GP is a non-hospital based specialty, we do not consider this specialty.
14The year with the lowest number of hospitals is 1995 with 146 hospitals, while the year with the highest number is

2000 with 161 hospitals.
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Figure 1: Number of vacancies per specialty per year

and in 95% of the cases the number of vacancies is smaller than three, as Figure 1 illustrates.

Across hospitals, the average number of vacancies (over all specialties) per year is 16.62 but this
distribution is very disperse and skewed. For example, the median number of vacancies per hospital is
only 7.17. The average number of specialties per hospital per year is relatively large (10.29), although
the distribution is also relatively skewed with a median number of specialties per hospital of 7.00. There
are large differences by specialty in the average number of vacancies as Figure 2 shows.

In addition, there is a marked contrast between the distribution of male and female physicians
across specialties. Figure 3 shows the deviation of the gender ratio (i.e. the ratio of the share of female
physicians to the share of male physicians) by specialty to the overall gender ratio in percentage terms.
This index will be close to zero whenever the gender ratio in a given specialty is close to the overall
gender ratio (1.68 = 0.627/0.373) as is the case for Internal Medicine. The most striking feature of
Figure 3 is the large dispersion of female shares by specialty. For 35 out of 41 specialties, gender ratios
deviate from the mean by more than 10%. At one extreme of the distribution are Allergy, Pediatrics,
and Obstetrics & Gynecology where gender ratios exceed the overall ratio by more than 90%. At the
other extreme, we find Urology, Neurological Surgery, Cardiovascular Surgery, and Orthopedic Surgery
where gender ratios are lower than the overall ratio by more than 75%.
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Figure 2: Number of vacancies per specialty per year

From the information available in the physicians’ data set, it is possible to construct a variable
which reflects a notion of geographical proximity between the physicians’ residence and each hospital.
Whereas the hospitals’ address is available, there are, however, two problems with the physicians’
declared residence. First, physicians declare the province of residence, not the city. Second, this
variable may be measured with error as some physicians who have moved to attend college may declare
as province of residence either the college province or their parents’ residence.15 This measurement
error is potentially not independent from physicians’ ability since studying in a good college enhances
the likelihood of attaining a high score in the MIR exam. Consequently, good students, who aim to be
trained at a top hospital, are more likely to move from their parents’ home to study at a good college.

As an illustration of these issues consider the cases of Madrid and Barcelona, the two most populated
provinces in Spain. Both Madrid and Barcelona act as focal points for medical students from other parts
of the country. As can be seen from the census data statistics in Table 1, the percentage of the overall
college student population in Madrid over the total national (22.13%) is considerably higher than the

15Data for Spain from the European Community Household Panel shows that around 80% of college students live in
their parents’ residence during our sample years .
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Figure 3: Gender ratios by specialty

percentage of citizens under 18 years of age over the total national (12.99%), which is consistent with
the idea that Madrid’s colleges attract students from the rest of the country. We partly observe this
phenomenon in our sample, where 18.15% of physicians graduated in Madrid. From the census and the
physicians’ dataset information, we would expect the percentage of movers in Madrid to be between
30% and 70%. However, if we identify movers in our sample as those who declare a different province
of residence from the college’s, they would be less than 10% of those who studied in Madrid. Thus,
there seems to be serious underreporting of movers in Madrid. In contrast, the percentage of movers
in Barcelona is within the expected interval, suggesting that there is no serious underreporting in
Barcelona.
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% Moversa,b % College Population % Population under 18
Samplea Census 2001c Census 2001c

(medical schools) (all colleges)
Barcelona 14.56 11.73 14.18 10.94
Madrid 9.45 18.15 22.13 12.99
aData from the physicians’ data set.
bMovers are those whose province of residence differs from their college’s.
cData from the Spanish National Statistics Office (INE).

Table 1: Percentage of populations in Barcelona and Madrid over total national

To circumvent the problem of inconsistency and the potential biases associated with the residence
location variable we use instead the location of the college where the physician studied. Nearly two
thirds of physicians choose hospitals in their college location (58.11%) or in their declared province of
residence (60.23%). These numbers increase to 68.94% and 72.10%, respectively, if we consider larger
administrative regions called Comunidades Autónomas16. If physicians decided upon location randomly
then, for example, the percentage of physicians from Madrid, the region with the highest number of
vacancies, who choose to stay in Madrid should be, on average, equal to the percentage number of
vacancies in Madrid (14.5%). Yet, the figure for Madrid is 83.5%, well above the expected value for
the random allocation. These figures suggest that hospital-in-same-region as college (residence) is an
important hospital characteristic affecting the physicians’ choice. The preference to stay in the same
region will be introduced in our model in the form of nests. To define our nests, we employ the city-level
travel-time dataset used in Holl (2004), which was kindly provided by the author.

We complement the main dataset with data from the Spanish National Catalogue of Hospitals
(Catálogo Nacional de Hospitales), which is published annually by the Ministry of Health. These
data contain hospital characteristics such as location (city), number of beds and available technical
equipment (e.g. in our sample: the availability ranges from 88.52% for emission tomography to 28.42%
for extracorporeal shock wave lithotripsy). Finally, we also gathered provincial level data on annual
average housing prices, number of physicians per 1000 inhabitants, and unemployment rates from the
Spanish National Statistics Office (INE) to control for regional characteristics.

5 The Econometric Framework

In this section we propose the framework to construct a ranking of hospitals based on individual choices
made by recently graduated physicians. First, in Subsection 5.1 we simplify the decision model by
assuming that geographical proximity to hospital plays no role in the physicians decision. Subsequently,
in Subsection 5.2, we extend the model to incorporate preferences for proximity.
16Spain is divided into 52 provinces. These are grouped into 17 larger regions called Comunidades Autónomas.
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5.1 The Basic Model

Physicians are ranked according to their average score, in a given year.17 Let i = 1, ..., N simultaneously
identify a physician as well as her position in the rank. For example, i = 1 (i = N) denotes the physician
who obtained the highest (lowest) score. Each physician i chooses one hospital-specialty combination
from those available to her. Hospitals may open more than one vacancy for a given specialty. Denote by
Ci the set of all hospital-specialty combinations available to physician i. If i chooses a hospital-specialty
combination for which there are at least two remaining vacancies then the i+ 1’s choice set is identical
to Ci. Eventually, however, as hospital-specialty vacancies are exhausted, choice sets must shrink: C1
contains all possible hospital-specialty vacancies and CN has a single vacancy available. Hence, choice
sets satisfy the following:

Ci ⊇ Ci0 for i
0 > i. (1)

We model physician preferences according to the stochastic random utility model where Uij repre-
sents the utility to physician i obtained from selecting hospital-specialty combination j. Uij is decom-
posed into a deterministic component Vij and a iid stochastic term εij :

Uij = Vij + εij (2)

where εij is assumed to follow an extreme value distribution, i.e. Pr(εij ≤ x) = exp(− exp(−x)).
McFadden (1974) shows that the probability that physician i chooses the hospital-specialty combination
j∗ ∈ Ci is given by:

Pij∗ =
exp(Vij∗)X

j∈Ci

exp(Vij)
, for j∗ = 1, ..., Ji (3)

where Ji denotes the number of elements in Ci.

Let π = (π1, ...πN) be the observed sequence of physician choices where πi indexes the hospital-
specialty combination chosen by physician i. The assumption on iid error terms implies that the prob-
ability of observing a given sequence of hospital-specialty choices, Pr(π), is a sequence of independent
multinomial logit models:

Pr(π) = Pr(U1π1 ≥ U1j |∀j ∈ C1)× Pr(U2,π2 ≥ U2j |∀j ∈ C2)

×...× Pr(UN−1,πN−1 ≥ UN−1j |∀j ∈ CN−1) (4)

Equation (4) is formally similar to the “exploding conditional multinomial logit” of Chapman and
Staelin (1982) and Bradlow and Fader (2001). Our model, however, differs from theirs because the
ranking π is obtained from the choice of different individuals, each one choosing a single option without

17For simplicity, we develop the basic model for a single year but it can be extended to multiple years in a straightforward
way.
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providing a complete ranking of hospital-specialty combinations.18 Since physicians choose their pre-
ferred hospital-specialty combination from their choice set Ci, the sequence of observed hospital-specialty
choices π provides useful information to construct a ranking of hospital-specialty combinations.

Physician preferences over hospital-specialty combinations depend on interactions of hospital-specialty
characteristics and individual characteristics. Let j be an index of the combination of hospital h and
specialty s. We assume that Vij depends linearly on a vector xh of hospital characteristics, a vector
xs of specialty characteristics, and finally a vector xij of interactive variables relating physician i to
hospital-specialty j:

Uij = xhβh + xsβs + xijβj + εij . (5)

In order to construct an appropriate hospital ranking we need to infer from the physicians’ choices
a measure of the hospitals’ quality as perceived by the physicians. Estimates of hospital dummy coeffi-
cients provide a reasonable approximation.19 Nevertheless, four shortcomings should be acknowledged:
first, hospital quality may vary across specialties. This could be addressed by including hospital-specialty
dummy variables. In our data set, for some specialties and hospitals, however, there are not enough
observations to obtain precise estimates (see Figure 1). Second, as commented on the Introduction, hos-
pitals’ quality as perceived by the physicians may differ from hospitals’ quality from the point of view
of society. For example, physicians may prefer to be placed in larger hospitals because they may learn
more. Hence, if we do not control for size, the estimated hospital dummy coefficients for larger hospitals
would be an upward-biased estimate of quality in the latter sense. In order to minimize this potential
bias, in Section 6 we present results for specifications in which xh includes only hospital dummies and
also results for specifications where xh also includes hospital observable characteristics such as size and
the availability of sophisticated equipment. Third, controlling for time-variant hospital characteristics
does not capture unobservable time invariant city characteristics that contribute to the attractiveness
of hospitals in the city. In this case, hospital dummy coefficients would not only reflect relative hospital
training quality but would also embody physicians’ valuations for these city characteristics. In Section 6
we present city-level hospital rankings which are immune to this shortcoming. Fourth, it is conceivable
that information about hospital quality may depend on some characteristics of the physician, such as
her ranking. In that case, we should control for individual heterogeneity in preferences, for example,
allowing for individual specific hospital coefficients, βih. However, given the large number of available
vacancies in our dataset, we decided, for computational reasons, to model heterogeneity as a simple
function of the physician’s ranking. In particular, we allow for different hospital dummy coefficients for
the physicians in the top 20% of the ranking.

18 In contrast, Chapman and Staelin’s (1982) model assumes that each individual provides a ranking of alternatives.
Bradlow and Fader (2001) data, on the other hand, consists of weekly observations of the pop song hits list Billboard
“Hot 100”. Their ranking is provided by the level of record sales and, therefore, implicitly aggregates the choice of many
different individuals. They do not model the aggregation of preferences but instead work as if a single entity gives the
ranking.
19Note that the incidental parameter problem present in fixed effects estimators within non-linear models does not arise

in this context as the number of hospitals does not increase with the number of observations within a year (i.e. with the
number of vacancies).
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The likelihood function for the basic model takes the form:

L(π|β) = Pr(π) =
NY
i=1

exp(Vij∗(β))X
j∈Ci

exp(Vij(β))
(6)

where β = (β0h, β
0
s, β

0
j)
0 is the vector of parameters. An important drawback of this model is the

underlying assumption of the Independence of Irrelevant Alternatives (IIA). The way we introduce
preferences for location in the next subsection partially relaxes this assumption.

5.2 Introducing Location

When physicians choose a particular hospital they are implicitly choosing their residence for the following
three to five years. The data shows that, on average, physicians have a preference for staying in the
province where they are living or where they graduated. Table 2 shows the percentage of physicians who
choose a vacancy in the same province as their college or declared residence for different rank quartiles.
Table 2’s statistics may seem counter-intuitive since one expects the highest ranked physicians to give
a higher weight to hospital quality and, therefore, to be more willing to move to a different region
in order to be trained at a better hospital. However, since college quality is not evenly distributed
across the country, as Figure 4 suggests20, top students have already moved to study medicine in the
best colleges in order to improve their position in the MIR ranking.21 Thus, if the best hospitals are
located in the same regions as the best colleges, top ranked physicians do not need to move again.
This explanation highlights the fact that the variable hospital-in-same-region-as-college is likely to be
endogenous since unobserved factors that affect hospital choice also affect college choice. Hence, the
introduction of hospital-in-same-region-as-college in the physicians’ utility, as in Avery et al. (2005),
would lead to biased estimates. The nested-logit framework presented below allows us to introduce
preference for proximity without causing a bias in the estimated coefficients.

Rank quantiles
25% 25%− 50% 50%− 75% 75%− 100%

hospital in same province as college 67.63 63.38 54.31 47.11

hospital in same province as residence 67.37 65.01 57.81 50.72

We introduce location by extending the multinomial logit framework to a nested logit (McFadden,
1978) where a physician’s hospital-specialty choice also involves a location choice. Relative to the

20Figure 4 shows the percentage of physicians ranked amongst the top 25% among those who choose a vacancy by region
of college. Regions with only one college are left out of the figure to comply with a requirement to have access to the full
dataset. Nonetheless, the range of values for the excluded regions (20.66% versus 31.53%) is similar to the range shown.
The physicians from the “best performing” region fare roughly 50% better than those coming from the “worst performing”
region.
21For example, as shown in Table 1, Madrid and Barcelona attract students from other regions.
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Table 2: Percentage of Physicians in each quantile that choose a hospital in the same region as college
or residence

standard multinomial logit, the nested logit has the additional advantage of only requiring the IIA to
hold for alternatives within the same nest. Although the choice of location and hospital-specialty is
simultaneous, the nested logit can be interpreted as a sequential choice model where one first chooses
location (or nest) and then a hospital-specialty within that location.22

Nests based on geographical proximity variables play an important role in the identification of
hospital quality because part of the identification comes precisely from those physicians who choose a
hospital with a location far from that of the college. Physicians who are highly ranked will have more
options and, therefore, a movement to another location reveals a stronger preference for the chosen
hospital. On the contrary, physicians who are lower ranked may have to move to another location
because there are fewer options to choose from. Therefore, movements made by highly ranked physicians
help identify relative hospital quality.

In the simplest specification, we partition the set of all hospital-specialty combinations available for
each physician i into two nests, Bik, k = 1, 2.Without loss of generality, nest 1 includes hospitals located
close to the physician’s location (college) while nest 2 includes hospitals located elsewhere. Thus, nests
are defined as an interaction between hospital and physician locations. Using the city-level data on
travel-time, a hospital is classified into nest 1 whenever it is located within 45 minutes of college.23

As in the previous Section, choice sets, Ci, are individual specific and shrink as hospital-specialty
combinations are exhausted along the process. The physician’s utility from choosing alternative j
belonging to nest k, j ∈ Bik ⊂ Ci, is:

Uij = Vij + εij (7)

where Vij depends linearly on a vector xh of hospital characteristics, a vector xs of specialty charac-
teristics, and finally on a vector xij of interactive variables relating physician i to hospital-specialty j
just as in equation (5). The difference with the multinomial model lies in the distribution of the error
term, which now depends on the definition of nests. To be precise, the vector εi = (εi1, ...εij , ...εiJi) has

22Conceivably, we could extend this framework to a three-level nested logit where locations and specialties define nests.
This would be a more general model than the one we propose here. However, given the large number of specialties, the
estimation would be computationally burdensome.
23 Initial versions of this paper considered using administrative regions - Comunidades Autonomas- to define nests. The

classification of hospitals into nest 1 and nest 2 remains the same for 89% of the observations relative to the travel-time
regions. The fact that some cities are near province boundaries and people move across them, suggests that the travel-time
based nests are more realistic. In addition, while point estimates are similar under the two specifications, standard errors
were larger with nests based on administrative regions.
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cumulative distribution:

Pr(εi ≤ a|Ci) = exp

⎛⎜⎝− 2X
k=1

⎛⎝ 2X
j∈Bik

e
− aj
λk

⎞⎠λk
⎞⎟⎠ . (8)

The nested-logit model allows us to introduce the preference for proximity without incurring a bias in the
maximum likelihood estimates. To see this, note that the proximity variable, which defines individual-
specific nests, does not affect the deterministic component of utility directly, i.e. is not included in Vij ,
and only affects the distribution of the error term εi.

24

If λk = 1 for all k then the elements of εi are independently distributed and the model coincides
with the multinomial logit.25 It can be shown (McFadden, 1974) that the probability that physician i
chooses the hospital-specialty combination j∗ ∈ Bik ⊂ Ci is given by:

Pij∗ =

e

Vij∗
λk

⎛⎝X
j∈Bk

e
Vij
λk

⎞⎠λk−1

2X
l=1

⎛⎝X
j∈Bl

e
Vij
λl

⎞⎠λl
, for j∗ ∈ Bik (9)

The parameter λk is a measure of the degree of independence among the elements of εi in nest k (see
for example Train, 2003, pp 83). Greater dependence between options in nest k (lower λk) increases
the spread of odds ratios within that nest. Intuitively, the higher the correlation between ε0ijs, the more
likely the same hospitals are “winners” or “losers” for different physicians.

The difference λ1 − λ2 measures the relative preference for nest 1. This can be seen in an extreme
example. Suppose both nests have the same number of vacancies, N, and Vij = V for all i and j. Then
the probability of choosing any vacancy in nest 1 relative to the probability of choosing any vacancy
in nest 2 equals N (λ1−λ2). Moreover, a value of λ1 close to 1 implies that alternatives in nest 1 are
seen as more substitutable, in the sense that it lowers the spread of the odds ratio, because proximity
to hospitals is a crucial factor in the physicians’ choice. For a given value of λ2, a higher value of
λ1 increases the probability of choosing any hospital in nest 1 vis-a-vis any hospital in nest 2, and
simultaneously decreases the difference in odds ratios between hospitals in nest 1. Consequently, we
expect λ1 − λ2 > 0, and λ1 to be around 1 in our application. Our estimates of λ1 and λ2 follow this
pattern.

24Avery et al. (2005) introduce the same-region-as-residence variable as a component of Vij in their model of college
choice. This specification causes them no bias since, in their data, the location of residence is precisely measured and
exogenous.
25Values of λk < 0 are not consistent with utility maximization. Train (2003) asserts that values of λk ∈ (0, 1] are always

consistent with utility maximizing behavior while λk > 1 is consistent for a range of values of the independent variables.
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We extend the simplest specification in several ways. First, we add a third nest to account for
potential language barriers within the national system.26 Nest 1 still refers to all hospitals within 45
minutes from college. Nest 2 now includes all hospitals beyond 45 minutes located in a region with
all official languages included in the set of official languages in the region of the physician’s college.
Nest 3 includes all other hospitals. Consider the following example with only three cities which are
located more than 45 minutes apart: Barcelona, Bilbao, and Madrid. In Barcelona there are two official
languages: Catalan and Spanish (Castilian). In Bilbao there are also two official languages, but they
are Basque and Spanish. Finally, in Madrid there is only Spanish. Thus, a student from Madrid would
have all available vacancies from hospitals at Bilbao and Barcelona in nest 3. In contrast, a student
from Bilbao would have only hospitals from Barcelona in nest 3 and a student from Barcelona would
have only hospitals from Bilbao in nest 3. In the sample, 60.59% of physicians choose a vacancy from
nest 1, 31.26% from nest 2, and 7.76% from nest 3.

6 Results

Table 3 gives an overview of all model specifications considered and Table 4 summarizes the estimation
results. Model specifications can be classified into two groups. In the first group, models 1 and 2 in
Table 3, we only allow for two nests. Nest 1 includes all hospitals located within 45 minutes from the
physician’s college location while nest 2 includes all other hospitals. In the second group, models 3,
4, and 5, we split nest 2 into two nests as explained in the previous section. We redefined nest 2 to
include all hospitals beyond the 45−minute commuting threshold but within the language boundaries.
In the new nest 3 we include those hospitals which are both beyond 45 minutes and outside the language
boundaries. We also consider different variable specifications with respect to vector xh in (5). In the
simplest specifications, models 1 and 3, xh contains only hospital dummies. The rest of the models,
models 2, 4, and 5, expand the set of controls to include: a) hospital characteristics such as number of
beds (in thousands) and dummies of technical equipment and b) regional characteristics such as housing
prices, unemployment rates, and the number of physicians per thousand inhabitants, all measured at
the provincial level. All models contain specialty dummies (xs) as in (5) and an interaction term
between physician’s gender and specialty (xij). The motivation for the latter is taken from the pattern
of segregation between female and male specialty choices described in Section 4. Finally, physicians
may have heterogenous preferences on hospitals leading to different rankings. Among the potential
factors affecting these differences, the rank position of the physician is an obvious one since top ranked
physicians have a stronger incentive to gather information at the same cost.27 We incorporate this effect
in the model in a crude but operational way by allowing different hospital dummy coefficients between

26Many physicians who finish the training period to become specialists wish to apply to a position within the public
health system. Regional authorities in multilingual regions often include proficiency levels in local languages as merits in
the competition for those positions.
27 In informal conversations with hospital managers, we were told that every year, the top candidates are invited to visit

the hospital’s departments.
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physicians in the top 20% and all the other physicians in Model 5.28

Description Model 1 Model 2 Model 3 Model 4 Model 5
hospital dummies (ref. H13) yes yes yes yes yes
specialties dummies (ref. O&G) yes yes yes yes yes
specialties ×woman (ref. O&G) yes yes yes yes yes
hospital and regional characteristics no yes no yes yes
hospital ×rank dummy (top 20%) no no no no yes
nest 1 ≤ 450 from college ≤ 450 from college
nest 2 > 450 from college > 450 from college&within language boundaries
nest 3 − − > 450 from college&outside language boundaries

Table 3: Description of Models

Table 4 summarizes the estimation results. For brevity, we do not show the estimated coefficients
for all hospital and specialty dummies. Because the highest and lowest hospital estimated coefficients
correspond to the same two hospitals in all specifications, we also show them in Table 4. For Model 5,
we only show the estimated hospital dummy coefficients for the best and the worst hospital associated
with the bottom 80% physicians. None of the estimated coefficients for the interaction between top
physicians and hospital dummy coefficients (i.e., the differences in valuations between top 20% and
bottom 80% physicians) are statistically significant. Moreover, results for the rest of the coefficients are
similar to those obtained in Model 4. Thus, we find no evidence of heterogenous preferences between
the top physicians and all the others.

Hereafter, we focus our discussion on models 1 to 4. The inclusion of controls increases the odds
ratio between the best and the worst hospital. The inclusion of a third nest widens this gap even further.
Concerning the results for the set of controls, the coefficient estimates for the regional unemployment
rates, number of beds, and the presence of extracorporeal shock wave lithotripsy equipment are the
only ones statistically significantly different from zero. These results are not surprising as coefficient
dummies for equipment availability only embody the impact of changes in equipment presence over the
sample on the probability of choosing a hospital. Given that these variables change over the sample in
21 to 43 percent of all hospitals, and correlations among these controls range between 0.18 and 0.65,
we should not expect lack of identification of these effects. Note that these results do not imply that
equipment availability is unimportant as the impact of average equipment is already embodied in the
hospital dummies.

28Some hospitals are never part of the choice set for the low rank physicians because all vacancies have been filled by
top physicians. There is also a set of hospitals which are never chosen by top physicians. In none of the these cases, is it
possible to separately identify hospital dummies for top and low rank physicians. For these hospitals, we impose the same
hospital dummy coefficient for all physicians. Overall, for 112 hospitals, identification of the hospital dummy coefficient
for top physicians is possible. Hereafter, the estimates of the 112 hospitals for the bottom 80% physicians together with
the estimates for the 61 hospitals for which no interaction is possible, will be referred to as the bottom 80% estimates.
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The results on the estimates of the nests parameters shown in Table 4 deserve several comments.
First, they are very precisely estimated. Second, they show physicians value geographical and language
proximity (bλ1 > bλ2 > bλ3). Third, estimates for bλ1 are very close to one (although statistically different
from 1), indicating that hospitals in nest 1 are perceived by physicians as more substitutable. Finally,
although estimates for bλ1 exceed 1 when splitting hospitals into three nests (models 3, 4, and 5),
estimates are still consistent with utility maximizing behavior (see Herriges and Kling, 1996).
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description Model 1 Model 2 Model 3 Model 4 Model 5

best hospital
2.5175∗∗∗

(0.2042)
2.5723∗∗∗

(0.2138)
3.200∗∗∗

(0.2620)
3.2440∗∗∗

(0.2710)
3.2881∗∗∗

(1.1702)

worst hospital
−1.5018∗∗∗
(0.2555)

−1.5223∗∗∗
(0.2625)

−1.9166∗∗∗
(0.3110)

−1.858∗∗∗
(0.316)

−1.7993∗∗∗
(0.3108)

number of beds (in thousands) − 0.0792
(0.1028)

− 0.2141∗

(0.1304)
0.1722
(0.1292)

tomography − 0.0288
(0.0257)

− 0.0263
(0.0334)

0.0174
(0.0332)

magnetic resonance − 0.0229
(0.0168)

− 0.0304
(0.0221)

0.0320
(0.0220)

gamma camera − 0.0028
(0.0278)

− −0.0007
(0.0359)

−0.0049
(0.0357)

hemodynamic monitoring equipment − −0.0229
(0.0234)

− −0.0297
(0.0308)

−0.026
(0.0306)

angiography digital subtraction − −0.0216
(0.0270)

− −0.0246
(0.0338)

−0.0244
(0.0338)

extracorporeal shock wave lithotripsy − 0.0452∗∗

(0.0235)
− 0.0508∗

(0.031)
0.0482
(0.0308)

cobalt treatment equipment − −0.0278
(0.0211)

− −0.0253
(0.0271)

−0.0214
(0.0268)

particle accelerator − 0.0070
(0.0203)

− 0.0061
(0.0262)

0.0038
(0.026)

index of housing prices (1990=0.1) − 0.0504
(0.5223)

− 0.0892
(0.6476)

0.0598
(0.6457)

physicians per 1000 inhabitants − −0.0184
(0.0249)

− 0.0032
(0.032)

−0.0059
(0.0319)

unemployment rate − −0.0097∗∗∗
(0.0037)

− −0.0195∗∗∗
(0.0048)

−0.0179∗∗∗
(0.0048)

λ1
0.9406∗∗∗

(0.0107)
0.9431∗∗∗

(0.0107)
1.1085∗∗∗

(0.0089)
1.1061∗∗∗

(0.0089)
1.1007∗∗∗

(0.0092)

λ2
0.6212∗∗∗

(0.0076)
0.6229∗∗∗

(0.0076)
0.7486∗∗∗

(0.0070)
0.7471∗∗∗

(0.0071)
0.7416∗∗∗

(0.0073)

λ3 − − 0.6182∗∗∗

(0.0079)
0.6154∗∗∗

(0.0079)
0.6093∗∗∗

(0.0081)
Nobs 15511 15511 15511 15511 15511
Wald test for equality of all λ0s 5954.5 6002.4 15761.9 15686.4 14910.9
Wald test for λ2 = λ3 − − 862.4 878.0 847.0
Log-Lik. −73993.38 −73976.59 −74250.92 −74232.74 −73986.93

Table 4: Summary results

Figure 5 shows specialty dummy coefficient estimates (relative to obstetrics-gynecology) by gender
for models 2 and 4 (the coefficient estimates for models 1 and 3 are graphically identical to the results for
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models 2 and 4, respectively).29 Specialties are sorted in descending order according to the estimates for
males in model 2. Thus, cardiovascular surgery is the preferred specialty for males while microbiology
is their least preferred. Overall, male physicians value fifteen specialties significantly above obstetrics-
gynecology (in the graph, all specialties to the left of pediatric surgery) and twenty-three specialties
significantly below obstetrics-gynecology (all specialties to the right of otolaryngology). Except for
pediatrics, female physicians value (relative to obstetrics-gynecology) all specialties statistically less than
male physicians. Further, gender coefficient estimates are correlated on the right side of the graph while
this pattern does not occur on the left side of the graph. Thus, those specialties most valued (relative
to obstetrics-gynecology) by male physicians are not systematically most valued by female physicians.
In particular, only seven out of the fifteen specialties more valued than obstetrics-gynecology by male
physicians are also significantly more valued by female physicians.30

The continuous line in Figure 5, labelled “Gender Ratios”, depicts the standardized values shown in
Figure 3. These values show the deviation of the gender ratio (i.e. the ratio of female to male physicians)
by specialty to the overall gender ratio in percentage terms, which results from an interaction of tastes
and availability. We interpret the estimated specialty dummy coefficients as showing only gender-
specific preferences. This graph allows us to understand the apparent segregation shown in Figure 3.
For example, urology’s gender ratio is the lowest in our sample while it is neither the most valued by
male nor the least valued by female physicians. Its very low gender ratio is nevertheless explained by
the relative valuation of urology across gender, i.e. it ranks 12th among male physicians versus 26th
among female physicians. At the opposite end of gender ratios lies pediatrics. Its gender ratio is after
obstetrics-gynecology the highest in our sample because it ranks 14th among male physicians versus
6th among female physicians. In order to assess to what extent physicians are able to choose vacancies
according to their preferences, we correlate the observed gender ratios and the coefficient estimates for
the interaction between specialties and gender. In all model specifications the correlations are higher
than 0.94, suggesting that the ranking of physicians precludes neither male nor female physicians from
choosing according to their preferences.31

6.1 Results on Hospital Dummy Coefficients and Rankings

Figure 6 shows the estimated hospital dummy coefficients and their 90% confidence intervals for the
first four specifications. The order of the hospital coefficients drawn in all graphs follows the order from
Model 1. We interpret these coefficients as quality differentials relative to the reference hospital (for
which quality has been normalized to zero). Although these coefficients vary across specifications, the

29For clarity, we do not show standard deviations in figure 5. Results are available upon request.
30These specialties can be easily identified in the graph as the ones for which the estimates are positive, with the

exception of Ophtalmology for Model 4, which is only significant at the 15% significance level.
31 If, say, female physicians were systematically lower ranked relative to male physicians and could only choose the

unwanted specialties, then we would not be able to identify the coefficient on the interaction of specialty and gender.
Indeed, the data shows that there is a substantial overlap by gender in the physicians rank. For example, amongst the top
100 physicians, 56% are female.
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Figure 5: Estimated specialty dummy coefficients by gender

overall ranking of hospitals is fairly stable as can be seen by the negative slope in all the graphs in
Figure 6. It is also apparent from the graphs that the inclusion of controls affects the ranking by less
than the inclusion of a third nest as the slope becomes more irregular. The probability of choosing the
best hospital relative to the worst hospital ranges from 55.7 (Model 1) to 166.8 (Model 4), and these
odds ratios are statistically significantly different from zero for all specifications.

We further check the similarity of the hospital rankings across all specifications by computing two
alternative correlation measures between estimates of the hospital dummy coefficients. We show the
results in Table 5. In the upper panel of Table 5 we report Kendall’s τ rank correlation, which compares
rankings rather than point estimates. The second panel shows simple correlations. “Sample” refers to
the negative of the average across years of the order of the first physician to choose a given hospital (any
specialty). Simple and rank correlations between all model specifications are very high and significantly
different from zero. The lowest correlations always involve “Sample” and they are decreasing with the
complexity of the other model. These results suggest that using “Sample” as an indicator of hospital
quality would result in a rather different ranking than using any of the other estimated rankings. Simple
correlations between the estimated coefficients of the different model specifications are always above 0.95.
Kendall’s τ rank correlations follow a similar pattern but show wider quantitative differences among
them. A value of 0.754 means that around 88% of pairwise ranking comparisons are concordant. Values
of 0.451 and 0.923 imply percentages of concordant pairs of 73% and 96% respectively. These results
suggest that adding complexity to the model implies some differences in the rankings obtained, but
overall, rankings are robust across different model specifications.32

32For the 112 hospitals for which we allow for a different valuation for the top 20% physicians, the rank correlation and
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Figure 6: Estimated hospital dummy coefficients across different specifications
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Model 1 Model 2 Model 3 Model 4 Model 5
Kendall’s τ rank correlation

Sample 0.493 0.477 0.477 0.451 0.459
Model 1 0.923 0.786 0.754 0.758
Model 2 0.756 0.771 0.775
Model 3 0.883 0.880
Model 4 0.960

Simple correlation
Sample 0.572 0.563 0.565 0.543 0.552
Model 1 0.995 0.965 0.952 0.953
Model 2 0.959 0.960 0.962
Model 3 0.987 0.985
Model 4 0.998
Notes: (a) p-values for the test of independence between
the rankings are always smaller than 0.0001. These are not
corrected for the fact that rankings are estimates.
(b) Model 5 refers to rankings obtained from hospital dummy
coefficients for the bottom 80% physicians.

Table 5: Kendall’s tau rank correlation between hospital rankings

It could be argued that controlling for relative location using nests and time variant hospital char-
acteristics does not capture unobservable time invariant city characteristics that contribute to the at-
tractiveness of hospitals in the city. In this case, the interpretation of hospital dummy coefficients
differentials between hospitals located in different cities may confound hospital quality and city at-
tractiveness. Still, within-city rankings should reflect only hospital differentials regarding physicians’
preferences. In our dataset, there are 32 out of 67 cities with more than one hospital, nine with more
than three hospitals, and only three cities with more than seven (Barcelona, Madrid, and Valencia).
We can assess for the 32 cities whether hospital coefficient estimates are significantly different with
respect to the city-specific worst hospital. For models 1 and 2, at least one hospital’s dummy coefficient
is significant in 22 and 21 cities, respectively. Including a third nest increases this figure to 24 cities.
Figure 7 plots the estimated hospital dummy coefficients from models 2 and 4 for the two largest cities
using the same order as in Figure 6. What stands out from the graph is the dispersion of estimated
coefficients within each of the two cities to the point that both Barcelona and Madrid have hospitals
ranked both among the top and the worst in Spain. These results strongly suggest that if coefficient
estimates embody city-specific unobservable effects, they are unimportant.

the sample correlation between the rankings obtained from the estimates for the top 20% and the bottom 80% physicians
are 0.735 and 0.904, respectively. This shows that not only are the interaction terms statistically insignificant, but that
they are small.
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7 Interpretation of Results

To evaluate our claim that physicians’ choices are related to hospital quality, we perform two types of
checks in this Section. First, we compare the rankings obtained from models 1 to 4 with two alternative
indicators of hospital quality: the risk-adjusted prevalence of nosocomial infections and the mortality
rates for two different samples of about 40 hospitals each. Second, we regress the estimated hospital
dummy coefficients on time-invariant geographical and hospital characteristics which may influence
physicians’ valuations.

7.1 Nosocomial infection data

Nosocomial infections are defined as infections which are neither present nor in incubation at the moment
of admission into a hospital. Because these infections may depend on human factors, Gaynes (1997)
claims that “surveillance of nosocomial infections can be used to assess the quality of care in the
hospital.” Since then, other researchers have used the incidence of nosocomial infections, among other
measures, as proxy measures of quality of hospital care (for example, Weinstein, 1998, Wenzel, 1998,
Navarrete-Navarro and Rangel-Frausto, 1999, Jarvis W.R., 2003). More recent research suggests that
urinary tract nosocomial infections are the type of nosocomial infections that are most adequate to
measure hospital quality (e.g. Stringham and Young, 2005, and Tinoco et al., 1994).

Since 1990, the Spanish Association for Preventive Medicine, Public Health and Hygiene (Sociedad
Española de Medicina Preventiva, Salud Pública e Higiene) assembles patient-level data on nosocomial
infections collected by roughly 240 Spanish hospitals. To this date, this dataset constitutes the only
source of homogeneous and comparable data on nosocomial infections in Spain. Regularly, the team
that assembles the data publishes a report, referred to as the EPINE report from the Spanish acronym,
on the evolution of nosocomial infections in Spain (see for example Vaqué et al., 2003). These reports,
however, do not disclose information either at the individual or at the hospital level. In order to access
the individual level data for each hospital, we had to ask each hospital for permission.

Not all hospitals with MIR vacancies participated in the EPINE study, and from those that did,
only around 40% allowed us access to their confidential nosocomial infections data.33 Our nosocomial
infections dataset, therefore, matches only a subset of the hospitals in the physicians data.34 As a result,
only 39 hospitals from the physicians dataset can be matched with the nosocomial infections data.

From the nosocomial infections data, we have a total of 71, 299 patient observations from the year
1995 to 2000. The average patient is 54 years old and 49% are female. The average number of nosocomial

33The low response rate and the difficulty in accessing this data, which pertains to the past, highlights the problems of
using traditional methodologies in hospital quality evaluation in Spain.
34Moreover, we disregard the observations from two hospitals due to problems with the codification of a variable con-

cerning base risk of nosocomial infection.
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infections per patient is 0.084 and the average number of urinary track nosocomial infections per patient
is 0.019.

When comparing the incidence of nosocomial infections across hospitals, there might be biases due
to differences in the risk composition of patients across hospitals. On average, 62% of the patients have
only a slight risk of contracting a nosocomial infection. Indeed 95.3% of these patients do not contract
any type of nosocomial infection while this figure is reduced to 88.3% for those at higher risk. Hence,
in our exercise below, we restrict our sample to patients with moderate to severe risk of contracting a
nosocomial infection. In spite of this restriction, hospitals are still heterogenous in terms of services,
and patient characteristics. Table 9 in the Appendix shows basic descriptive statistics for the restricted
sample. For example, the percentage of patients at each hospital with immunodeficiency ranges from
zero to 24%, and the percentage of patients having any kind of surgery varies between 3.8% and 66%.
Moreover, hospital size differs widely, from 97.9 patients at the smallest hospital to 1323 at the largest
hospital.35 Some studies highlight that hospital size is a good predictor of hospitals’ rate of nosocomial
infections. For example, Sax et al. (2002) show that even after adjusting for patient characteristics,
hospital size is an extra risk factor for nosocomial infection (see also Mundy, 2002 for comments on this
study).

Our variable of interest is the diagnosis of a urinary track nosocomial infection for two reasons.
First, because as pointed out above, the literature has found evidence that this is the type of nosocomial
infection which is most adequate to measure hospital quality. Second, we think that these infections
are more dependent on human factors, related to more frequent procedures, and, hence, less correlated
with patients’ severity.36 Because of the latter, endogeneity concerns that arise when using hospital
outcome variables to measure quality, are potentially smaller.

The sample restricted to patients with moderate to severe risk of contracting a nosocomial infection
has 25, 559 observations. The average patient is now older, around 67 years of age, and 57% are male.
Naturally, the average number of urinary nosocomial infections and nosocomial infections per patient
are higher in this restricted sample, 0.03, and 0.14, respectively and they vary substantially across
hospitals. The percentage of patients with some kind of chronic disease is also higher. For example,
the percentage of patients in coma is 5% as opposed to 2.4% in the overall nosocomial sample, and the
percentage of patients with neoplasia is 35% as opposed to 16.3% (see Table 9 for statistics for other
chronic diseases).

We use the nosocomial infections data to estimate several models at both patient and center-
department-year level.37 For all specifications, we obtain estimates of hospital dummy coefficients,

35Hospital size is measured as the sum of all patients, not only those with moderate and high risk of contracting a
nosocomial infection.
36For example, compared with all nosocomial infections, urinary nosocomial infections are less explained by the size of

the hospital, the type of services in the hospital, as well as most chronic diseases, and more related to patients’ exogenous
characteristics such as gender.
37Patient observations on the EPINE data are classified by center, department, and year. Most hospitals include a single

center. There are, however, four large hospitals that include three to four centers.
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which we use to construct alternative rankings of hospitals.

For the patient-level data, we run probit regressions on the diagnosis of a urinary track nosocomial
infection for four different specifications: 1) unconditional, i.e. including only hospital dummies; 2)
including hospital dummies and conditioning on hospital size and size squared, where size is measured
by the total number of patients per hospital-year; 3) in addition to 2), also conditioning on exogenous
regressors such as year dummies, number of patients per center-department-year and its squared, a
female dummy, department dummies, dummies for main diagnosis, age and age squared; 4) in addition
to 3) we control for variables such as dummies for all chronic diseases (see Table 9), a dummy for
whether the patient had surgery, the duration until the patient contracts the first nosocomial infection,
the number of non-nosocomial infections, the risk from the type of surgery in case the patient had
surgery, dummies for the number of diagnosis (up to ten), the existence of bed sores, and finally the
gestational age, its squared and its cube.

For the center-department-year data, we run tobit specifications where the dependent variable is the
number of urinary track nosocomial infections per patient at center-department-year level. Similarly
to the probit regressions, we run tobits with the same four different variable specifications, where the
regressors are averages at the center-department-year level.38

Table 6 shows Kendall’s τ rank correlation statistic and simple correlations between the hospital
rankings obtained using the physicians’ data and the hospital rankings obtained using the urinary
nosocomial infections data. For brevity, we comment only on the correlations for two specifications
using the physicians data (rows) versus four specifications using the urinary nosocomial infections data
(columns). Columns refer to the different probit and tobit regressions. In the first row, we show the
correlations with “Sample” i.e. the average across years of the order of the first physician to choose
a given hospital (any specialty). This model may be interpreted as an unconditional specification for
the physicians’ data. The second row shows the correlations with the hospital dummy coefficients
(multiplied by −1 ) obtained from our Model 4.

38Results for the patient and center-department-year regressions are available from the authors upon request.
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Comparison of Rankings based on Physicians’ data
with Rankings based on urinary nosocomial infections (EPINE data)

Kendall’s τ rank correlation
Probit Tobit (b)

uncond. size exog. all uncond. size exog. all

Sample
0.144
(0.100)

0.468
(0.000)

0.363
(0.001)

0.350
(0.001)

−0.069
(0.727)

0.485
(0.000)

0.471
(0.000)

0.487
(0.000)

Model 4
0.180
(0.055)

0.455
(0.000)

0.382
(0.000)

0.347
(0.001)

0.074
(0.257)

0.574
(0.000)

0.479
(0.000)

0.431
(0.000)

Simple correlation
Probit Tobit (b)

uncond. size exog. all uncond. size exog. all

Sample
0.137
(0.202)

0.606
(0.000)

0.464
(0.001)

0.427
(0.003)

−0.049
(0.617)

0.593
(0.000)

0.604
(0.000)

0.619
(0.000)

Model 4
0.220
(0.089)

0.641
(0.000)

0.501
(0.001)

0.503
(0.001)

0.114
(0.245)

0.691
(0.000)

0.670
(0.000)

0.631
(0.000)

Notes: (a) p-values for the test of independence between the rankings against the null of a positive correlation
are in parenthesis. These are not corrected for the fact that rankings are estimates.

(b) correlations for the tobit models are based on tobit regressions per year-center-department
(c) hospital dummy estimates for Model 4 were premultiplied by (-1)

Table 6: Hospital dummy coefficients: physicians vs. nosocomial data

Table 6 deserves several comments. The correlations between the hospital dummy coefficients from
the physicians data and the coefficients from the nosocomial data are positive and strongly statistically
significant for all conditional specifications. Based on simple correlations, Model 4 provides rankings
which are generally more positively correlated with rankings using nosocomial infections data. Based
on Kendall’s rank correlations, both Sample and Model 4 ranks are similarly correlated to the estimates
from the conditional probits and tobits. Finally, controlling for variables in addition to size, generally
reduces correlations because these controls capture hospital characteristics that physicians perceive as
quality, such as department fixed effects and dummies for type of diagnoses. As an illustration, Figure
8 plots the hospital dummy coefficients from Model 4 versus the hospital dummy coefficients from all
specifications for the tobit models.

These conclusions should, however, be interpreted with caution for several reasons. First, our results
using both datasets rely on a limited number of controls. Although we think nosocomial urinary infec-
tions suffer less from a selection bias than other output measures and are, therefore, more appropriate
to measure quality of care, there may still be some unobserved severity correlated with the hospital
dummies that induces some bias in the rankings from the nosocomial infection data. Second, our noso-
comial infections data is restricted to only 41 hospitals, a small sample which may reduce the precision
of the correlation statistics. Moreover, not all hospitals with MIR vacancies participate in the EPINE

30



h1h2
h4

h6h10

h27

h30

h32

h37h40

h46 h47

h49h54
h58

h65

h66

h67

h77 h79
h103h112

h113h114 h117
h118

h120

h125

h131
h132 h133

h140
h148h152

h156

h158

h159
h163

h164

-2
-1

0
1

-.3 -.2 -.1 0 .1 .2
Unconditional Tobit

h1h2
h4

h6h10

h27

h30

h32

h37 h40

h46h47

h49h54
h58

h65

h66

h67

h77h79
h103h112

h113h114h117
h118

h120

h125

h131
h132 h133

h140
h148h152

h156

h158

h159
h163

h164

-2
-1

0
1

-.3 -.2 -.1 0 .1 .2
Conditional Tobit: size only

h1h2
h4

h6h10

h27

h30

h32

h37h40

h46 h47

h49 h54
h58

h65

h66

h67

h77h79
h103h112

h113h114h117
h118

h120

h125

h131
h132 h133

h140
h148h152

h156

h158

h159
h163

h164

-2
-1

0
1

-.3 -.2 -.1 0 .1 .2
Conditional Tobit: exogenous only

h1 h2
h4

h6h10

h27

h30

h32

h37 h40

h46 h47

h49h54
h58

h65

h66

h67

h77h79
h103h112

h113h114h117
h118

h120

h125

h131
h132 h133

h140
h148h152

h156

h158

h159
h163

h164

-2
-1

0
1

-.3 -.2 -.1 0 .1 .2
Conditional Tobit: all
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Hospital dummy coefficients
from Physicians' Choices vs Nosocomial Infections

Figure 8: Relation between the estimated hospital dummy coefficients using our model and the noso-
comial data
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study, and from those which do, only about 40% gave us access to their confidential nosocomial infec-
tions data. Figure 9 compares distributions of hospital dummy estimates for models 2 and 4 according
to the hospital’s participation in the EPINE study, and whether we were granted permission to use its
nosocomial data. Panels at the left side of the graph show that hospitals participating in the EPINE
study have higher hospital dummy estimates. Indeed, if we look at all hospitals that enter the EPINE
study and have MIR vacancies, the average of the hospital dummy estimates from models 2 and 4 are
0.49 and 0.53, respectively, while for those hospitals not participating in the EPINE study, the averages
are 0.40 and 0.37, respectively. We interpret this result as highlighting that hospitals in the EPINE
study are, on average, of better quality. Therefore, results shown in Table 6 are still valid but they
only refer to relatively higher-quality hospitals. Next, we should compare hospital dummy estimates for
those hospitals that gave us permission to use their nosocomial data with the estimates for those that
did not. For the former group, the averages are lower, 0.40 and 0.45, than for the latter, 0.55 and 0.58,
partially offsetting the effect on average quality from participation in EPINE. However, the support
of the distributions of hospital dummy estimates is similar for the two samples, as shown by the right
hand side graphs in Figure 9.

7.2 Mortality data

As discussed in Section 2, hospitals’ disease-specific mortality rates are used in the literature to assess
hospital quality. In Spain, there is unfortunately no publicly available data on hospital specific mortal-
ity.39 However, some hospitals publish the aggregate rate for the hospital and/or the departamental-
specific rates in their annual reports.

After contacting all hospitals from the physicians dataset, we were able to gather at least one
annual report from 79 hospitals, which represents less than 45% of the hospitals in our sample. From
the reports available, only 40 hospitals published information on aggregate mortality (defined as deaths
over admissions) for at least one of the six years of the sample. We drop the psyquiatric hospitals from
the mortality data, hence our mortality data contains information on 39 hospitals and 166 observations.

We run linear regressions of hospital-year mortality odds ratios for three different specifications: 1)
unconditional, i.e. including only hospital dummies; 2) including hospital dummies and conditioning
on annual admissions; 3) in addition to 2), conditioning also on average length of stay (LOS).

Table 7 shows Kendall’s τ rank correlation statistic and simple correlations between the rankings
obtained using the physicians’ data and those using the mortality data. As in Table 6, in the first row,
we show the correlations with “Sample”, and the second row shows the correlations with the hospital
dummy coefficients (multiplied by −1 ) obtained from our Model 4.

39There is a rich but politically sensitive dataset called CMBD, after the Spanish version for “Data Base Minimum
Set”, which contains this information. Access to this dataset is usually not granted for research purposes, and we were
unsuccessful in our efforts to obtain it.
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Figure 9: Distributions of estimated hospital dummy coefficients by availability of EPINE data
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Rankings based on hospital level mortality data
Kendall’s τ rank correlation

admissions LOS admissions
uncond. only only and LOS

Sample
−0.090
(0.788)

−0.439
(1.000)

0.054
(0.318)

0.159
(0.078)

Model 4
0.028
(0.404)

−0.304
(0.997)

0.162
(0.075)

0.273
(0.008)

Simple correlation
admissions LOS admissions

uncond. only only and LOS

Sample
0.044
(0.395)

−0.489
(0.992)

0.191
(0.123)

0.283
(0.041)

Model 4
0.089
(0.295)

−0.429
(0.997)

0.257
(0.057)

0.372
(0.010)

Notes: (a) p-values for the test of independence between the rankings
against the null of a positive correlation are in parenthesis.
(b) correlations not corrected for the fact that rankings are estimates.
(c) hospital dummy estimates for Model 5 were premultiplied by (-1)

Table 7: Hospital dummy coefficients: physicians vs. mortality data

The main conclusion from Table 7 is that only after controlling for LOS is the correlation between
the ranking from Model 4 and rankings using mortality data significantly positive. As an illustration,
Figure 10 plots the hospital dummy coefficients from Model 4 versus the hospital dummy coefficients
from all specifications for the regression models.

The correlation between the risk-adjusted mortality rates and our ranking could be underestimated
for several reasons. First, the published mortality dataset only allows us to control for admissions and
average length of stay. Other commonly used time-variant risk adjusters, such as case-mix, are omitted,
which may lead to biased estimates of the hospital fixed effects in the mortality equation. Second,
hospital fixed effects in the mortality equation may be picking up time-invariant health characteristics
in the population served by the hospital that are not related to the hospital’s quality. Finally, there is a
potential selection problem in the mortality dataset. If only the best hospitals publish average mortality
rates, the sample variation in mortality rates may not be sufficient to pick up a significant correlation
with our hospital dummy estimates.

As in the previous subsection we check for potential selection bias using the estimated hospital
dummy coefficients from models 2 and 4. Figure 11 shows the distribution of estimates of hospital
dummy coefficients by availability of annual reports and mortality rates. The figure suggests that there
is truncation and selection both in the availability of reports and in the decision to publish the mortality
rates. First, if we look at the left hand-side graphs, the range of values for those hospitals for which
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Hospital dummy coefficients
from Physicians' Choices vs Mortality Data

Figure 10: Relation between the estimated hospital dummy coefficients using our model and the mor-
tality data
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Figure 11: Distributions of the estimated hospital dummy coefficients by availability of the mortality
data

at least one report is available is smaller than the range for those for which no report is available.
Moreover, for the latter group the average value of the estimated coefficients for models 2 and 4 is lower
(0.39 and 0.40) than the average for the former (0.56 and 0.57).

Second, many factors may influence the decision to publish mortality data. Presumably, those
hospitals with the highest mortality rates will be less likely to disclose this information to the general
public. If we compare the two right hand-side graphs, it is clear that those with the lowest quality,
among those with reports, decide not to publish the mortality rates. It is also true, although not
clear from the graphs, that those with the highest coefficient estimates do publish their mortality data.
Nonetheless, the two distributions are similar in the common support.

Despite reasons to believe that the correlation between the risk-adjusted mortality rates and our
ranking is underestimated, we still find a strong positive correlation.

To sum up, we observe a positive correlation between the risk-adjusted mortality rates and our
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ranking, and this observed correlation is likely underestimated.

7.3 Correlations with Location Characteristics

In this subsection we check whether hospital dummy coefficient estimates correlate with time-invariant
location characteristics unrelated to hospital quality. Table 8 shows regression results using as depen-
dent variables the estimated hospital dummy coefficients from models 2 and 4. We include three sets of
controls which attempt to reflect quasi-permanent differences in quality of life across the country. The
first set refers to variables for which we have major regional-level information (Autonomous Commu-
nity).40 It includes the average number of people per dwelling (ppdwell), the percentage of dwellings
which are owned by the occupants (own), the percentage of dwellings with self-reported problems with
pollution and other environmental problems (pollute), and the percentage of people with higher edu-
cation (higheduc). The second set of data refers to controls for which provincial-level information is
available. It includes the number of court decisions per thousand people (court), the number of divorces
per thousand people (divorce), the number of road traffic accidents per thousand people (accident),
the number of suicides in the provincial capital per 100, 000 people (suicide), the number of days with
average temperature below 0oC (below0), and above 25oC (above25), and the percentage of tourist-days
per resident-days in a year (tourism).41. Finally, we also use published results from a survey carried
out in 2006 by the Spanish consumers’ association, OCU, on different aspects of city quality of life
(OCU, 2007). The survey covers 17 cities and their metropolitan areas, where 59% of all hospitals are
located. Controls from this survey include average respondents valuations from one to 10 about the
city’s culture, labour market, crime, and availability of health, educational, and other city services.

40The source of these data is the webpage of the Spanish Statistical Office (www.ine.es). Due to lack of availability, we
use data from 2004, a reasonable proxy for the expectations of the physicians in our sample period.
41Road traffic data was collected from the Road Accidents Annual Report for the years 1998 to 2000 published by the

Spanish Department of Transportation. The source for the other controls is the Spanish Statistical Office for the year 2000
except for the temperature variables, for which we take the average for the 1997-2000 period.
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Model 2 Model 4
coef s.d. coef s.d. coef s.d coef s.d.

ppdwell 0.527 0.538 −0.783 2.605 0.710 0.668 −0.252 3.225
own 0.014 0.022 −0.006 0.0738 0.048 0.027 0.064 0.091
pollute 0.020 0.018 0.052 0.098 0.042 0.022 0.019 0.121
higheduc −0.005 0.014 0.073 0.081 −0.020 0.018 0.053 0.100
court 0.039 0.087 −0.370 0.475 0.033 0.108 −0.375 0.588
divorce −0.144 0.363 n.i. n.i 0.261 0.450 n.i. n.i
tourism 0.024 0.025 −0.103 0.106 0.019 0.031 −0.046 0.131
accident −0.122 0.086 0.446 0.424 −0.070 0.106 0.538 0.525
below0 −0.000 0.003 0.041 0.046 −0.003 0.003 0.014 0.057
above25 −0.002 0.001 0.008 0.007 −0.002 0.002 0.010 0.009
suicide 0.002 0.003 0.004 0.031 −0.001 0.003 0.007 0.038
culture − − −1.434 1.600 − − −1.183 1.981
lab. makt − − −0.967 0.795 − − −0.861 0.984
services − − 2.957 3.050 − − 2.184 3.776
crime − − 1.069 1.085 − − 0.825 1.343
education − − −2.440 1.880 − − −1.281 2.328
health − − 1.226 1.221 − − 0.648 1.511
constant −1.95 3.22 −8.56 13.58 −5.61 4.00 −13.44 16.81

obs 183 108 183 108
R2 0.070 0.090 0.090 0.092

Note: n.i. means not identified

Table 8: Results for regressions of hospital dummy coefficient estimates on time-invariant location
characteristics

Results show that at most we can explain 9.2% of the variation in hospital dummy estimates. No
control is significant at the 5% level. In some specifications, a couple of controls have p-values around
0.07, but these values increase when all other non-significant variables are dropped from the regressions.
To sum up, time-invariant location characteristics cannot explain differences in the estimated hospital
dummy coefficients.

8 Conclusions

In this paper, we propose an alternative methodology based on a revealed preference argument to rank
hospitals. More specifically, we use Spanish data on the choices over hospital vacancies made by young
physicians at the beginning of their specialized training. In Spain, after graduation from medical school,
physicians choose hospital training vacancies sequentially depending on merit.

We model the physicians’ decisions as a nested logit that takes into account, among other controls,
preferences for proximity. We find that physicians value geographical and language proximity. We
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also find that there are significant differences in the way different specialties are valued by male and
female physicians. We construct hospital rankings using the estimates of hospital dummy coefficients
and find significant differences in physicians’ valuations of hospitals. These differences are robust to the
introduction of hospital and regional controls as well as the introduction of a third nest that accounts
for potential language barriers within the national system.

We show that physicians’ choices are related to hospital quality. First, observable time-invariant
city characteristics are unrelated to our estimates of hospital dummy coefficients. Second, we show that
our ranking is correlated to rankings obtained using data on risk-adjusted prevalence of nosocomial
infections and mortality rates for two different subsamples of hospitals.

Although we apply our methodology using Spanish data, our results convey the relevance of exploit-
ing physicians’ labour market data, possibly in conjunction with other data, to assess relative hospital
quality in other countries.
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9 Appendix

Patient level data Hospital averages
obs mean s.d. min max obs mean s.d. min max

No. of urinary nosoc. infections 25559 0.03 0.174 0 3 41 0.033 0.013 0.009 0.069
No. of nosoc. infections 25559 0.140 0.419 0 4 41 0.139 0.039 0.045 0.217
Female 25358 0.43 0.50 0 1 41 0.436 0.039 0.325 0.539
Age 25436 66.55 18.72 0.003 99 41 68.44 5.11 53.57 79.48
Patients per hospital-year (size) – – – – – 41 382.9 278.2 97.93 1322.7
Patients per center-department-year – – – – – 41 54.3 27.6 19.8 159.9
No. of non-nosoc. infections 25559 0.242 0.552 0 4 41 0.263 0.101 0.06 0.569
Days until 1st nosoc. infection 24896 16.25 44.93 1 1498 41 15.76 4.71 9.18 32.67
Diagnosis per patient 24842 2.32 1.40 1 9 41 2.368 0.532 1.19 3.45
Surgery 25239 0.281 0.449 0 1 41 0.285 0.115 0.038 0.660
State of coma 24561 0.052 0.222 0 1 41 0.051 0.026 0.005 0.104
Kidney failure 24488 0.124 0.330 0 1 41 0.118 0.041 0.018 0.228
Diabetes 24586 0.221 0.415 0 1 41 0.229 0.047 0.133 0.326
Neoplasia 24493 0.352 0.477 0 1 41 0.353 0.114 0.062 0.629
Chronic lung disease 24542 0.186 0.389 0 1 41 0.199 0.080 0.076 0.465
Imunodeficiency 24532 0.093 0.291 0 1 41 0.093 0.050 0 0.242
Neutropenia 24500 0.039 0.194 0 1 41 0.035 0.020 0 0.082
Cirrhosis 24512 0.044 0.205 0 1 41 0.044 0.019 0.002 0.101
Drug addiction 24508 0.018 0.133 0 1 41 0.021 0.018 0 0.084
Obesity 24477 0.112 0.315 0 1 41 0.111 0.051 0.018 0.218
Malnutrition 25530 0.095 0.293 0 1 41 0.092 0.052 0 0.246
Bed sores 24170 0.065 0.247 0 1 41 0.071 0.041 0.014 0.256
Fetal age 25559 0.237 2.79 0 42 41 0.151 0.228 0 0.809
Risk from surgery 25239 0.412 1.02 0 5 41 0.496 0.276 0.021 1.340
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Table 9: Basic Statistics for the EPINE subsample of moderate to severe risk patients
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