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1 Introduction

We study a competitive search equilibrium model where risk-averse buyers who seek to

purchase an indivisible good sort by their wealth. Because marginal utility of wealth is

decreasing, wealthier buyers pay higher prices to speed up transactions, while poorer ones

choose cheaper offers with longer queues. This behaviour generates frictional price dispersion

in equilibrium. Also, as is standard in these models, pricier goods take longer to sell. The

sorting result is general, but we derive it in the context of the housing market. Generally,

wealthier buyers buy better homes. The added insight underlying the sorting result is that,

conditional on the type of home they intend to buy (e.g. for a given home size, quality, and

location), buyers who are more wealthy pay higher prices to reduce trading delays. Similarly,

to avoid delays, wealthier travellers choose more expensive airlines and car rentals, whereas

poorer agents with similar traveling plans choose cheaper deals and typically wait longer.

Wealthier customers prefer pricier, less crowded restaurants, while poorer individuals opting

for similar food quality choose cheaper restaurants with delays (e.g. queues and slow service).

These wealth effects are bound to be more important when demand is high, and these markets

become more congested.

The housing market is arguably the most important application of our theory. A house-

hold’s primary asset is usually its home (e.g. housing wealth accounts for about half of

household net worth in the US). Hence, wealth effects are likely to play a role in home pur-

chasing decisions. Several studies find variations in house prices after controlling for hedonic

and spatial attributes (e.g. Lisi and Iacobini, 2013; Guren, 2018; Kotova and Zhang, 2020;

Ben-Shahar and Golan, 2022). Indeed, our sorting result is consistent with studies that find

that richer buyers pay higher prices (Baryla et al., 1999; Qiu and Tu, 2018), and search for
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a shorter period of time (Baryla et al., 1999, 2000). There is also widespread evidence of

a positive relationship between the price of real estate property and its average time on the

market (e.g. Merlo and Ortalo-Magné, 2004; de Wit and van der Klaauw, 2013).

The environment is a small open economy with long-lived households who consume a

nondurable good and housing services and bear uninsurable idiosyncratic earnings risk.

Households have different liquid asset wealth and may own or rent. Owner-occupied housing

is associated with a utility premium, but its illiquidity makes it ineffective at shielding con-

sumption against permanent shocks. Some owners will still sell due to exogenous preference

and moving shocks and will have to buy a new house or rent. Home purchases can be par-

tially financed with non-defaultable mortgage loans, and houses serve as collateral for new

loans (i.e., their owners can always remortgage). A risk-free asset can be accumulated both

to build a down payment and to smooth non-housing consumption. Homes are symmetric

and are bought in a decentralised market where the home search process is competitive.

There, agents may choose to trade at different prices, knowing that lower prices generate

longer queues. The decentralised market is then segmented into “submarkets” with different

prices and thus different trading probabilities.1 Each period, new housing is constructed by

competitive developers. We consider an economy where rental units can be converted into

owner-occupied housing (e.g. as in Kaplan et al., 2020), as well as one where this is not

1This endogenous segmentation is a typical property of competitive search models, where different agent
types trade off prices against trading probabilities at different rates (e.g. Wright et al., 2021). Search theory
has long been used to rationalise the existence of frictional price dispersion. Piazzesi et al. (2020) document
differential search patterns by buyers at the ZIP code level, and argue that these patterns can explain the
differences in prices for similar homes across ZIP codes. Their model assumes risk-neutral searchers and thus
no wealth effects.
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feasible and rents are exogenous (as in Garriga and Hedlund, 2020).2 Our analysis focuses

on stationary equilibria.

The model is highly tractable because the agents’ value and policy functions depend

on the distribution of households across individual states through a single variable that

summarizes the relevant information about the terms of trade in the housing market. This

“block recursive” structure arises because we assume that home buyers and owners, both

of whom are risk averse, do not trade directly with each other (see also Hedlund, 2016a;

Karahan and Rhee, 2019; Garriga and Hedlund, 2020).3 Instead, owners sell their homes in a

Walrasian market to risk-neutral intermediaries, who then look for buyers in the decentralised

market. There is free entry into intermediation, so intermediaries make zero profits.

To illustrate how the model works and its quantitative properties, we calibrate it to

match selected statistics for the U.S. economy. Our steady-state exercises show that price

dispersion, market congestion, and wealth accumulation are tightly linked. Take the case of

a highly liquid market, where demand is high and average buying times are long. In this

scenario, buyers who do not find a trading opportunity (a likely event for poor households)

accumulate more assets and, in the next period, they target more expensive homes to increase

their chances of trading. As competition for these homes intensifies, wealthier buyers start

to target homes that are even more expensive and borrow more. This competition, arising

from sorting, propagates throughout the wealth distribution and produces frictional price

dispersion. This mechanism results in greater indebtedness in the long run compared to a

2The estimates in Greenwald and Guren (2021) indicate substantial market segmentation and Sommer et al.
(2013) (among others) show that rents have been relatively flat over the last few decades, so the second
economy is more in line with these findings.
3This structure is slightly more involved than that in Shi (2009) and Menzio and Shi (2010), where the agents’
value and policy functions depend only on the exogenous state of the economy (e.g. aggregate productivity).
There, block recursivity arises from the combination of directed search and free entry of job vacancies created
by risk-neutral firms under constant returns.
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Walrasian version of the model (where all homes are sold instantaneously at the same price).

Moreover, if rental and real estate housing stocks are not segmented and credit is limited, it

also generates higher housing prices. The less elastic the supply of new housing, the more

important these differences are.

We also investigate the extent to which greater credit availability affects housing prices

when the sorting mechanism is at play.4 Under full segmentation, price effects are much

larger, with and without search frictions. This intuitive result is in line with the results in

Greenwald and Guren (2021), who model the real estate market as Walrasian. But, even

if there is no segmentation, these effects are substantial in our search model when supply

elasticity is low.

The interaction between greater credit availability and search and matching friction leads

to more buyers borrowing in larger amounts, whether or not markets are segmented. Our

results are consistent with papers that report evidence of mortgage debt growth across income

levels during the boom, as Foote et al. (2020), or Han et al. (2021), who find evidence that

changes in down payment requirements can result in substantial price effects on hot segments

of the housing market (and argue that search frictions and competition among traders are

key to rationalising their findings). Price dispersion in our quantitative economy is one

order of magnitude smaller than that estimated, for instance, by Lisi and Iacobini (2013).

This is partly due to the fact that price dispersion only reflects buyers’ heterogeneous wealth

effects (since sellers do not face search frictions). Nonetheless, our analysis sheds light on the

4Search models constitute a powerful mechanism for demand shocks to affect aggregates (e.g. Dı́az and Jerez,
2013; Ngai and Tenreyro, 2014; Head et al., 2014; Hedlund, 2016b; Garriga and Hedlund, 2020; Anenberg and
Bayer, 2020; Ngai and Sheedy, 2020; Han et al., 2021). Yet most of the literature assumes that households
are risk neutral and ignores their savings decisions. The recent quantitative studies by Hedlund (2016b)),
Garriga and Hedlund (2020), and Eerola and Maattanen (2018) are notable exceptions that feature related
amplification mechanisms in models where real estate and rental markets are segmented.
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different channels that affect price dispersion when credit conditions are eased. While there

are more poor buyers at the lower end of the price distribution, wealthier buyers borrow

more to acquire more expensive houses. The first effect compresses the distribution, while

the second makes it more dispersed. The overall effect on price dispersion is ultimately

determined by the underlying earnings risk (which determines households’ saving decisions)

and by the degree of market segmentation. In particular, under full segmentation, a credit

relaxation reduces price dispersion. This result is in line with recent evidence reported by

Kotova and Zhang (2020) and Ben-Shahar and Golan (2022).

This paper also makes an important technical contribution. We develop various tools

to derive several properties of the households’ value and policy functions. The tools are of

independent interest, as they can be applied to general non-concave and non-differentiable

dynamic models that involve both discrete and continuous choices. We do not introduce

lotteries (as Menzio et al., 2013, do, for instance), but work directly within the non-concave

framework. We show that the households’ value functions are concave on the range of

assets that corresponds to participation (non-participation) in the decentralised market,

provided the optimal consumption policy of households who rent is monotone in financial

wealth.5 These results provide a benchmark for analysing similar block-recursive search

models with an endogenous asset distribution without introducing lotteries. This approach

has computational advantages. In related models, equilibria are computed by discretising

households’ choices and using value function iteration to solve their problem (e.g. Hedlund,

2016b; Chaumont and Shi, 2022; Eeckhout and Sepahsalari, 2023). Here, we apply the

Endogenous Grid Method to the Euler equations of the households’ problems, so we do

5This is the case in all our quantitative experiments.
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not need to resort to discretisation. This is particularly important to measure the effects

of credit liberalisation on price dispersion, as we do not discretise the range of submarkets

where households can search for a home. Additionally, this procedure yields substantial

gains in accuracy and computational time.

The paper is organised as follows. Section 2 describes the environment. Section 3 de-

scribes the problems households and intermediaries solve, defines a stationary equilibrium,

and presents our theoretical results. Section 4 discusses our computational method and the

calibration, and Section 5 presents some key comparative statics results. Section 6 concludes.

Proofs and computational details are relegated to the Appendix.

2 The model economy

In this section, we present our model economy. Consider a location populated by a continuum

of infinitely-lived households. Time is discrete.

2.1 Households

2.1.1 Preferences and endowments

Households derive utility from a nondurable numeraire good and the service flow provided

by a durable good which we refer to as housing. Their lifetime utility is
∑∞
t=0E0β

tu(ct, ht),

where ct, ht ∈ R+ are the respective amounts of the nondurable good and housing services

consumed each period, and β is the discount factor. The function u is strictly increasing,

strictly concave and C2, with uch ≥ 0 and limh→0 u(c, h) = −∞. Households can either rent

or own a (single) home in order to obtain housing services.
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Each period households are endowed with an amount z of efficiency units of labor, which

follows a stationary Markov process, denoted by Πz, with finite support Z. Households

supply labor inelastically. The wage per efficiency unit of labor is exogenous and denoted by

w. Additionally, homeowners face i.i.d. preference shocks and can be in two individual states,

µ ∈ {0, 1}. An owner consumes ~ > 0 housing services if µ = 1, in which case she is matched

with her home. Otherwise, she is mismatched and obtains zero housing services. The state

µ follows a Markov process with transition probabilities P (µ′ = 1|µ = 1) = 1 − πµ ∈ (0, 1)

and P (µ′ = 0|µ = 0) = 1. In words, a matched owner becomes mismatched with probability

πµ each period. Also, µ = 0 is an absorbing state; so mismatched households will find it

profitable to sell their home and move.6 Households who rent a unit of size h enjoy ω h

services, where ω ≤ 1. Thus we allow for a taste for ownership.

Additionally, households may be hit by an idiosyncratic migration shock that depends on

their housing tenure status. Owners are hit by a migration shock with probability ξo, in which

case they become unproductive in town. To leave town, they then have to sell their homes.

In turn, renters migrate with probability ξr. We can think of these shocks as capturing the

effect of migration flows, as well as the effect of the life cycle on housing demand.7 We

assume that households who leave move to a symmetric town in an unspecified rest of the

world at no cost and are replaced by new immigrants who do not own any housing. The

details on these entry flows are specified in Section 3.3. The constant measure of households

in the town is normalised to one.

6We assume that mismatched owners sell their homes before they buy a new one to simplify the model.
Anenberg and Bayer (2020), Ngai and Sheedy (2020), and Moen et al. (2019) explicitly model the joint
decision to buy and sell in environments with transferable utility.
7Because state µ = 0 is an absorbing state, in the absence of migration shocks all renters have previously
owned houses, so they hold a house’s liquid value. Although this is not important for our theoretical results,
it does matter for the calibration of the model and its ability to match some data counterparts.
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2.1.2 Savings and mortgages

Financial market arrangements are as in Dı́az and Luengo-Prado (2008). Each period house-

holds can save by investing in a one-period risk-free asset with price 1/R ∈ R+. Their home

purchases can be partially financed with a non-defaultable mortgage loan. Specifically, a

household can borrow up to a fraction 1− ζ of the home’s liquidation value, so it must save

to meet the corresponding down payment. The mortgage is a loan in perpetuity with no

associated costs if there is early repayment. Houses also serve as collateral for loans: home-

owners can obtain a home equity loan for up to a fraction 1−ζ of the home’s value (i.e., they

can always remortgage). Thus mortgages in this model can be thought of as home equity

lines of credit that can be renegotiated every period although they are non-defaultable con-

tracts. Households who do not own any collateral cannot borrow (see Kaplan et al., 2020).

For simplicity, we assume that there is no spread between borrowing and lending rates.

2.2 Construction

The owner-occupied housing stock consists of indivisible units of identical size, ~. Rental

units come in a continuum of sizes: h ∈ [0, ~]. This assumption is introduced because renters

typically live in smaller homes than owners, and also to avoid the possibility that rents

exceed labor income for low-productivity households.

We proceed as Sommer and Sullivan (2018) and Kaplan et al. (2020) and assume that

the supply of new housing units is equal to

Ih = Dpε, (1)
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where p is the price of these units, and ε is the supply price elasticity. The underlying

assumption is that there are competitive developers who use labor and new land available

for construction that is owned by the government. All tax and land rent revenue is used to

fund government spending that does not affect agents. As we explain below, the new housing

is either bundled into indivisible units of size ~ (at no cost) or it can be sold in divisible

amounts. Appendix A describes the underlying problem solved by developers.

2.3 Housing markets

We now describe the extent of search and matching frictions in the housing market and the

role of intermediaries. There are indirect taxes on real estate transactions. Owners who

sell pay taxes on the value of their home at the rate τs, whereas the buyers’ tax rate is τb.

Intermediaries do not pay taxes. Below we describe the market structure in detail.

2.3.1 The Walrasian housing market

At the start of a period, the existing housing stock depreciates and preference and labor

endowment shocks are realized. Migrants come to town without housing. After new con-

struction takes place, a Walrasian housing market opens. Mismatched owners, developers

who have built new housing, and intermediaries who held housing units overnight supply

their stock. The demand side is composed of new intermediaries who freely enter the town

at this moment to purchase housing bundles of size ~, as well as matched owners and inter-

mediaries who must purchase the depreciated part of their property. The market clearing

price is denoted as p. Intermediaries are infinitely lived with discount factor 1/R and have

deep pockets, so they do not require credit to finance their purchases.
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2.3.2 The frictional housing market

After the Walrasian market closes, intermediaries decide whether to supply their units in

a frictional market or supply them as rental units after the frictional market closes. For

simplicity, we assume that they cannot do both. Owners make no economic decisions at

this stage. A competitive search market opens, where non-owners may search for a home

at a negligible participation cost.8 Intermediaries who are not able to sell their units in

this market hold them overnight as vacant homes. For simplicity, non-owners may be called

buyers at this stage.

The competitive search process proceeds as in Moen (1997). Buyers and intermediaries

can participate in different submarkets where they meet bilaterally and at random, and

where each trader experiences at most one bilateral match. The matching probabilities in

a given submarket depend on the associated buyer-seller ratio θ (or tightness). Specifically,

an intermediary is matched to a buyer with probability ms(θ), and a buyer is matched

to an intermediary with probability mb(θ) = ms(θ)/θ.
9 As is standard, ms(θ) is strictly

increasing, strictly concave and C2, with ms(0) = 0 and limθ→∞ms(θ) = 1, and mb(θ) is

strictly decreasing and C2, with limθ→0mb(θ) = 1 and limθ→∞mb(θ) = 0. In words, the

higher the buyer-seller ratio θ, the easier it is for intermediaries to contact buyers, and the

harder it is for buyers to locate a home for sale (due to congestion externalities). As θ goes

to infinity (zero) the intermediary’s matching probability goes to one (zero), and the buyer’s

matching probability goes to zero (one). The elasticity η(θ) ≡ m′s(θ)θ
ms(θ)

∈ [0, 1] is assumed

8This rules out equilibria where some households participate in the frictional market (because doing so is
costless) even though they do not plan to trade there.
9The underlying assumption is that the total number of bilateral trading meetings is determined by a
matching function with constant returns to scale and that the Law of Large Numbers holds.
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non increasing, and m̂s(mb) ≡ ms(m
−1
b (·)) is such that ln m̂s is concave.10 To model market

participation, we introduce a “fictitious submarket” θ0 ∈ R−, and extend the functions

mb and ms to Θ ≡ R+ ∪ {θ0} by setting mb(θ0) = ms(θ0) = 0. Households who choose

submarket θ0 do not participate in the frictional market.

To describe the price determination process in the competitive search market, we will

follow the price-taking approach in Jerez (2014). The idea is to think of houses traded

in submarkets with different tightness levels θ ∈ R+ as different commodities, which are

characterised by different degrees of trading uncertainty. The prices of these differentiated

commodities are described by a continuous function p : Θ → R+, with p(θ0) = 0. That

is, p(θ) is the price per unit of space in a submarket with tightness θ ∈ R+. Buyers and

intermediaries choose the submarkets they enter taking p(θ) as given. The difference with

the standard Walrasian equilibrium notion is that, in these submarkets, demand does not

equal supply (as agents on both sides of the market face a positive rationing probability).

The market clearing condition is then replaced by an aggregate consistency condition which

requires that, given the agents’ optimal decisions, the equilibrium buyer-seller ratio in sub-

market θ is indeed θ whenever this submarket attracts both buyers and intermediaries (see

Section 3.3).

Our price-taking equilibrium notion is equivalent to that of directed search, where each

intermediary first posts (and commits) to price offer p, and buyers then seek the most

attractive offers. In making these strategic decisions, all traders form common rational

beliefs about the buyer-seller ratio θ(p) associated with each offer p (i.e., the mass of buyers

10Equivalently, −m̂′s(mb)/m̂s(mb) is non decreasing. This assumption guarantees that the problem solved
by buyers is concave and has a unique solution (see Sections D-E in the Appendix), and can be further
relaxed (see Section E.1). See also Menzio and Shi (2010) where m̂s is assumed concave (a slightly stronger
assumption).
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seeking offer p over the mass of intermediaries posting p). To see the connection with our

equilibrium notion, think of a submarket θ as a market segment that is associated to a

particular offer p. The price functional p(θ) is the inverse of the schedule θ(p) describing

the agents’ beliefs in a directed search equilibrium, and our aggregate consistency condition

is the equivalent of the corresponding rational expectations condition. As we shall see, in

equilibrium p(θ) is decreasing, so prices are lower in more congested submarkets. This is

equivalent to saying that lower price offers attract relatively more buyers under directed

search. We choose the price-taking formulation because it makes the connection with the

standard notion of recursive competitive equilibrium more direct and transparent.

As discussed in Section 2.1.2, buyers can borrow against the market value of their prop-

erty. Specifically, they may borrow up to a fraction 1 − ζ of the home’s value liquidation

value; i.e., their borrowing limit is (1− ζ) p ~. The implicit assumption (as in Kiyotaki and

Moore, 1997) is that banks lend the amount they can recover in the Walrasian market if

they seized the house.

2.3.3 The rental market

Once the frictional market closes, those intermediaries who were unable to sell keep their

vacant units. Intermediaries who did not participate in the frictional market supply their

units in a rental market. Differently from properties for sale, rental units are divisible and

non-owners can rent up to ~ units of space. The rental market is competitive, and the

(per-unit) rental price is denoted by rh.
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2.3.4 The rational for an intermediated frictional housing market

A key assumption of the model is that mismatched owners and home buyers do not trade

directly. Instead, these transactions are intermediated by risk-neutral agents, who may

freely enter the town. These agents purchase homes from mismatched owners and from

developers in the Walrasian market and then decide whether to search for buyers or rent to

non-owners. We are aware that this type of intermediation is not common in reality, owing

to the significant transaction costs involved (e.g. taxes). In the real world, most real estate

agents are match-makers (rather than dealers). Yet this assumption is crucial to generate

a block-recursive structure (see also Hedlund, 2016a; Garriga and Hedlund, 2020). In our

model, risk-averse buyers and sellers with different financial wealth participate in the real

estate market each period. If they were to trade directly with each other in the search

market, the model would fail to be block recursive and would become intractable.

It could be argued that the assumption that mismatched owners sell their homes in a Wal-

rasian market makes the housing market very liquid. For instance, in Garriga and Hedlund

(2020), owners who want to sell participate in a frictional market (which is intermediated

by risk-neutral agents). Yet this does not necessarily imply that owner-occupied housing is

more liquid in our model, for two reasons. First, in Garriga and Hedlund (2020), owners

have the option of defaulting on their mortgage (and being banned from the housing market

for a stochastic number of periods), in which case their home is immediately liquidated by

the bank in a Walrasian market. Second, whereas in our model owning does not entail a

default risk, matched owners are not allowed to sell their homes. Thus they can not change

their tenure status to smooth earnings risk. That is, owning is risky in both models.
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3 Stationary equilibrium

In this section, we state the problems solved by all agents, the law of motion of the distri-

bution of households, and that of the vacancy stock held by intermediaries as a function of

the agents’ optimal decisions. A stationary equilibrium is then defined.

3.1 The household’s problem

Let A = [a,∞) be the set in which financial assets can take values, and denote the household’s

assets by a ∈ A. The set of individual states is then X = A × Z. Below we describe the

problems households solve when the frictional housing market first opens and when it closes.

3.1.1 Owners

After the frictional housing market closes, owners solve the following problem:

Wo(a, z) = max
c,a′

{
u (c, ~) + β (1− π) EzWo (a′, z′) + β π EzWb (ã, z′)

}
s.t. c+ 1

R a
′ ≤ w z + a− δ p ~,

ã ≡ a′ + (1− τs) p ~,

a′ ≥ −(1− ζ) p ~,

c ≥ 0,

(2)

where c and ~ are the amounts of the nondurable good and housing services consumed,

and a′ is the level of financial assets carried to the next period. Owners choose c and

a′ to maximise their expected lifetime utility subject to a standard intertemporal budget

constraint and also face a borrowing limit equal to (1 − ζ) p ~. As mentioned above, they

can remortgage their home, in which case the price of reappraisal is the home’s value in
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the Walrasian market. They also pay the maintenance cost δ p ~; i.e., they purchase the

depreciated part of their bundle in the Walrasian market. Owners are hit by a migration

shock with probability ξo, whereas with probability (1 − ξo)πµ they become mismatched

with their home but they remain in town. In both events, they will sell their home in the

Walrasian market. Therefore, with probability π = ξo + (1− ξo)πµ they will sell their home

at the start of the next period. Notice that their continuation value is the same regardless of

the kind of shock that hits them. Mismatched owners will be buyers in their current town,

whereas owners hit by the migration shock will be buyers elsewhere. In both cases, their

continuation value is EzWb (ã, z′), where ã = a′ + (1− τs) p ~ is their financial wealth after

the home is sold. With probability 1 − π, owners stay in town and remain matched with

their homes. We denote the owners’ optimal decision policies by gco(a, z) and gao (a, z).

3.1.2 Renters

After the frictional market closes, those households who do not own any property acquire

housing services in the rental market. Renters solve the following problem:

Wr(a, z) = max
c,h,a′

{
u (c, ω h) + β EzWb (a′, z′)

}
s.t. c+ 1

R a
′ ≤ w z − rh h+ a,

a′ ≥ 0, c ≥ 0, 0 ≤ h ≤ ~,

(3)

and gcr(a, z), g
h
r (a, z), and gar (a, z) denote the optimal policies. Differently from owners,

renters choose their home size h and are not allowed to borrow since they do not have any

collateral. While they face a migration shock, they do not change their financial status when

they migrate (and recall that moving does not entail any cost).
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3.1.3 Buyers

Non-owners make an extra decision compared to owners. Once the frictional market opens,

they have to decide which submarket to join given the price schedule, p(θ), and the maximum

loan they can obtain, (1 − ζ) p ~. At this moment they are called buyers and their value

function is given by

Wb(a, z) = max
θ∈Θ

{
mb (θ) Wo (a− (1 + τb) p(θ) ~, z) + (1−mb (θ)) Wr (a, z)

}
s. t. a+ (1− ζ) p ~ ≥ (1 + τb) p(θ) ~ if θ ∈ R+,

(4)

and gθb (a, z) denotes their optimal decision rule. The collateralised borrowing constraint in

problem (4) ensures that buyers who join submarket θ ∈ R+ have enough assets to pay

for the required down payment and the associated taxes. The maximum amount of credit

a buyer gets is (1 − ζ) p ~, as discussed in Section 2.3.2. With probability mb(θ), these

households buy a home at price p(θ) per unit of space, become owners and are left with

a− (1 + τb) p(θ) ~ financial assets. With complementary probability, they become renters.

3.2 Intermediaries

Intermediaries who participate in the frictional market are referred to as realtors, and solve

the problem:

Js = max
θ∈R+

{
ms (θ) p(θ) ~ + (1−ms (θ))

(
1

R
J − δ p ~

)}
. (5)

Realtors who join submarket θ ∈ R+ sell their bundle ~ with probability ms(θ) and earn

revenue p(θ) ~, in which case they leave town. With complementary probability, they do not
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trade. They must then pay the maintenance costs of their property, δ p ~, and wait until

the next period to decide whether to rent out their property or put it up for sale in the

Walrasian or frictional markets. The associated continuation value is denoted by J .

The value of an intermediary who rents is

Jr = −κ+ rh ~− δ p ~ +
1

R
J. (6)

Recall that these rental companies hold ~ units of housing which (differently from the units

sold by realtors) are divisible. They pay the cost of posting their vacancy in the rental

market, κ, as well as the maintenance of their property, δ p ~. In the next period, just as

realtors, they will decide whether to rent out their property again or sell it in the Walrasian

or frictional markets. That is, their continuation value is

J = max
{
Jr, Js, p ~

}
. (7)

3.3 Stationary equilibrium definition

Before defining the steady state, we need to describe the law of motion of the distribution

of households and the stock of vacancies held by realtors. Let X denote the Borel σ-algebra

on X = A× Z. The distributions of owners and renters after the frictional housing market

closes are described by the Borel measures ψo and ψr, respectively, where

∫
X

dψo +

∫
X

dψr = 1. (8)
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Define the transition function Qo : X×X → [0, 1] which gives the probability that an owner

in state x ∈ X at the end of t will be in state x′ ∈ X ′ ∈ X when the Walrasian market opens

in t+ 1. Likewise, Qr represents the corresponding transition function for renters.

It will be useful to define the measure ψb to describe the distribution of non-owners

(buyers) when the frictional market opens:

ψb (X ′) = (1− ξr)
∫
X

Qr(x,X
′) dψr + πµ (1− ξo)

∫
X

Qo(x,X
′) dψo + ψi (X ′) , (9)

for each X ′ ∈ X . In (9), ψi is a measure on X representing the exogenous distribution of

immigrants, which ensures that net migration flows are zero. The laws of motion of ψo and

ψr are described in Appendix B.

Next, we need to describe the clearing market condition in the Walrasian market. To do

so, we need additional notation. Let Ho be the amount of housing owned by households at

the end of each period, that is,

Ho = ~
∫
X

dψo. (10)

The market clearing condition in the rental market is

Hr =

∫
X

ghr (x) dψr, (11)

where Hr is the supply of rental properties. Finally, let V denote the mass of vacancies

that intermediaries hold overnight. These are the units that remain unsold in the frictional

market. Recall that these units cannot be rented after the market closes, and will join

the pool of housing that can be traded in the Walrasian market in the next period. Hence,
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Ho+Hr+V is the total housing stock at the end of the period. At the stationary equilibrium,

the market clearing condition in the Walrasian housing market can be written as

δ (Ho +Hr + V )− Ih = 0, (12)

where the left-hand side of (12) represents aggregate excess demand in this market. In words,

in equilibrium, the production of housing must equal the depreciation of the stock.11

To pin down the equilibrium value of V , we use the consistency condition in the compet-

itive search market. Let X̃ ⊆ X denote the set of states of buyers who participate in this

market. That is, x ∈ X̃ if and only if gθb (x) 6= θ0. We can construct a measure ψs on X̃ such

that

ψs(Ξ) =

∫
Ξ

1

gθb (x)
dψb, (13)

for each Ξ in the Borel σ-algebra X̃ defined on X̃. Recall that the consistency condition

implies that gθb (x) is the equilibrium buyer-seller ratio in the submarket where buyers (non-

owners) with state x participate.12 Hence, there ought to be 1/gθb (x) intermediaries per

buyer there. Since dψb(x) is the density of buyers with state x, the number of intermediaries

in this submarket must then be 1
gθb (x)

dψb(x). Therefore, for the consistency condition to

hold, the number of intermediaries who are randomly matched to buyers with state x ∈ Ξ

is ψs(Ξ) for each Ξ. The total number of intermediaries who do not trade in the frictional

11Supply includes new construction, the depreciated homes of mismatched owners, and stock owned by
rental companies and realtors. That is, supply is given by Ih + (1 − δ) [πHo +Hr + V ]. In turn, demand
includes home maintenance by matched owners and home purchases by new intermediaries (which include the

associated maintenance payments). Demand then equals δ (1−π)Ho+Hr+ Ṽ , where Ṽ denotes the number

of homes for sale in the frictional market. Since Ṽ equals sales in this market plus overnight vacancies, and
sales equal πHo, it follows that Ṽ = V + πHo. Aggregate excess demand in the Walrasian market is then
δ(Ho +Hr + V )− Ih.
12In section 3.4.3, we show that all buyers with the same state x will participate in the same submarket in
equilibrium.



Housing prices and credit constraints in competitive search 21

market is then

V =

∫
X̃

(
1−ms

(
gθ(x)

))
dψs. (14)

We are now ready to define a stationary equilibrium.

Definition 1. A recursive stationary equilibrium for this economy, given the interest factor,

R, the wage w, and the distribution of the immigrants, ψi, is a list of value functions and

optimal decision policies for the households

{
Wo,Wr,Wb, g

c
o, g

a
o , g

c
r, g

h
r , g

a
r , g

θ
b

}
, values for

intermediaries,
{
J, Js, Jr

}
, prices (p, p(·), rh), Borel measures

{
ψo, ψr, ψb, ψs

}
, and a tuple

(Ih, V,Ho, Hr) such that:

1.

{
Wo,Wr,Wn,Wb, g

c
o, g

a
o , g

c
r, g

h
r , g

a
r , g

θ
b

}
solve the households’ problems shown in (2)–

(4), given (p, p(·), rh).

2. The supply of new housing is given by (1).

3. By free entry, all intermediaries make zero expected profits: Jo = Jr = J = p ~, where

(Jo, Jr, J) solve (5)–(7).

4. The rental market and the Walrasian housing market clear, and the consistency con-

dition is satisfied in the frictional search market: (10)–(14) hold.

5. The probability measures
{
ψo, ψr, ψb

}
are stationary.

The non-standard condition in Definition 1 is the consistency condition in the frictional

market. By condition 3, intermediaries are indifferent between all active submarkets θ ∈

R+. Equation (13) in condition 4 says that the distribution of intermediaries across active

submarkets is such that the actual buyer-seller ratios in these submarkets are equal to the

ratios (or tightness levels) that households take as given when they choose the submarkets
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they join. Finally, (12) and (14) ensure that the intermediaries’ overnight vacancy stock is

consistent with households’ distributions.

3.4 Properties of the stationary equilibrium

Here we discuss some properties of the stationary equilibrium.

3.4.1 Block-recursivity and the frictional price schedule

We first highlight the properties of the model economy that ensure block-recursivity. Note

that intermediaries are indifferent between selling and renting. Moreover, by free entry, their

expected profits are zero, so their expected value in each market equals the price they pay

for their dwellings in the Walrasian market:

J = Jr = Js = p ~. (15)

Equation (6) and the zero-profit condition (15) pin down the equilibrium rental price as a

function of the Walrasian price:

rh =
κ

~
+ (1− 1/R+ δ) p. (16)

Combining (5) and (15) yields:

p(θ) ≤ (1− 1/R+ δ) p

ms (θ)
+ (1/R− δ) p, for all θ ∈ R+, (17)
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with strict equality if θ solves (5). In active submarkets, p(θ) is then given by the right-

hand side of (17). In particular, p(θ) is decreasing. Intuitively, since intermediaries make

zero expected profits in all active submarkets, prices are lower in submarkets where the

probability of completing a sale, ms (θ), is higher. Prices in inactive submarkets instead

imply weakly lower expected profits.

There is no loss of generality in assuming that intermediaries make zero expected profits in

all submarkets, whether active or not. A standard feature of general equilibrium models with

a continuum of commodities is that prices in inactive markets are indeterminate. Assuming

that (17) holds with equality for all θ ∈ R+ is equivalent to selecting the highest prices that

support the equilibrium allocation. This price selection rule is equivalent to the restriction

typically imposed on out-of-equilibrium beliefs in directed search models, known as the

market utility property (see Jerez, 2014). With this selection rule, p(θ) is pinned down by

p. Given p, households know the price schedule p(θ). As shown in Figure 1, p(θ) is strictly

convex and C2 (since ms is strictly concave and C2). It is also bounded below by p. This

lower bound is the price intermediaries would charge if the probability of completing a sale

was one (to break even). Since trade is subject to rationing, no intermediary would trade at

a price p ≤ p. In sum, the free entry assumption and the fact that intermediaries are risk

neutral imply that the Walrasian price p is a sufficient statistic that pins down the frictional

price schedule, ensuring block recursivity.

3.4.2 Properties of the value functions

The block-recursive structure of the model allows us to derive several properties of the

households’ value functions, which in turn support the characterisation and computation of
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their policy functions. These derivations involve two main difficulties: (i) the problem of

a buyer, shown in (4) is not concave, and (ii) the buyer’s value function, Wb, cannot be

assumed to be differentiable a priori. There are two sources of non-concavity in problem (4):

the discrete decision of whether to participate or not, and the objective function not being

jointly concave in the choice and state variables. The latter feature is due to the dependence

of the matching probability on the market tightness, a variable that also affects the trade

surplus in the frictional market. The product of these two terms is not concave in general,

preventing the use of standard dynamic programming techniques, which assume that the

objective function is jointly concave in the choice and state variables. We thus develop new

analytical tools to study the properties of the value and policy functions. Appendixes C

and D describe these tools, which are of independent interest, as they can be applied to

general non-concave and non-differentiable dynamic models that involve both discrete and

continuous choices.

In Appendix C we show that, given the price schedule in (17), the dynamic programming

problems (2), (3) and (4) admit continuous solutions Wo, Wr, and Wb, which are unique in

a suitable class of functions (under quite general conditions). Also, Wo, and Wr are strictly

increasing and Wb is non-decreasing. Whereas these functions need not be differentiable and

concave in general, in Appendix D we show that they are differentiable along the optimal

paths. This is all we need to establish the sufficiency of the Euler equations. Moreover, if

we restrict to the range of assets of the households who participate in the frictional market,

Wo and Wr are strictly concave and Wb is concave, provided the renters’ consumption policy



Housing prices and credit constraints in competitive search 25

function gcr(a, z) is non-decreasing on this range.13 This implies that the household’s optimal

choices are unique.

3.4.3 Sorting and participation in the competitive search market

In this section, we exploit these above results to characterise the equilibrium sorting pat-

tern and establish the existence of a participation threshold asset level, apart(z), for each

productivity state z. The proof of these results can be found in Appendix E.

The optimal decision rule of a buyer who participates in the frictional market is

gθb (a, z) ∈ arg max
θ∈R+

{
Wr (a, z) +mb (θ) [Wo (a− (1 + τb) p(θ) ~, z)−Wr (a, z)]

}
s. t. a+ (1− ζ) p ~ ≥ (1 + τb) p(θ) ~.

(18)

For buyers with state (a, z), the ex-post gains from trading at price p are

S(a, z, p) = Wo (a− (1 + τb) p ~, z)−Wr (a, z) . (19)

Hence, gθb (a, z) maximises the buyer’s (ex-ante) expected gains, mb (θ)S (a, z, p(θ)). These

maximal expected gains are non-negative since θ0 is a feasible choice for all buyers. Figure 1

depicts the buyers’ indifference curves on the space (θ, p) as a function of their state (a, z).

Buyers prefer submarkets with low prices and low congestion. In the case of a buyer with

state (a, z), an indifference curve is given by mb (θ)S(a, z, p) = Saz for some fixed value

Saz ≥ 0. Thus gθb (a, z) attains the highest value of Saz along the price schedule p(θ), subject

to the borrowing constraint. To illustrate the role of financial wealth, Figure 1 depicts the

13In particular, due to the endogenous participation decision, Wb is not concave on A, but it is concave on
the range of assets that correspond to participation (those a ∈ A with Wb(a, z) > Wr(a, z)).
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optimal choices of three buyers with identical labor productivity z and different financial

assets. When the borrowing constraint does not bind, the buyer’s indifference curve is

tangent to the schedule p(θ). This is the case for buyers with assets a1 or a2, in the figure.

Since the schedule p(θ) corresponds to the realtors’ zero isoprofit curve on the space (θ, p),

the indifference curve of an unconstrained buyer is tangent to this isoprofit curve. This is the

standard characterisation of a competitive search equilibrium in the absence of borrowing

constraints (e.g. Moen, 1997; Acemoglu and Shimer, 1999). If the constraint binds, this

tangency point is not feasible. This is the case of a buyer with lower assets, a3. Constrained

buyers join the submarket where homes are sold at the maximum price they can afford given

their financial wealth, the taxes involved in the transaction, and the collateral constraint.

Figure 1: The choice of submarket.

Since Wo(a, z) is differentiable with respect to a, so is the buyer’s objective function. The

first-order condition for problem (18) is

m′b(θ)S(a, z, p(θ))

~ (1 + τb)
−mb(θ)W

′
o (a− (1 + τb) p(θ) ~, z) p′(θ) = λ(a, z) p′(θ), (20)
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where W ′o is the derivative of Wo with respect to its first argument, and λ(a, z) is the

Lagrange multiplier of the constraint. If the constraint is slack, (20) simplifies to

(
1

1 + τb

)(
1− η(θ)

~ θ

)(
S(a, z, p(θ))

W ′o (a− (1 + τb) p(θ) ~, z)

)
= −p′(θ), (21)

where η(θ) is the elasticity of ms(θ). Equation (21) describes the tangency between the

buyer’s indifference curve and the price schedule. In particular, the left-hand side of (21)

represents the buyer’s marginal rate of substitution of θ for p. The last term in this expression

gives the buyer’s ex-post gains measured in units of consumption (rather than in utils):

Ŝ(a, z, p) =

(
S(a, z, p)

W ′o (a− (1 + τb) p ~, z)

)
, (22)

since W ′o is the marginal utility of wealth of an owner. This term will be key for our sorting

result, as it determines how the rate at which buyers trade off prices and congestion varies

with their financial wealth.

Using the expression of the equilibrium price schedule in (17), the tangency condition

(21) can be written as

(
1

1 + τb

)
Ŝ(a, z, p(θ)) =

η(θ)

1− η(θ)

(
p(θ) ~− p ~

(
1

R
− δ
))

, (23)

where p(θ) ~− p ~(1/R− δ) are the realtor’s ex-post gains in submarket θ. In the absence of

taxation (τb = 0), (23) generalises the well-known Hosios (1990) condition for transferable-

utility environments to our setting, where utility is imperfectly transferable. It says that a

fraction η(θ) of the surplus is appropriated by the buyer and the rest goes to the realtor.
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If the borrowing constraint binds, gθb (a, z) satisfies

p
(
gθb (a, z)

)
=
a+ (1− ζ) p ~

(1 + τb) ~
> p. (24)

Recall that equilibrium prices exceed p. (Otherwise, realtors trading at these prices would

make negative profits). Constrained buyers who become owners are left with a negative asset

position, −(1 − ζ) p ~. As one would expect, for a given z, the multiplier λ(a, z) decreases

with a (see Lemma 5 in Appendix E). There are then three possible cases. Either all buyers

with productivity z are unconstrained, they are all constrained, or the constraint only binds

for levels of assets below the threshold that depends on z, apart(z).

Proposition 1 provides conditions under which the buyer’s optimal choice is unique, so

buyers in the same state join the same submarket in equilibrium. This is always the case

for constrained buyers, whose unique optimal choice is characterised by (24). In turn, the

problem of an unconstrained buyer has a unique solution provided gcr(a, z) is non decreasing

in a on the range of assets that correspond to participation. This guarantees that Wo is

strictly concave with respect to a on this range, which implies that there is a single tangency

point between the buyer’s indifference curve and the schedule p(θ).14

Proposition 1. A solution for problem (18) exists. Suppose that, for each z ∈ Z, gcr(a, z)

is non decreasing in a on the range of assets for which θ0 /∈ gθb (a, z). Then gθb (a, z) is

single-valued on this range.

14Since η(θ) is non-increasing, one cannot conclude from (21) that the buyer’s marginal rate of substitution
increases along an indifference curve as θ rises (as shown in Figure 1). In Appendix E, we circumvent this
issue by assuming that traders choose mb rather than θ, since there is a one-to-one mapping between both
variables. If Wo(a, z) is strictly concave, the buyer’s indifference curve has a strictly convex shape in the
space (mb, p), just as the intermediary’s zero isoprofit curve, so both curves are tangent at most one point.
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We now turn to the sorting result. In the case of constrained buyers, the result follows

trivially from (24). These buyers pay the maximum price they can afford, with increases

with a (and does not depend on z). In other words, constrained buyers who are wealthier

trade in less congested submarkets, where prices are higher.

Proposition 2. For constrained buyers, gθb (a, z) does not depend on z, and gθb (a, z) >

gθb (a′, z) if a < a′.

In the case of unconstrained buyers, prices depend on both a and z, and a similar sorting

result holds provided wealthier buyers have steeper indifference curves than poorer buyers

with identical productivity z. Under this single-crossing property, wealthier buyers are will-

ing to accept a larger price increase in order to increase their trading probability (while

remaining indifferent). As depicted in Figure 1, for a given z, buyers who are wealthier

choose lower values of θ, and pay higher prices. As noted above, the buyer’s marginal rate of

substitution at a given (θ, p) is proportional to Ŝ(a, z, p). Hence, the single crossing property

holds when Ŝ(a, z, p) increases with a.

Proposition 3. Suppose that the condition in Proposition 1 holds and S(a, z, p) is non

decreasing in a for each p ≥ p and each z ∈ Z. Then gθb (a, z) > gθb (a′, z) if a < a′.

The result in Proposition 1 is intuitive. If Wo is strictly concave in a, wealthier owners

have lower marginal utilities of wealth. Hence, as long as the buyers’ ex-post gains do not de-

crease with financial wealth, the gains measured in units of consumption, Ŝ(a, z, p), are higher

for wealthier buyers (see 22). Since these are the buyers who gain more when a transaction

is completed, they care relatively more about reducing trading delays. By contrast, poorer

buyers care more about paying lower prices. Note that S(a, z, p) = Wo (a− (1 + τb) p ~, z)−
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Wr (a, z) is non decreasing in a whenever the marginal utility of wealth is not lower when

agents buy (rather than rent) a home. It is direct to check, using the Envelope Theorem,

that a sufficient condition for this is that the purchase of a home always implies lower con-

sumption; i.e., gco (a− (1 + τb)p ~, z) ≤ gcr(a, z). This will be the case if housing prices are

sufficiently high. Indeed, this sufficient condition holds in all our quantitative exercises, where

S(a, z, p) always increases with a. In any case, the sorting result will still hold if S(a, z, p)

decreases with a at a lower rate than W ′o (a− (1 + τb) p ~, z), so Ŝ(a, z, p) still increases with

a.

Proposition 4. Suppose that the condition in Proposition 1 holds. Also, given z, Ŝ(a, z, p)

is increasing in a for each p ≥ p and each z ∈ Z. Then gθb (a, z) > gθb (a′, z) if a < a′.

We now turn to the participation decision. Buyers with financial assets a ≤ (τb + ζ) p ~

do not participate, since they cannot afford the down payment and associated taxes in

any submarket. For wealthier agents, the expected gains from participating in a given

submarket are mb (θ)S(a, z, p(θ)). If S increases with a, so do the agents’ (maximal) gains

from participation, as wealthier agents can afford to trade in more expensive submarkets

than poorer ones (i.e., their feasible choice sets are larger). Take agents with productivity

z. As long as their gains are strictly positive if a ∈ A is sufficiently high, there is then a

threshold apart(z) ∈ A such that agents with assets a > apart(z) strictly prefer to participate

(because the associated gains are positive), those with assets apart(z) are indifferent between

participating or not (because the gains are zero), and the rest do not participate (because the

gains are negative). Thus Wb(a, z) > Wr(a, z) for all a > apart(z), and Wb(a, z) = Wr(a, z)

for a ≤ apart(z). These participation thresholds depend on the Walrasian price, so they

change with aggregate conditions.
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Proposition 5. Suppose that the condition in Proposition 1 holds and S(a, z, p) increases

with a for each p ≥ p. If Wb(a, z) > Wr(a, z) for some a ∈ A, there exists apart(z) ∈ A

such that gθb (a, z) ∈ R+ if a > apart(z), gθb (a, z) = θ0 if a < apart(z), and gθb (apart(z), z) =

{θ0, θz}.

In the above statement, θz denotes the optimal submarket for buyers with state (apart(z), z).

These buyers are indifferent between participating or not. The marginal buyer type in this

economy is the one who participates in the cheapest active submarket, which is also the most

congested one. This type is (apart(z), z) where

z = arg max
z∈Z

θz. (25)

These buyers pay the lowest down payment possible and face the longest trading delays in

the frictional market.

4 Computation of equilibrium

We now outline our strategy for computing the equilibrium. Appendix F provides specific

details on the algorithm.

4.1 The household’s problem

As already noted, the Walrasian price, p, determines the price schedule in the frictional

market as well as the rental housing price. Given these prices, households make three in-

tertemporal decisions: the amount of financial assets for the next period, whether or not to
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participate in the frictional market, and their preferred submarket (conditional on partici-

pating). We allow households to choose both financial assets a′ and a submarket θ in R+.

In this way, we do not fix ex-ante the set of submarkets where agents can participate, Θ.

We do this because the main action in our economy comes from agents trading off prices

and trading probabilities in the frictional market. Discretising and fixing the set Θ would

bias the results and produce an artificially high or low equilibrium price dispersion. Instead,

we compute the policy functions using the households’ Euler equations, without resorting to

discretisation of Θ.

A difficulty in the computation is that the participation decision is endogenous, so house-

holds solve a non-concave problem. Thus we build on Fella (2014) in order to compute the

household’s optimal choice. The solution method proposed by Fella (2014) involves using the

Endogenous Grid Method (EGM hereafter) to find the local maximum and a Value Function

Iteration step to verify whether the point is not only a local but also a global maximum. We

discuss the main computational issues below.

In order to solve the buyer’s problem in (4) we need to know her gains in each submarket

and the marginal utility of trading at a particular price. That is, we need to know the value

functions of owners and renters. Proposition 1 ensures that the first-order conditions of

problem (18) are sufficient. Consider now the problem solved by owners and renters, shown

in (2) and (3). After the frictional market closes, households decide the amount of financial

assets for the next period. As already noted, the buyer’s value function, Wb, is not globally

concave. We know, however, that Wb is concave on the range of assets that corresponds

to participation (a > apart(z)) and non-participation (0 < a < apart(z)), respectively. We

apply the EGM to each range. Solving this part of the problem requires an additional step
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of Value Function Iteration, comparing the local maximum if the agent does not participate

in the frictional housing market next period and if she does. The support of each range is

endogenous (as the participation thresholds) and depends on p.

4.2 Equilibrium in the Walrasian market

The fact that we do not fix the set Θ ex-ante implies that we cannot use Monte Carlo

simulations to find the stationary distribution of agents. The reason is that any change in

the distribution of financial assets implies a change in the distribution of active submarkets.

We instead compute directly the stationary distributions.

Figure 2: Demand and supply of housing.

The equilibrium price p clears the Walrasian market. Figure 2 represents the excess

demand in this market; that is, the difference between the depreciated stock and new housing.

Construction, Ih, is continuous and increasing in p. In our quantitative experiments, the
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depreciated stock, δ (Ho +Hr + V ), decreases smoothly with p, as shown in the Figure.

Intuitively, as p rises, the frictional price schedule shifts upwards, and fewer households want

to own (Ho falls). Since rents also rise, households rent smaller units (Hr also falls). Finally,

realtors hold fewer vacancies overnight because demand is lower in the frictional market (V

falls). We use a standard iterative tatonnement-type algorithm to find the equilibrium value

of p. As shown in the Figure, if we start by assuming that the Walrasian price is equal to

p0, supply exceeds demand, so the price must be adjusted downwards. In particular, the

lower price at which demand meets this supply (IS0
h ) is p′0 and is below the equilibrium price.

Hence, the equilibrium price lies in [p′0, p0]. Our next guess is a weighted average of p′0 and

p0. A similar argument applies if demand exceeds supply at the guessed prices. See Section

F.4 in the Appendix.

4.3 Parameterisation

The model period is a month. Since a property’s average time on the market (TOM) is always

below a quarter (see below), we do not want to amplify the role of search and matching

frictions by imposing a lower frequency. Some model parameters are chosen externally. The

remaining parameters are chosen to minimise the distance between a selection of moments

of the stationary distribution and their data counterparts.

4.3.1 Functional forms

As in Dı́az and Luengo-Prado (2010), we use the additively-separable felicity function

u (c, h) =
c1−σ

1− σ
+ φ

h1−σ

1− σ
. (26)
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The risk aversion parameter is set equal to σ = 2. Recall that rental units of size h ∈ [0, ~]

yield ω h housing services. Thus, for renters, u (c, h) = (c1−σ)/(1−σ)+φ
(
(ω h)1−σ) /(1−σ).

Matching probabilities in the search market are as in Menzio and Shi (2011):

ms(θ) =
(
1 + θ−γ

)−1
γ , mb(θ) = ms(θ)/θ, (27)

where γ > 0. Unlike the standard urn-ball matching process, this process has an extra

degree of freedom in that γ governs the elasticity of mb(θ) with respect to θ. This parameter

also determines the severity of search and matching frictions. As γ increases, frictions are

reduced. Since our computation method requires a one-to-one mapping between θ and mb,

we cannot use the standard (truncated) Cobb-Douglas matching function (which implies

mb = 1 for θ sufficiently low). Note that (17) can be written as

ms(θ) =
(1− 1/R+ δ) p

p(θ)− (1/R− δ) p
(28)

for active submarkets. This expression shows that the probability of selling a home in

submarket θ is a function of the ratio p(θ)/p. This relation is independent of the matching

process we use, but the functional form of the matching process does affect the tightness

level and the probability of buying. This insight will be very useful in the computation of

the equilibrium (see Section F.1).

4.3.2 Externally chosen parameters

As in Dı́az and Luengo-Prado (2010), we set the annualised real interest rate at 3%. We set

τs = 6% and τb = 2.5%, following Dı́az and Luengo-Prado (2008). The depreciation rate
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of housing is 1.50% in annual terms, as in Sommer and Sullivan (2018). We follow Kaplan

et al. (2020) and set the price elasticity of new housing supply, ε, equal to 1.5, which is the

median value across MSAs estimated by Saiz (2010).

The process for labor productivity is chosen in two steps. First, we calibrate an AR(1)

process:

ln ẑt = ρ ln ẑt−1 + εt, (29)

so its annualised version has the properties of the permanent component of labor earn-

ings estimated by Storesletten et al. (2004). Hence, ρ = 0.9521/12 = 0.9959 and σε =

0.17/

(√
12∑
i=1

ρ2 (i−1)

)
= 0.0502. The Rouwenhorst method is then used to discretise ln zt

into a 3-state Markov chain, Πẑ. Next, we add a transitory state which can be thought of as

an unemployment state. This state plays a similar role to the catastrophic state of Dı́az and

Luengo-Prado (2008), who show that agents prefer renting to owing when they face more

transitory risk. We proceed as Broer et al. (2021) and assume that, when hit by this shock,

the agent’s productivity drops to 40% of their lowest previously calibrated productivity state.

This implies that z takes values in the set Z = {0.88, 1.00, 2.19, 4.81}. The probability of the

transitory state is always ϕ = 5%, which is roughly the average unemployment rate in the

US. The probability of exiting unemployment to any other state is equal to the associated

stationary probability implied by (29). The Markov process on Z is shown in Table 1.

The probability of becoming mismatched is set so that owners move every 9 years on

average, as the National Association of Realtors (NAR) reports. Similarly to Head et al.

(2014), we have assumed that households move across locations and target the annual fre-

quency of owners and renters moving across counties in the US, which is about 3.2 and 12

percent, respectively, according to the Census Bureau. These three targets combined are
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Table 1: The earnings process

z
0.8773 1.0000 2.1933 4.8107

Πz

0.0500 0.2375 0.4750 0.2375
0.0500 0.9461 0.0039 0.0000
0.0500 0.0019 0.9461 0.0019
0.0500 0.0000 0.0039 0.9461

Stationary distribution
0.0500 0.2376 0.4748 0.2376

used to calibrate the probabilities of the mismatch and migration shocks, πµ, ξo, and ξr.

The value of the wage per efficient unit of labor is set equal to w = 1000. Also, we set

~ = wmean(z).

The rental price rh and the Walrasian housing price p are linked by the non-arbitrage

condition (16). We calibrate κ so that the price-to-rent ratio (in annual terms), measured

as p/rh, is 12.5, as in Sommer and Sullivan (2018). This gives a value of κ equal to 20% of

the monthly wage w.

We have assumed that immigrants own no residential assets. Since we do not have a

sensible way to calibrate the distribution of their financial assets, we assume that they all

enter the location with zero assets.

4.3.3 Parameters jointly calibrated

The rest of the parameters, β, φ, ω, γ, ζ, and D, are chosen jointly to minimise the distance

between a number of selected equilibrium moments and their data counterparts. The data

moments are chosen from the Survey of Consumer Finances, Board of Governors of the

Federal Reserve System (2019). We have taken various waves from the SCF, from 1989 to
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2007, and have selected the sample of households with positive earnings. We proceed as

Budria et al. (2002) to compute household earnings. For each wave, we compute the same

statistics and we take the mean across waves. In this paper, we refer to the homeownership

rate as the fraction of households who own their home. In the data, we take it to be the

fraction of households who own residential real estate, which is 69.15%. The average median

wealth-to-earnings ratio for renters is 0.23. Matching housing wealth ratios requires that we

take a stand regarding the value of housing. In the SCF, households are asked about the

market value of their property. The counterpart of that value in our economy is the home’s

liquidation value, p. This is why we value housing at price p when we measure housing

wealth. The median housing-wealth-to-earnings ratio for homeowners is 2.57. To have a

sense of the size of mortgage debt, we calculate the median ratio for homeowners whose

financial wealth (financial network minus real estate debt) is negative and call it the median

loan-to-value ratio. The average of this ratio across waves is -0.43. Finally, we follow Kaplan

et al. (2020) and target an average house size ratio of 1.5 between owners and renters. Table

2 summarises the calibration of our benchmark economy. Interestingly, the calibrated down

payment is 26%, which is very close to the number used by Favilukis et al. (2017), 25%, and

slightly higher than that in Sommer and Sullivan (2018).

4.3.4 Alternative economies

We also consider alternative search economies that differ in the specification of the production

of housing and the rental market, as shown in Table 3. All economies are calibrated so that

they lead to the same steady state whenever the down payment is ζ = 0.26.
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Table 2: Calibration of the benchmark economy

Param. Observation Value
Financial parameters

w Monthly wage 1000.0000
R? − 1 Dı́az and Luengo-Prado (2010) 0.0300
τb Dı́az and Luengo-Prado (2008) 0.0250
τs Dı́az and Luengo-Prado (2008) 0.0600
ζ Median LTV ratio = 43% 0.2600

Technological parameters
κ Price-to-rent ratio = 12.5 199.3954
ε Kaplan et al. (2020) 1.5000
D Median H/E for owners = 2.57 0.0196
γ Median TTB (NAR) 11 weeks 0.6500
δ? Sommer and Sullivan (2018) 0.0150

Mobility and productivity parameters
πµ NAR: Median tenure of 9 years 0.0068
ξo Annual mobility of owners = 3.2% 0.0025
ξr Annual mobility of renters = 12% 0.0100
ρ? Storesletten et al. (2004) 0.9520
σ?ε Storesletten et al. (2004) 0.1700
ϕ Average US unemployment rate 0.0500

Preference parameters
σ Risk aversion parameter 2.0000
β? Median A/E for renters = 0.2257 0.8900
~ Owner occupied housing services wmean(z)
φ Homeownership rate = 69.15% 0.1700
ω Relative house size 1.5 0.8300

Notes: The model period is a month. ?Annualised values.

The low elasticity economy is one where the new housing supply elasticity, ε, is 0.6, the

lowest value estimated by Saiz (2010) for US MSAs areas.15 The TFP parameter, D, of

the housing production function is recalibrated so that this economy generates the same

equilibrium as our benchmark economy when ζ = 0.26. Additionally, we consider a very low

elasticity economy where we further reduce ε to 0.1. This is consistent with the estimates

in Baum-Snow and Han (2019) for US urban neighbourhoods.

15Specifically, it corresponds to Miami, FL.
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In addition, to assess the importance of the absence of segmentation of rental and owner-

occupied housing stocks in the model, we consider also the opposite extreme case with full

market segmentation. Specifically, we assume that rental and owner-occupied units are

different objects and that rents are exogenous (so they are unaffected by changes in housing

demand). We fix the rental price equal to its calibrated value in the benchmark economy

and assume that rental units are elastically supplied at this price (and, for simplicity, do not

depreciate). We then recalibrate the TFP parameter, D, so that housing production only

replaces depreciated owner-occupied housing and vacancies: Ih = δ (Ho + V ). This is done

for the three supply elasticities considered above.

Table 3: Calibration of alternative economies

Param. Observation Value
Low elasticity economy

ε Saiz (2010) 0.6000
D Median H/E for owners = 2.57 0.3868

Very low elasticity economy
ε Baum-Snow & Han (2019) 0.1000
D Median H/E for owners = 2.57 2.0258

Exogenous rental market and ε = 1.5
D Median H/E for owners = 2.57 0.0151

Exogenous rental market and ε = 0.6
D Median H/E for owners = 2.57 0.2984

Exogenous rental market and ε = 0.1
D Median H/E for owners = 2.57 1.5628

Notes: The model period is a month. ?Annualised values.
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5 Quantitative results

In this section, we present the results of our quantitative experiments. We first describe

our benchmark economy, and then explore the effects of relaxing credit conditions in the

alternative economies we consider.

5.1 The benchmark economy

Table 4 shows selected statistics of our benchmark economy. Let us focus on the untargeted

moments (pointed with ?). The share of owners who hold debt in equilibrium is 68.15%,

whereas the number reported in Sommer and Sullivan (2018) is 65%. In the SCF, though, the

mean of working-age households with negative financial assets across the 1989-2007 waves is

42%. Median rental expenditures are 19.37% in the steady state, whereas in the data they

are about 25%, according to Sommer and Sullivan (2018). We have calibrated the matching

function parameter to match the median time to buy and let the model determine average

time on the market (TOM). The National Association of Realtors reports a TOM between

4 and 17 weeks. Average TOM is 9.89 weeks in the steady state, which is about the mean

estimate of the National Association of Realtors. A remark is in order. In reality, TOM refers

to the average time between the listing and sale of a property. Thus, although households

sell their property without delays in the Walrasian market, we think that the appropriate

model counterpart of this statistic is the average time it takes an intermediary to sell the

property in the frictional market.

In our economy, there are vacancies overnight; these are the units that could not be

sold in the frictional and are not occupied. According to the American Housing Survey, the

ratio of the stock of year-round vacant units for sale to the total stock of owner-occupied
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Table 4: The benchmark steady state

Target Data Bench. Liquid1 Liquid2 Liquid3

p ~/(12w) - 5.64 5.39 5.11 4.12
Home. rate 69.15 69.17 54.77 55.60 61.97
Median H/E owners 2.57 2.57 2.46 2.33 1.88
Median LTV ratio (%) 43.00 46.74 36.03 36.48 38.01
?(%) of indebted owners 65.00 68.15 27.62 26.68 25.59
Mean ~/ghr 1.50 1.48 1.49 1.48 1.44
Median A/E renters 0.23 0.22 0.20 0.19 0.16
Price-to-Rent ratio 12.50 12.50 12.25 11.95 10.75
Median TTB [10-12] 11.30 - - -
?Mean TOM [4-17] 9.88 - - -
For sale rate - 2.27 - - -
?Vacancy rate 1.59 1.35 0.00 0.00 0.00
?σp/µp (%) 2.25 0.14 0.00 0.00 0.00
Participation rate - 7.68 1.40 1.44 1.85
A/E buyers† - 0.86 0.33 0.32 0.26
A/E med./mean†† - 0.63 0.97 0.96 0.82

Notes: σp is the standard deviation of the log prices and σp/µp is the coefficient of variation. The
participation rate refers to the fraction of non-owners who participate in the frictional housing
market. TTB stands for time to buy. Liquid1: Economy without search and matching frictions
and ε = 1.5. Liquid2: Economy without search and matching frictions and ε = 0.6. Liquid3:
Economy without search and matching frictions and ε = 0.1. † median A/E for buyers who
participate in the frictional market. †† Median to mean ratio of wealth to earnings ratio for
potential participating buyers. ?: Non-targeted moments.

units (plus those vacant units) is 1.59% every quarter for the period 1965:1-2010:4. We take

this as the data counterpart of our overnight vacancy rate, computed as vacant units, V ,

over V + Ho, where Ho is the stock of owner-occupied housing. The implied rate in our

benchmark model is 1.35%, which is pretty close to the data. In our economy, there is a

difference between the stock of houses for sale in the frictional market and the stock that

remains unsold overnight (and will be up for sale again in the next period). We also report

the rate of vacancies for sale when the frictional market opens, which is 2.27%. The greater

the difference between these two rates, the more liquid the frictional market is.
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Our model generates frictional housing price dispersion, as illustrated in Figure 3. Panel

3(a) plots the price policy function, gθ(a, z). In line with our theoretical results, given the

productivity state z, there is sorting by financial wealth, meaning that buyers with higher

wealth trade in less congested submarkets. As shown in panel 3(b), both the probability

of buying and the price buyers pay rise with wealth. However, there is no sorting by labor

earnings in general. In particular, buyers in state 1 trade in less congested submarkets and

pay higher prices than buyers in state 2 who have identical financial wealth. The reason is

that state 1 is a transitory state with a much lower persistence than state 2. In fact, agents

in state 1 are more likely to enter states 3 and 4 than agents in state 2. Our results suggest

that there can be sorting by earnings only if earnings shocks are sufficiently persistent. This

non-monotonicity is also reflected in the participation thresholds, apart(z), shown in Figure

3.

Price dispersion, measured as the coefficient of variation of the price distribution in the

search market, is small in the steady state, 0.14%. For instance, Lisi and Iacobini (2013)

estimate the coefficient of variation of house prices to be about 2% in the data. Kotova and

Zhang (2020) find a much larger dispersion, about 15%, for a selection of US counties. There

are three factors compressing the distribution of prices in the model. First, owning is risky

as owners cannot sell at will; recall that we are allowing to sell, on average, every 9 years.

Since earnings risk operates at a shorter frequency, agents do not want to be caught with

too much debt. This discourages households with high financial wealth from searching in

submarkets with higher prices (compressing the upper tail of the frictional price distribution).

Secondly, the parameter γ of the matching process affects price dispersion because it governs

the trade-off between prices and congestion. This parameter is chosen to match the observed
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(a) frictional policy function gθ(a, z) (b) Probability of buying mb
(
gθ(a, z)

)

(c) House price p
(
gθ(a, z), p

)
Figure 3: Policy functions

median time to buy. The calibrated value makes the probability of buying “highly concave”

in the price, which tends to reduce price dispersion. Thirdly, it is important to note that, in

our model economy, price dispersion only reflects the buyers’ heterogeneous wealth effects

(across the wealth distribution), since sellers in the frictional market are risk neutral.



Housing prices and credit constraints in competitive search 45

5.2 The role of search and matching frictions

Search and matching frictions act as bottlenecks: home buyers would like to trade instanta-

neously, but they cannot. Prices in the frictional market then reflect both how buyers value

housing services, as well as how they value the speed of the transaction. In other words,

prices reflect how agents value housing services as well as market liquidity. To understand

how these bottlenecks affect the economy, we conduct the following thought experiment. We

consider an alternative economy without search and matching frictions. In this economy,

buyers trade directly with mismatched owners and developers in the Walrasian market. In

equilibrium, all buyers trade at price p with probability one. Since there are no search and

matching frictions, intermediaries are not needed and the frictional market shuts down. That

is, the housing market is liquid. Households can either buy an indivisible home that yields

services ~ or rent out housing services h ≤ ~ that yield ω h. The buyer’s value function is

then

Wb(a, z) = max
mb∈{0,1}

{
mbWo (a− (1 + τb) p ~, z) + (1−mb) Wr (a, z)

}
s. t. a ≥ (ζ + τb) p ~.

(30)

To isolate the effect of eliminating search and matching frictions, we keep calibration of the

economy with search and matching frictions. The main moments of these liquid market

counterparts are shown in columns 4 to 6 of Table 4 for each of the supply elasticities we

consider. Column 3 (Liquid1) describes the equilibrium that results when these frictions are

eliminated in our benchmark economy, where the price elasticity of new housing supply is

1.5. The other two columns (Liquid2 and Liquid3) present the corresponding effect in the

low and very low elasticity economies.
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Let us focus on column 4 of Table 4, which shows the frictionless counterpart of our

benchmark economy. The Walrasian price is now 4.35% lower. This is so because housing

demand is lower than in our benchmark economy. First, fewer agents now turn to owning,

54.77% compared to 69.17% in our benchmark economy. This may seem surprising, but it is

explained by the fact that search and matching frictions partially convexify the binary tenure

decision in problem (30). This makes the real estate market relatively more attractive in

the benchmark economy for our risk-averse households. Furthermore, in the liquid economy,

there are no intermediaries who demand owner-occupied housing. As a result of the drop

in total housing demand, there is less construction every period, and the Walrasian price is

lower. The existence of search and matching frictions is also important to understand the

share of indebted owners and the magnitude of their debt. In the liquid economy, 27.62% of

owners hold debt, as opposed to 68.15% in the benchmark economy and 65% in the data.

The median debt is also lower. Recall that our economy has been calibrated to match the

median LTV ratio, but the ratio of indebted owners is determined by the model. This ratio

is tightly linked to the existence of equilibrium price dispersion. Since home buyers not only

compete to obtain housing services but also to speed up transactions, they borrow to afford

a higher price. The existence of search and matching frictions also affects the distribution of

financial assets. While there are more renters in the liquid economy, their median wealth-

to-earnings ratio is smaller (0.20 versus 0.22 in the benchmark economy). This is due to

the fact that non-owners can buy as soon they can afford the down payment. The fact that

the market is liquid (i.e., there is no congestion) has two implications. First, every period

there are fewer buyers around. This is shown by the statistic called “participation rate”,

which is the fraction of non-owners who participate in the market. This statistic is 7.68%
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in the benchmark economy and falls to 1.40% in its counterpart without frictions. Second,

the distribution of wealth of active buyers changes. We see this in the last two statistics of

Table 4. The second to last row shows the median wealth-to-earnings ratio for non-owners

who participate. The median is significantly lower in the liquid economy. However, the

median-to-mean ratio is significantly higher. This is so because agents do not face trading

delays.

Naturally, the lower the housing supply elasticity, the larger the reduction in the Wal-

rasian price generated by the elimination of search and matching frictions. This price is 9.36%

lower in the low elasticity economy and 26.87% lower in the very low elasticity economy, com-

pared to the benchmark economy. It is interesting to note, however, that homeownership

rates bounce back up as owner-occupied housing becomes cheaper. In summary, search and

matching frictions increase the overall demand for housing, and imply that more households

borrow, and this translates into higher housing prices. Notice that this is so even though

the model period is a month and homeowners move once every 9 years on average. That is,

we are imposing relatively mild search and matching frictions, which in turn are consistent

with monthly average TOM and buying times.

5.3 The long-run effect of credit expansions

Here we conduct a series of experiments in which we lower the down payment from 26%

to 5%. This is similar to the exercise in Favilukis et al. (2017) and is performed in our

benchmark economy and in the alternative economies we consider.
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5.3.1 A credit expansion with elastic supply

The effect of a credit expansion in our benchmark economy is described in column 3 of

Table 5. The enormous credit expansion makes owning less risky, as households can borrow

more to smooth earnings risk. A word of caution is needed here. As discussed in Kaplan

et al. (2020), the way in which mortgages are modelled matters for a credit expansion to

impact prices significantly. We have assumed that a reduction in the down payment allows

both new and existing owners to increase their borrowing. In reality, this reduction affects

mainly new mortgages, unless many owners refinance. We believe that this distinction is

important when studying the transitional dynamics of housing prices, but it matters less

when studying long-run effects. Also, Foote et al. (2020) document that a large part of

the growth in mortgage debt during the housing boom can be attributed to income-rich

households who were refinancing their mortgages.

In the benchmark economy, the supply of new housing is quite elastic, and construction

increases by 5.87% as demand rises in the face of the credit expansion. This implies a mild

increase of 3.88% in the Walrasian price. The reason is that rental companies are supplying

their units in the Walrasian market to meet the higher demand for owner-occupied housing.

These units are repackaged at no cost, and supplied as vacant homes in the frictional market.

As a result, there is a stark 24.39% increase in units for sale relative to the benchmark. This

swift conversion of rental units into owner-occupied housing explains why the homeowner-

ship rate increases sharply from 69.17 to 88.29%, while the increase in the Walrasian price

is moderate. These aggregate effects imply some interesting distributional changes. The

median loan-to-value ratio rises by around 40% (from 46.74 to 66.15%), and the fraction of
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indebted owners increases from 68.15 to 80.24%. The credit expansion increases not only

because there are new home borrowers, but because everyone borrows more.

Table 5: Credit expansion when markets are not segmented

Target Bench. ε = 1.5 ε = 0.6 ε = 0.1
∆ p (%) - 3.88 9.19 23.74
Homeownership rate 69.17 88.29 87.60 80.69
Med. H/E owners 2.57 2.67 2.81 3.18
Med. LTV ratio (%) 46.74 66.15 66.19 64.44
(%) of indebted owners 68.15 80.24 81.56 84.59
Mean ~/ghr 1.48 1.71 1.73 1.71
Med. A/E renters 0.22 0.10 0.11 0.15
Price-to-Rent ratio 12.50 12.71 12.98 13.66
Med. TTB 11.30 11.50 11.85 15.48
?Mean TOM 9.88 9.52 9.12 8.65
For sale rate 2.27 2.22 2.15 2.03
?Vacancy rate 1.35 1.29 1.21 1.09
∆ for sale units (%) - 24.39 19.53 4.01
∆ Ih (%) - 5.87 5.42 2.15
σp/µp (%) 0.14 0.15 0.16 0.16
∆σp (%) - 13.56 29.37 39.49
Participation rate 7.68 27.04 29.22 19.84
A/E buyers† 0.86 0.34 0.34 0.44
A/E med./mean†† 0.63 0.35 0.38 0.47

Notes: In all cases ζ = 5%. ∆ p refers to the increase in the Walrasian price
as a percentage of its value in the benchmark economy. ∆σp is the increase
in the standard deviation with respect to its value in the benchmark economy.
The participation rate refers to the fraction of non-owners who participate in
the frictional housing market. TTB stands for time to buy. †: median A/E
for buyers who participate in the frictional market. ††: Median to mean ratio
of wealth to earnings ratio for potential participating buyers.

Since there are more owners, renters concentrate among the poor, which is why their

median wealth-to-earnings ratio falls from 0.22 to 0.10. The coefficient of variation of prices in

the frictional market rises very mildly from 0.14 to 0.15, relative to the benchmark economy.

However, the standard deviation increases by 13.56%. This mild change in price dispersion

is due to various countervailing forces. On the one hand, there are more poor buyers at

the lower end of the price distribution (with a higher mass of agents concentrated there),
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which compresses the distribution. This is why the buyers’ median wealth-to-earnings ratio

drops from 0.86 to 0.34%, and so does the ratio of this median to the mean. On the

other hand, wealthier buyers borrow more in order to target pricier homes and speed up

their transactions, which makes the distribution more dispersed. As a result of these two

opposing effects, the standard deviation rises, but as a percentage of the mean price, it only

rises slightly. Note that the participation rate in the frictional market rises sharply from

7.68 to 27.04%. That is the fraction of buyers who actively search rises by almost a factor

of 3. Overall, the increase in both demand and supply in this market translates into a slight

rise in median time to buy and a small reduction in average TOM and overnight vacancies.

In summary, a credit expansion in our benchmark economy makes homeownership more

attractive, as it gives insurance against earnings risk through borrowing. This rises the

demand for owner-occupied housing and induces rental companies to sell their properties to

intermediaries, who also demand new construction to satisfy demand. As construction rises,

so do vacancies for sale. In spite of this, the overnight vacancy rate falls due to the sharp

increase in ownership.

5.3.2 The interaction of search and matching frictions and new housing

supply elasticity

We now investigate the importance of the new housing supply elasticity in determining the

magnitude of the amplification effects arising from competitive search. To this aim, we

quantify the effect of a credit expansion in the low elasticity and the very low elasticity

economies in columns 6 to 8 of Table 5. The qualitative effect is the same—search and

matching frictions imply greater increases in the Walrasian price—but the magnitude is
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larger when the supply elasticity is lower. In the low elasticity and very low elasticity

economies, search and matching frictions add 1.27 and 2.11 percentage points to the price

with respect to their Walrasian counterparts, respectively. Likewise, the higher borrowing

induced by these frictions is a robust feature of the model, the effect being larger when

the supply elasticity is lower. Notice also that, in these economies, the standard deviation

of prices in the frictional market rises by 29.37 and 39.45%, respectively, relative to the

benchmark. As already noted, there are two forces affecting price dispersion: more poor

households search in cheaper submarkets, while wealthier households borrow more to enter

more expensive submarkets and speed up their transactions. Both forces almost compensate,

and the coefficient of variation rises to 0.16 and 0.17%, respectively.

5.3.3 The role of market segmentation

In our benchmark economy, rental units can be converted into owner-occupied housing (and

vice versa) at no cost within one month. This amounts to assuming that the tenure supply

curve, as Greenwald and Guren (2021) also argue, has a flat segment (where it is infinitely

elastic). Given that this is a rather extreme assumption, we also explore the opposite sce-

nario: an economy where rental units are different objects and rents are exogenous (so they

are unaffected by changes in housing demand). We fix the rental price equal to its calibrated

value in the benchmark economy and conduct the same exercises as in Section 5.3.2 in order

to explore the interaction of search frictions and credit constraints in this scenario. The

results are shown in Table 6.

Consider first the implications of market segmentation in our benchmark economy, where

the elasticity of new housing supply is 1.5 (columns 3 and 4). As one would expect, the
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Table 6: Credit expansion when markets are segmented

Target Bench. ε = 1.5 ε = 0.6 ε = 0.1
∆ p (%) - 14.83 24.69 32.27
Homeownership rate 69.17 85.28 79.18 71.37
Med. H/E owners 2.57 2.95 3.23 3.53
Med. LTV ratio (%) 46.74 65.89 63.96 61.83
(%) of indebted owners 68.15 83.10 84.99 86.76
Mean ~/ghr 1.48 1.73 1.70 1.70
Med. A/E renters 0.22 0.13 0.16 0.19
Price-to-Rent ratio 12.50 13.26 13.74 14.21
Med. TTB 11.30 15.32 15.79 15.61
?Mean TOM 9.88 8.87 8.53 8.37
For sale rate 2.27 2.03 2.01 1.94
?Vacancy rate 1.35 1.17 1.09 1.03
∆ for sale units (%) - 15.11 2.89 -10.97
∆ Ih - 23.05 14.16 2.23
σp/µp (%) 0.14 0.16 0.16 0.14
∆σp (%) - 35.15 45.76 37.39
Participation rate 7.68 25.89 20.85 12.66
A/E buyers† 0.86 0.37 0.44 0.57
A/E med./mean†† 0.63 0.42 0.49 0.58

Notes: In all cases ζ = 5%. ∆ p refers to the increase in the Walrasian price
as a percentage of its value in the benchmark economy. ∆σp is the increase
in the standard deviation with respect to its value in the benchmark economy.
The participation rate refers to the fraction of non-owners who participate in
the frictional housing market. TTB stands for time to buy. †: median A/E
for buyers who participate in the frictional market. ††: Median to mean ratio
of wealth to earnings ratio for potential participating buyers.

increase in the Walrasian price is much larger when the rental and real estate markets are

segmented. In fact, it is more than three times larger, 14.83% (versus 3.88% in the case

of no segmentation). Since there is no possibility of converting rental units into owner-

occupied ones, the increase in demand has to be met with construction, which rises by

23.05% (as opposed to 5.87% in the benchmark). The standard deviation of prices in the

search market rises by 35.15%, relative to the benchmark economy, so it is more strongly

influenced by wealthier households bidding for higher prices than by the presence of many
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new poorer buyers in the search market. However, since prices are also rising more sharply,

the coefficient of variation only increases from 0.14 to 0.16.

The effect of a credit expansion on the level of prices is stronger in alternative economies

with lower elasticity of housing supply. This is shown in columns 4 and 5 of Table 6. As we

can see, when the elasticity is very low, ε = 0.1, the price effect is much larger (32.27%), while

there is a small increase in the homeownership rate (which rises to 71.37%). Additionally, it

is important to note that the negligible effect on price dispersion, as measured by coefficient

variation of prices, hides a non-monotone behaviour of the standard deviation of prices,

which rises in 35.15% in the benchmark, 45.76% for ε = 0.6 and 37.39% for a very low

supply elasticity. Since price increases are much stronger now, this in turn implies that the

coefficient of variation does not rise in this case. In fact, it goes back 0.14%.

This latter result is in line with the evidence reported by Kotova and Zhang (2020), who

estimate that price dispersion in the US, measured by the log standard deviation of prices, fell

as prices rose during the housing boom that preceded the Great Recession. Moreover, they

estimate that TOM and price dispersion typically move in the same direction. The strong

positive correlation of price dispersion and Time on the Market is also supported by evidence

found by Ben-Shahar and Golan (2022) using data for Israel. Taking into account the results

in Greenwald and Guren (2021), which provide evidence of substantial market segmentation,

this evidence is consistent with our sorting mechanism under market segmentation, provided

the housing supply elasticity is low.
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6 Final comments

This paper investigates how the interaction between search and matching frictions and risk

aversion affects the long-run level and dispersion of house prices when the search process is

competitive. We also study how this interaction shapes the response of housing prices to a

relaxation of credit constraints. We do so in an economy populated by households who live

forever and face idiosyncratic uninsurable earnings risk. There is also a meaningful tenure

choice: owner-occupied housing is associated with a utility premium, but its illiquidity makes

it ineffective at shielding consumption against permanent shocks.

We show theoretically that, when search is competitive, wealthier households are willing

to pay a higher price to speed up transactions. Hence, the equilibrium features frictional

price dispersion. Our quantitative experiments show that search and matching frictions have

a double positive effect on housing demand in the model. First, they act as bottlenecks, so

buyers are willing to pay more to speed up transactions. Second, they tend to convexify

the tenure choice, making homeownership more attractive for risk-averse agents. In the long

run, this double effect results in higher house prices and debt levels than in an economy

without these frictions. These differences are more pronounced when the elasticity of the

new housing supply is low.

We also uncover some interesting interactions between search and matching frictions and

market segmentation. As pointed out by Kaplan et al. (2020) or Greenwald and Guren

(2021), among others, segmentation between rental and owner-occupied housing amplifies

the effect of a credit relaxation. This is due to the fact that more construction is necessary to

meet the increase in housing demand in this scenario. This is also the case in our framework.

Naturally, the lower the elasticity of the new housing supply, the stronger the amplification
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effects are. However, our results indicate that search and matching frictions act as a buffer

in this case because they obstruct the direct channel through which credit affects prices: the

change in the tenure decision. Interestingly, unlike in the case of no market segmentation,

price dispersion may even fall when credit is eased if the new housing supply elasticity is

small. This last result offers an additional margin of analysis that may be helpful when

assessing the importance of market segmentation in the data.

We have made some simplifying assumptions to establish our results. We have abstracted

from the property ladder. Ortalo-Magné and Rady (2006) show that credit relaxation allows

households to invest in better, larger homes, pushing prices up. We leave it for future

research to examine how the existence of a property ladder affects housing price dispersion.

We have also abstracted from the life cycle. This is important as many buyers do not have

previous real estate wealth to purchase a new home. According to the National Association

of Realtors, around 30 percent of all buyers are first-time buyers. Therefore, credit conditions

matter more to them than to repeat buyers. We have assumed that new agents enter the

economy each period with zero assets, which somehow resembles the life cycle effect.

In our model, homeowners face no default risk and may sell their homes instantaneously

when they become mismatched. Hedlund (2016a 2016b) argues that the joint interaction

between tighter credit standards, default risk, and decreasing liquidity is important during

a housing bust (see also Head et al. (2023)). A quantitative study of the housing market

based on our theory is likely to incorporate several of these additional features.

Finally, the paper focuses on steady states. Studying the transitional dynamics of our

model is not trivial. Out of the steady state, the Walrasian price, pt, at which intermediaries

purchase homes—which is the key state variable of the model—equals their expected return
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in the search market. Since intermediaries carry unsold inventories over time, their expected

return depends not only on the prices that prevail in the search market in that period but

also in subsequent periods. This means that pt depends on future prices since all price

information is summarised by the Walrasian price. In particular, if intermediaries expect

higher prices in the future, their current expected return and thus pt will increase (shifting

the price schedule that buyers face in the search market upwards). This effect is absent in

Hedlund (2016b) and Garriga and Hedlund (2020), because their intermediaries do not carry

inventories over time. As a result, the schedule linking prices and congestion levels does not

depend on future prices. We leave all these interesting extensions for future work.
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A Housing construction

Assume that housing construction is undertaken by competitive developers, using the non-
durable good and new land available for construction that is owned by the government.
These developers pay the rental price of land to the government. We proceed as Kaplan
et al. (2020) and assume that every period new housing is built according to the production
function

Ih = BNαL1−α, (A.1)

where N is employment in the construction sector and L is new developed land. For sim-
plicity, we assume that L = 1 every period. This new land is owned by the government,
who taxes away the profits that developers may have in equilibrium. All tax and land rent
revenue is used to fund government spending that does not affect agents. As we explain
below, the new housing is either bundled into indivisible units of size ~ (at no cost) or it can
be sold in divisible amounts. A developer solves the static problem

maxIh,N p Ih − wN
s. t. Ih = BNαL1−α,

(A.2)

where p̄ is the per-unit price of housing that developers charge and w is the wage. The
solution to this problem, assuming that L = 1, yields a supply function

Ih =
(α
w

) α
1−α

B
1

1−α p
α

1−α , (A.3)

which can be written as ih = Dpε.

B Stationary distributions

Let X denote the Borel σ-algebra on X = A×Z. In (9), ψi is a measure on X representing
the exogenous distribution of immigrants, which ensures that net migration flows are zero.
The laws of motion of the distributions of owners and renters are, respectively,

ψ′o (X ′) = (1− πµ) (1− ξo)
∫
X

Qo(x,X
′) dψo +

∫
X

Πo (x,X ′) dψb, (B.4)

ψ′r (X ′) =

∫
X

Πr (x,X ′) dψb, (B.5)

where the transition functions Πo : X × X → [0, 1] and Πr : X × X → [0, 1] give the
probability that a non-owner with state x at the moment when the frictional housing market
opens will be an owner or a renter with state in X ′ at the end of the period, respectively.
These probabilities are related to the probability that the non-owner (buyer) purchases a
home, which depends on the submarket θ she joins. A successful trade implies, not only a
change in tenure status but also a change in the financial assets (which again depends on θ).
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Specifically,

Πo((a, z), X
′) =

{
mb

(
gθb (a, z)

)
, if

(
a− (1 + τb) p

(
gθb (a, z)

)
~, z
)
∈ X ′,

0, otherwise,
(B.6)

Πr((a, z), X
′) =

{
1−mb

(
gθb (a, z)

)
, if (a, z) ∈ X ′,

0, otherwise.
(B.7)

C Properties of the value functions

Let a denote the household’s assets. Denote X = A × Z, where A = [a,∞) and Z =
{z1, . . . , zn} is a finite set of exogenous shocks, 0 < z1 < z2 < · · · < zn. Let C(X) be
the space of continuous functions f : X → R, where we consider the usual topology on A
and the discrete topology on Z. Define the two-dimensional Bellman operator T acting on
C(X)× C(X) by T = (To, Tr), where

To(fo, fr)(a, z) = max
c,a′

{
u (c, ~) + β (1− π) Ez fo (a′, z′)

+βπ Ez Tb(fo, fr) (a′ + (1− τs) p ~, z′)
}

s.t. c+ 1
R a
′ ≤ w z + a− δp~,

a′ ≥ −(1− ζ) p~, c ≥ 0

(C.8)

Tr(fo, fr)(a, z) = max
c,h,a′

{
u (c, ω h) + β Ez Tb(fo, fr) (a′, z′)

}
s.t. c+ 1

R a
′ ≤ w z + a− rh h,

a′ ≥ 0, c ≥ 0, 0 ≤ h ≤ ~

(C.9)

and where Tb(fo, fr)(a, z) =

max

{
max
θ∈D(a)

{
mb (θ) fo (a− (1 + τb) p(θ) ~, z) + (1−mb (θ)) fr (a, z)

}
, fr(a, z)

}
. (C.10)

The feasible correspondence D of the inner maximization problem in (C.10) is defined by

D(a) = {θ ∈ R+ : a− (1 + τb) p(θ) ~ + (1− ζ) p ~ ≥ 0} for a ∈ A. (C.11)

If D(a) = ∅, we attach the value −∞ to participation, and thus Tb(fo, fr)(a, z) = fr(a, z) in
this case. Also, since

p(θ) =
(1− 1

R + δ)p

ms (θ)
+

(
1

R
− δ
)
p for all θ ∈ R+, (C.12)

limθ→∞ p(θ) = p. Since p is decreasing, D(a) 6= ∅ if and only if a > (τb + ζ) p ~. Since p is
continuous in R++, D has closed sections. However, D(a) is not compact. To circumvent
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this problem and be able to apply Bergé’s Maximum Theorem, we assume that agents choose
mb rather than θ, which is allowed since mb is strictly monotone. Let

p̂(mb) =
(1− 1

R + δ) p

m̂s (mb)
+

(
1

R
− δ
)
p for mb ∈ (0, 1), (C.13)

and p̂(0) = p. The function p̂ is continuous in [0, 1) since it is the composition of two
continuous functions when 0 < mb < 1 and, for mb = 0, limmb→0+ p̂(mb) = limθ→∞ p(θ) = p.
Also, since m̂s is strictly decreasing and −m̂′s/m̂s is non decreasing, p̂ is strictly increasing
and strictly convex. Finally, limmb→1− p̂(mb) = limθ→0+ p(θ) = ∞. By choosing mb as the
new decision variable, the feasible correspondence D becomes D, defined by

D(a) = {mb ∈ [0, 1) : a− (1 + τb) p̂(mb) ~ + (1− ζ) p ~ ≥ 0}. (C.14)

The sections of D are nonempty and compact for a−(1+τb) p̂(mb)~+(1−ζ) p~ > 0. In fact,
when nonempty, D(a) is the bounded and closed interval

[
0, p̂−1 ((a/~ + (1− ζ) p)/(1 + τb))

]
.

Problem (C.10) thus transforms into Tb(fo, fr)(a, z) =

max

{
max

mb∈D(a)

{
mb fo (a− (1 + τb) p̂(mb) ~, z) + (1−mb) fr (a, z)

}
, fr(a, z)

}
. (C.15)

In what follows, we assume that the minimum rental-unit size is ε > 0, so 0 < ε ≤ h ≤ ~.
This is an innocuous assumption since the utility of renting 0 units in −∞. Also, we assume
that the poorest and less productive owner can sustain a strictly positive level of consumption
at the borrowing limit, w z1 + a > δ p ~ + (1 − ζ) p ~/R > 0. In the same way, the poorest
and less productive renter can sustain a strictly positive level of consumption when renting
maximum-sized units, w z1 + a > rh ~. Since u is non decreasing both with respect to c and
h, this assumption assures that a positive level of consumption is always possible for both
owners and renters, so that their utility functions remain bounded from below:

u(c, ~) ≥ uo := u (w z1 + a+ δ p ~ + (1− ζ) p/R, ~) > −∞
u(c, ωh) ≥ ur := u(w z1 − rh h+ a, ω ε) > −∞, (C.16)

for all c > 0, ε < h ≤ hr.

Let u = min{uo, ur}. Theorem 1 below uses (C.16) to deal with the utility functions
postulated in the calibration and numerical exercises, but allows for unbounded from above
utilities (e.g., logarithmic). In this latter case, we need to control for their rate of growth on
the feasible correspondence, as well as for the size of the discount factor β to guarantee that
the dynamic programming equations define a contraction operator. To this end, consider
the sequence {a0, a1, . . . , aj , . . .}, defined by

aj =

(
Rw zn +Rδ p ~

R− 1
+ a

)
Rj − Rw zn +Rδ p ~

R− 1
, j = 0, 1, 2, . . . , (C.17)
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and recall that zn = maxZ. Note that a ≤ aj ≤ aj+1, aj →∞ as j →∞, and a0 = a. Let

uoj = max
a∈[a,aj ]

∣∣∣∣u(w zn + a+
(1− ζ)p ~

R
, ~
)∣∣∣∣ ,

urj = max
a∈[a,aj ]

|u (w zn − rh + a, ωε)| ,

and uj = max{uoj , urj}. Note that both uoj and urj are well defined because u is continuous
and by (C.16). Define

vj :=

∞∑
i=j

βi−juj , for j = 0, 1, 2, . . .. (C.18)

The following theorem establishes the existence of a unique solution to the Bellman equation
in a suitable class of functions. The result covers both the bounded and unbounded-from-
below cases under the hypotheses discussed above.

Theorem 1. Suppose that

u := lim
j→∞

uj+1

uj
<

1

β
. (C.19)

Then, the dynamic programming equations (C.8), (C.9) and (C.10) admit unique continuous
solutions Wo, Wr and Wb, respectively, in the class of functions F defined by

F =

{
f ∈ C(X) : f(a, z) ≥ u

1− β
,

for all a ∈ A, z ∈ Z, and max
a∈[a,aj ]

f(a) ≤ vj , for all j = 0, 1, . . .

}
. (C.20)

Moreover, both Wo and Wr are strictly increasing and Wb is non decreasing.

Proof. Let (fo, fr) ∈ F×F . If a ≤ (1+τb) p ~−(1−ζ) p ~, the optimal choice in the frictional
market is θ0, and so Tb(fo, fr)(a, z) = fr(a, z), which is continuous. When a > (1 + τb) p ~−
(1 − ζ) p ~, the function (a, z,mb) 7→ mb fo (a− (1 + τb) p̂(mb)~, z) + (1−mb) fr (a, z) is
continuous and the correspondence D defined in (C.14) is nonempty valued, compact valued,
and continuous. Hence, by the Theorem of the Maximum, the value function

max
mb∈D(a)

{
mb fo (a− (1 + τb) p̂(mb)~, z) + (1−mb) fr (a, z)

}
(C.21)

is continuous. Since Tb(fo, fr) is defined as the maximum between this value function and fr,
it is also continuous. It follows that the functions defining the right-hand side of To(fo, fr)
and Tr(fo, fr) given in (C.8) and (C.9), respectively, are continuous. Moreover, the feasible
correspondence is nonempty valued, continuous, and compact valued in both cases. Hence,
by the Theorem of the Maximum, both To(fo, fr) and Tr(fo, fr) are continuous. Let us see
that Ti(F × F) ⊆ F , for i = o, r, b. Let (fo, fr) ∈ F × F . By the definition of Tb as the
maximum of a convex combination of fo and fr, it is clear that Tb(fo, fr) ≥ u

1−β . Plugging
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this inequality into (C.8) and (C.9), we obtain

To(fo, fr)(a, z) ≥ max
c,a′

u(c, ~) + β
u

1− β
≥ u+ β

u

1− β
=

u

1− β
, (C.22)

and
Tr(fo, fr)(a, z) ≥ max

c,h,a′
u(c, ωh) + β

u

1− β
≥ u+ β

u

1− β
=

u

1− β
, (C.23)

respectively. On the other hand,

Tb(fo, fr)(a, z) ≤ mb fo (a− (1 + τb) p̂(mb)~, z) + (1−mb) fr (a, z) ≤
mbvj + (1−mb)vj = vj (C.24)

and Tb(fo, fr)(a, z) ≤ fr(a, z) ≤ vj , for all a ∈ [a, aj ], for all j = 0, 1, . . .. Hence, given that
for any a ∈ [a, aj ], D(a) ⊆ [a, aj+1] by the definition of vj given in (C.19), we have

To(fo, fr)(a, z) ≤ uj + βvj+1 = vj , for all a ∈ [a, aj ]. (C.25)

By a similar computation, To(fo, fr)(a, z) ≤ vj for all a ∈ [a, aj ]. It thus follows that
Ti(F × F) ⊆ F , for all i = o, r, b. Consider now C(X) with the topology generated by the
countable family of seminorms ‖f‖j = maxa∈[a,aj ],z∈Z |f(a, z)|, for all j = 0, 1, . . .. This
family is separated (‖f‖j = 0 for all j implies that f is the null function). Since the
compact intervals [a, aj ] form an increasing family that covers A and they have nonempty
interiors, and the space Z is finite, the space C(X) is complete with this topology (see
Rincón-Zapatero and Rodŕıguez-Palmero, 2003). Consider the product space F × F with
the seminorms ‖(fo, fr)‖j = max{‖fo‖j , ‖fr‖j}, for j = 0, 1, . . . and (fo, fr) ∈ F × F . It is
clear that F×F is complete with this topology, thus closed. Consider the series

∑∞
j=0 c

−juj ,
with c > u, where u was defined in (C.19). By the ratio test and by (C.19),

lim
j→∞

c−(j+1)uj+1

c−juj
=
u

c
< 1, (C.26)

so the series converges. Moreover, since β u < 1, it is possible to choose c > u with β c < 1.
Following Theorem 4 in Rincón-Zapatero and Rodŕıguez-Palmero (2003), T = (To, Tr) is
a local contraction on F × F , so T admits a unique fixed point in F × F , that is, there
are unique Wo ∈ F , Wr ∈ F such that To(Wo,Wr) = Wo and Tr(Wo,Wr) = Wr. Also,
Tb(Wo,Wr) = Wb is the buyer’s value function.

To prove that Wo and Wr are increasing in a, let z ∈ Z be fixed and let a1 < a2.
Then D(a1) ⊆ D(a2), since p̂, as the composition of two decreasing functions, is in-
creasing. Let (fo, fr) ∈ F × F , where both fo and fr are non decreasing. Then
mb fo (a− (1 + τb) p̂(mb)~, z) + (1−mb) fr (a, z) is non decreasing in a, since 0 ≤ mb < 1.
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Hence,

max
mb∈D(a1)

{
mb fo (a1 − (1 + τb) p̂(mb)~, z) + (1−mb) fr (a1, z)

}
≤ max
mb∈D(a1)

{
mb fo (a2 − (1 + τb) p̂(mb)~, z) + (1−mb) fr (a2, z)

}
≤ max
mb∈D(a2)

{
mb fo (a2 − (1 + τb) p̂(mb)~, z) + (1−mb) fr (a2, z)

}
.

It follows that Tb(fo, fr) is continuous and, being the maximum of two non-decreasing func-
tions, it is also non decreasing. Plugging this result into the definitions of To and Tr, we
get, by the same reasoning, that both Tb(fo, fr) and Tr(fo, fr) are non decreasing, since
the feasible correspondence of both problems is increasing in a. Actually, both Tb(fo, fr)
and Tr(fo, fr) are strictly increasing, since the utility functions are increasing. Finally, the
subset of non-decreasing functions of F is closed, so the fixed points Wo, Wr and Wb are
non decreasing. However, in the case of Wo and Wr, they are increasing by the previous
argument, as they satisfy To(Wo,Wr) = Wo and Tb(Wo,Wr) = Wb, respectively.

The general theorem above applies to the utility functions used in the calibration of the
model in Section 4.3.

Corollary 1. The conclusions of Theorem 1 hold under the same hypotheses when

u(c, h) =
c1−σ

1− σ
+ φ

h1−σ

1− σ
, φ > 0,

for any σ ≥ 1, or when σ < 1 but R1−σβ < 1.
Note that σ = 1 corresponds to u(c, h) = ln c+ φ lnh.

Proof. We only need to show that (C.19) holds. Note that u(·, h) is increasing in cases 1 and
2. When σ > 1, u is negative and bounded above. The sequence {uj} defined just above
Theorem 1, being increasing and bounded is convergent, thus u = 1 < 1/β. When σ < 1,
u is positive but unbounded from above. Given the definition of aj made n the proof of
Theorem 1, it is immediate to see that

u = lim
j→∞

uoj+1

uoj
= lim
j→∞

φ
(
w zn + aj+1 + (1−ζ)p

R

)1−σ
+ v(~)

φ
(
w zn + aj + (1−ζ)p

R

)1−σ
+ v(~)

= R1−σ, (C.27)

hence R1−σ < 1
β assures that the hypothesis of Theorem 1 are fulfilled. In the logarithmic

case, where σ = 1, uoj is bounded by |log (w + aj + ((1− ζ)p)/R)|+φ| log ~| for large enough
j. The ratio

| log (w + aj+1 + (1−ζ)p
R )|+ φ| log ~|

| log (w + aj + (1−ζ)p
R )|+ φ| log ~|

(C.28)

tends to 1 as j →∞, so (C.19) is satisfied. A similar computation holds for urj .
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D Differentiability, Euler equations and concavity

In this section, we prove differentiability of the value functions along the optimal paths,
obtain rigorously the Euler equations and prove concavity of the value functions in the
participation region. Our results are based on a generalization of the Envelope Theorem
that we develop in Theorem 2, and on the approach recently introduced in Rincón-Zapatero
(2020) for dealing with non-concave stochastic dynamic programming problems. Theorem
2 characterizes the so-called Fréchet differentials of the value function, which is a rather
weak concept of differentiability. This is especially well suited for studying the household’s
problem, where, aside from non concavity, it is not legitimate to assume differentiability
of the buyer’s value function in the definition of (C.8) and (C.9). This is the main reason
for which other approaches to prove differentiability of the value function in a non-concave
framework (as those explored in Dechert and Nishimura (1983), Milgrom and Segal (2002),
or Clausen and Strub (2020)) do not apply to our setting (Menzio et al. (2013) in a related
model enumerate other reasons that also apply to our model). Thanks to the results that
we introduce in this section, we do not need to introduce lotteries but work directly within
the original non-concave framework. We prove rigorously that the Euler equations still hold
as necessary conditions of optimality, so they can be used to compute the optimal policies.
We establish a link between the concavity of the value functions and the monotonicity of the
optimal consumption policies.

We introduce the concepts of Fréchet super– and subdifferentials of a function (F-
superdifferential and F-subdifferential, henceforth) to simplify the presentation and the
proofs that follow. For a continuous function f : Ω ⊆ Rn → R, where Ω is an open
set, the vector p ∈ Rn belongs to the F-superdifferential of f at x0 ∈ Ω, D+f(x0), if and
only if there exists a continuous function ϕ : Ω −→ R which is differentiable at x0 with
Dϕ(x0) = p, f(x0) = ϕ(x0) and f−ϕ has a local maximum at x0. Similarly, p ∈ Rn belongs
to the F-subdifferential of f at x0 ∈ Ω, D−f(x0), if and only if there exists a continuous func-
tion ϕ : Ω −→ R which is differentiable at x0 with Dϕ(x0) = p, f(x0) = ϕ(x0) and f−ϕ has
a local minimum at x0. D+f(x0) and D−f(x0) are closed convex (and possible empty) sub-
sets of Rn. Yet, if f is differentiable at x0, then both D+f(x0) and D−f(x0) are nonempty
and D+f(x0) = D−f(x0) = {Df(x0)}. Reciprocally, if for a function f , both D+f(x0) and
D−f(x0) are nonempty, then f is differentiable at x0 and D+f(x0) = D−f(x0) = {Df(x0)},
where Df denotes the derivative of f . Given two continuous functions f1 and f2, two nonneg-
ative numbers λ1 and λ2 and pi ∈ D+fi(x), for i = 1, 2, λ1p1 + λ2p2 ∈ D+(λ1f1 + λ2f2)(a).
A similar proposition holds for D−. Another property that we will use is that, whenever
x0 is a local maximum of f in Ω, 0 ∈ D+f(x0). Finally, D+f(x0) 6= ∅ if the function f
is concave. See, for instance, Bardi and Capuzzo-Dolcetta (1997) for these and for other
properties of the F-super– and subdifferentials of a function.

The next theorem characterizes the F-differentials of the value function

f(x) = max
y∈Γ(x)

F (x, y),

where F : X×Y → R is continuous, with X,Y ⊆ Rn, and where Γ is a correspondence from
X to Y is nonempty, compact valued and continuous. The result is well known in the case
in which the correspondence Γ is constant (i.e., when Γ(x) = Y for all x ∈ X), but for the
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general case, it is a generalization of the Benveniste–Scheinkman envelope argument which
applies to non-concave problems.

Theorem 2. Consider the problem described above, f(x) = maxy∈Γ(x) F (x, y). Let x0 be an
interior point of X and y0 ∈ Γ(x0) satisfying:

(i) f(x0) = F (x0, y0), and

(ii) there is a ball B(x0, ε) in X with center x0 and radius ε > 0, such that for all
x ∈ B(x0, ε), y0 ∈ Γ(x).

Then D−x F (x0, y0) ⊆ D−f(x0) and D+f(x0) ⊆ D+
x F (x0, y0), where D±x F (x0, y0) denotes

the F–upper/lower differential of the function x 7→ F (x, y0).

Proof. By Bergé’s Theorem, f is continuous and the optimal policy correspondence is
nonempty. Assumptions (i) and (ii) ensure that the function x 7→ f(x)−F (x, y0) is well de-
fined on the ball B(x0, ε) and attains a local minimum at x0. If D−x F (x0, y0) is empty, there
is nothing to prove. Suppose that it is nonempty. Let ϕ be continuous in B(x0, ε) and differ-
entiable at x0 such that F (x, y0)− ϕ(x) has a local minimum at x0 and F (x0, y0) = ϕ(x0).
Then f(x)− ϕ(x) ≥ F (x, y0)− ϕ(x) ≥ 0 and f(x0)− ϕ(x0) = F (x0, y0)− ϕ(x0) = 0 by (i).
Thus x0 is a local minimum of f − ϕ, and so Dϕ(x0) ∈ D−f(x0). Now, if D+f(x0) = ∅
then D+f(x0) ⊆ D+

x F (x0, y0), trivially. If D+f(x0) 6= ∅, let ϕ be continuous in B(x0, ε)
such that Dϕ(x0) ∈ D+f(x0) and f − ϕ has a local maximum at x0, with (f − ϕ)(x0) = 0.
Then F (x, y0) − ϕ(x) ≤ f(x) − ϕ(x) ≤ 0 = F (x0, y0) − ϕ(x0), for all x ∈ B(x0, ε). Hence,
x0 is a maximum of x 7→ F (x, y0)− ϕ(x), and so Dϕ(x0) ∈ D+

x F (x0, y0).

Remark 1. The theorem is a generalization of the classical Envelope Theorem of dynamic
programming, since when the value function f is concave, D+f(x0) 6= ∅. If F is differentiable
with respect to a then D−x F (x0, y0) 6= ∅, and hence D−f(x0) 6= ∅. Both Fréchet differentials
of f are then nonempty and thus f is differentiable. Note that D−x F (x0, y0) 6= ∅ is much
weaker than the assumption of differentiability of F . On the other hand, (ii) is satisfied when
(x0, y0) is an interior point of the graph of Γ, although it may be fulfilled more generally, as
we will show in our housing model.

We will apply the above theorem to show the validity of the Euler equations in our model,
which is a non-trivial issue due to the lack of concavity. Although the household problem we
study is stochastic, the theorem adapts easily since the set of shocks is finite. The properties
of differentiability and concavity of the functions involved in our model have to be understood
once z ∈ Z is fixed. In particular, we will use the same notation D±f(x, z) for the upper or
lower differential of the mapping x 7→ f(x, z), where z is fixed, for a function f that depends
on the variables (x, z). Also, we will use the notation f ′(x, z) for the derivative of f with
respect to x with preference over the more involved Dxf(x, z) or ∂f

∂x (x, z), since z plays the
role of an exogenous parameter.

After this preliminary exposition, we turn to our specific problem, given by (C.8)–(C.10).
In the results that follow, we will assume that there are selections of gao , gar , ghr and gθb such
that gao and gar are interior, and

0 ≤ gθ(a, z) < p−1

(
a+ (1− ζ)p~

(1 + τb
)~
)
, (D.29)
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for all a ∈ A. We do not assume uniqueness of the optimal policies. From (C.9), the renter’s
consumption and housing choices, when interior, are related by the optimality condition

rhuc(g
c
r(a, z), ωg

h
r (a, z)) = ωuh(gcr(a, z), ωg

h
r (a, z)).

Thus, since u is concave, the assumption uch > 0 guarantees that gcr and ghr have the same
monotonicity properties with respect to a. We will assume that u is of class C2 and that
uch > 0 holds.

Our strategy for proving that the value functions are differentiable at the optimal poli-
cies, consists of showing that both the F-subdifferential and the F-superdifferential of the
continuation value functions EzWo and EzWb are nonempty. This is key to show the validity
of the Euler equations and to link concavity of Wo and Wr with the renter’s and owner’s op-
timal consumption being non-decreasing. The Euler equations are used in the computation
part of the model combined with endogenous grid method (see Section F.2.2) and concavity
allows us to prove differentiability of the value functions, which is used to derive the sorting
result and to characterize the participation thresholds in the competitive search market (see
Section 3.4.3). All this program is made possible thanks to Theorem 2, complemented with
the results obtained in Rincón-Zapatero (2020). However, this approach does no apply di-
rectly to the Bellman equations satisfied by Wo, Wr and Wb, due to their complex structure,
so we need to elaborate a bit more.

Lemmas 1, 2 and 3 below deal with the F -differentials of the value functions, Proposi-
tions 6 and 7 establish the Euler equations for renters and owners, and differentiability of
EzWb and EzWo, respectively. Concavity of Wr and Wo is proved in Propositions 8 and
9. Differentiability of the value functions Wr and Wo at the optimal policies is proved in
Corollary 2.

Lemma 1. Let a0 > a and z ∈ Z. Then

(i) uc(g
c
o(a0, z), ~) ∈ D−Wo(a0, z), and

(ii) uc(g
c
r(a0, z), ωg

h
r (a0, z)) ∈ D−Wr(a0, z).

Proof. For a0 > a and z ∈ Z, Wo(a0, z) and Wr(a0, z) satisfy the Bellman equations (C.8)
and (C.9), respectively. Since both gao (a0, z) and gar (a0, z) are interior and the feasible
correspondence is a closed interval, there is an open interval I, centered at a0, such that
both gao (a0, z) and gar (a0, z) belong to D(a) for all a ∈ I. Thus (i) and (ii) in Theorem 2
hold. To prove statement (i) in the lemma, consider the function F defined by

F (a, gao (a0, z), z) = u (wz + a− δp~− gao (a0, z)/R, ~) + β (1− π)EzWo (gao (a0, z), z
′)

+ βπ EzWb (gao (a0, z) + (1− τs)p~, z′) ,

which is differentiable with respect to a, with derivative uc(g
c
o(a0, z), ~) at a = a0,

since the second and third summands in the definition of F are constant. Note that
Wo(a0, z) = F (a0, g

a
o (a0, z), z) and Wo(a, z) ≥ F (a, gao (a0, z), z). Thus Theorem 2 implies

uc(g
c
o(a0, z), ~) ∈ D−Wo(a0, z). In order to prove statement (ii), let now the function F be

defined by

F (a, gar (a0, z), z) = u
(
wz + a− rhh− gar (a0, z)/R, ωg

h
r (a0, z)

)
+ β EzWb (gar (a0, z), z

′) ,
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which is differentiable with respect to a, with derivative uc(g
c
r(a0, z), ωg

h
r (a0, z)) at a = a0.

Note that Wr(a0, z) = F (a0, g
a
r (a0, z), z) and Wr(a, z) ≥ F (a, gar (a0, z), z). Hence, Theorem

2 implies uc(g
c
r(a0, z), ωg

h
r (a0, z)) ∈ D−Wr(a0, z).

To prove that D−Wb is nonempty is a bit more involved. We rewrite the problem of
a potential buyer in an equivalent form. Let us define amin = (1 + τb) p~ − (1 − ζ) p~ =
(ζ + τb)p~. This is the threshold value of a above which D(a), as defined in (C.11), is
nonempty. Remember the definition of apart(z) > amin as the maximum a > amin such that
gθ(a, z) = θ0 (if it exists.) Let, for z ∈ Z, the function

W (a,mb, z) =


Wr(a, z), if a ≤ amin, mb ∈ [0, 1],

mb (Wo(a− (1 + τb)p̂(mb)~, z)−Wr(a, z))
+Wr(a, z), if a > amin, mb ∈ D(a),

(D.30)

where p̂(mb) in (C.13) andD(a) in (C.14). Let D̃(a) = {0} for a ≤ amin, and D̃(a) = D(a) for

a > amin. The correspondence D̃ is nonempty, compact valued, and continuous. Formally, we
are identifying the choice θ0 in the original problem with mb = 0. Given this, it is clear that
the original problem is equivalent to the following new formulation: maxW (a,mb, z) subject

to mb ∈ D̃(a). Note that W is piecewise continuous and, when restricted to the graph of D̃,
it is continuous. To see this, let (an, (mb)n) be a sequence converging to (amin,mb) along

the graph of D̃, where mb ∈ [0, 1], then for an > amin, (mb)n = p̂−1(an) → p̂−1(amin) = 0,
and for an < amin, (mb)n = 0. Hence,

W (an, (mb)n, z)→ 0 · (Wo(0, z)−Wr(amin), z) +Wr(amin, z) = Wr(amin, z) = W (amin, 0, z),

as n → ∞. Since mb = 0 is feasible for any a and gθb (a, z) = 0 in the region a ≤ apart(z),
Wb(a, z) = Wr(a, z) in this region.

Lemma 2. Let a0 > a and z ∈ Z. Then D−Wb(a0, z) = D−Wr(a0, z), for a0 < apart(z),
and

mb

(
gθb (a0, z)

)
po +

(
1−mb

(
gθb (a0, z)

))
pr ∈ D−Wb(a0, z), for a0 > apart(z), (D.31)

where po = uc
(
gco(a0 − (1 + τb) p(g

θ
b (a0, z)), z), ~

)
and pr = uc(g

c
r(a0, z), ωg

h
r (a0, z)).

Proof. For a < a < apart(z), Wb(a, z) = Wr(a, z), so (i) is trivial. Let now a0 > apart(z).
Since gθb is interior, the optimal gmb(a0, z) is interior. Thus the function of a

F (a, gmb(a0, z), z) = gmb(a0, z)Wo(a− (1 + τb)p̂(g
mb(a0, z))~, z) + (1− gmb(a0, z))Wr(a, z))

(D.32)
is well defined in a suitable interval centered at a0. Although we can not assert that F is
differentiable with respect to a, as we have not proved yet differentiability of Wo and Wr,
we can prove that16 D−a F (a0, g

mb(a0, z), z) 6= ∅. To see this, take

po ∈ D−Wo (a0 − (1 + τb) p̂(g
mb(a0, z)~), z) and pr ∈ D−Wr(a0, z),

16This is one of the advantages of working with F -sub or superdifferentials, and a sample of the usefulness
of Theorem 2 and how it relaxes the classical assumption of differentiability. Note that at this stage nothing
is known about the differentiability of EzWo and EzWb, and consequently about the auxiliary function F ;
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which exist by Lemma 1. By the property of convexity of the differentials mentioned just
above Theorem 2, gmb(a0, z) po+(1−gmb(a0, z)) pr ∈ D−a F (a0, g

mb(a0, z), z), or, equivalently,

mb

(
gθb (a0, z)

)
po +

(
1−mb

(
gθb (a0, z)

))
pr ∈ D−a F (a0, g

θ
b (a0, z), z), (D.33)

with po and pr as described in the statement of the lemma. Since D−a F (a0, g
θ
b (a0, z), z) ⊆

D−Wb(a0, z) by Theorem 2, the result in the lemma holds.

The fact that the lower F–subdifferential of the value function is nonempty is not enough
to get differentiability, since the value functions need not be concave and hence the F-
superdifferential could be empty. Below we follow the path initiated in Rincón-Zapatero
(2020) to prove differentiability in the absence of concavity, which uses the optimality con-
dition in the Bellman equation, where the value function appears both at the left and the
right of the equality defining the functional equation. This will provide us with conditions
for the nonemptyness of the F-superdifferential of the value functions at the optimal policies.

The following results deal with the F -superdifferentials of the value functions. Actually,
due to the stochastic nature of the problem, what is characterized is the F -superdifferentials
of the expected value functions (at the optimal policies). In consequence, what can be
asserted with full generality is the differentiability of the expected value functions, and not
the value functions themselves. This was pointed out for the first time in Rincón-Zapatero
(2020).

Lemma 3. Let a0 > a. Then 1
βRuc(g

c
r(a0, z), ωg

h
r (a0, z)) ∈ D+EzWb(g

a
r (a0, z), z

′).

Proof. Consider the Bellman equation (C.9) and the function of a′ given by

F (a0, a
′, z) := u(wz + a0 − rhh− a′/R, ωghr (a0, z)) + βEzWb(a

′, z′). (D.34)

Since gar (a0, z) is an interior maximizer to the Bellman equation (C.9), 0 ∈ D+
a′F (a0, g

a
r (a0, z), z).

But, since u is differentiable, D+
a′F = {−uc/R} + βD+EzWb, where we have omitted the

arguments. Hence, 1
βRuc(g

c
r(a0, z), ωg

h
r (a0, z)) ∈ D+EzWb(g

a
r (a0, z), z

′).

Our next result shows that EzWb is differentiable at the renter’s optimal policy, and
establishes the validity of the renter’s Euler equation.

Proposition 6. Let a > a, z ∈ Z. Then EzWb is differentiable at a′ = gar (a, z) 6= apart(z),
with derivative

[EzWb]
′
(a′, z′) =

1

βR
uc(g

c
r(a
′, z), ωghr (a′, z))

and the Euler equation

− 1

βR
uc(g

c
r(a, z), ωg

h
r (a, z)) + Ezuc(g

c
r(a
′, z′), ωghr (a′, z′)) = 0,

without resorting to the a weaker concept of differentiability as the Fréchet–differentials, we could not move
forward.
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for a′ = gar (a, z) < apart(z) and

− 1

βR
uc(g

c
r(a, z), ωg

h
r (a, z)) + Ez

(
mb

(
gθb (a′, z′)

)
uc
(
gco(a

′ − (1 + τb) p(g
θ
b (a′, z′))), ~

)
+
(
1−mb

(
gθb (a′, z′)

))
uc(g

c
r(a
′, z′), ωghr (a′, z′))

)
= 0,

for a′ = gar (a, z) > apart(z), holds.

Proof. Let a > a and z ∈ Z such that a′ = gar (a, z) ≤ apart(z). By Lemma 1 and Lemma 2,
uc(g

c
r(a0), ωghr (a0, z)) ∈ D−Wb(a0, z). By the properties of the differentials listed above,

Ezuc(g
c
r(a
′, z′), ωghr (a′, z′)) ∈ EzD−Wb(a

′, z′). (D.35)

Similarly, if gar (a, z) > apart(z), we have

Ez

(
mb

(
gθb (a′, z′)

)
uc
(
gco(a

′ − (1 + τb) p(g
θ
b (a′, z′))), ~

)
+
(
1−mb

(
gθb (a′, z′)

))
uc(g

c
r(a
′, z′), ωghr (a′, z′))

) (D.36)

belongs to D−EzWb(a
′, z′), where a′ = gar (a, z). By Lemma 3, the F-superdifferential

D+EzWb(g
a
r (a, z), z′) is nonempty, for all a > a. Hence, EzWb(·, z) is differentiable at

gar (a, z), D−EzWb(g
a
r (a, z), z′) = D+EzWb(g

a
r (a, z), z′), and these two sets are singletons.

By Lemma 3, the unique element of D+EzWb(g
a
r (a, z), z′) is uc(g

c
r(a, z), ωg

h
r (a, z))/(βR),

which has to be the unique element of D−EzWb(g
a
r (a, z), z′) given in (D.35) and (D.36)

above, obtaining in this way the renter’s Euler Equation and the expression for the derivative
stated in the lemma.

Differentiability of EzWb proved above will be used to prove differentiability of EzWo

and to obtain the owner’s Euler equation.

Proposition 7. Let a > a, z ∈ Z. Then EzWo is differentiable at a′ = gao (a, z), with
a′ 6= apart(z)− (1− τb)p~, with derivative

[EzWo]
′
(a′, z′) = uc(g

c
o(a
′, z), ~)

and the Euler equation

βR(1− π)uc(g
c
r(a
′, z), ~)− uc(gco(a, z), ~) + βRπ [EzWb]

′
(a′ + (1− τs)p~, z′) = 0.

holds.

Proof. From (C.8), the function of a′

F (a, a′, z) = u (wz + a− δp~− a′/R, ~)+β (1−π)EzWo (a′, z′)+βπ EzWb (a′ + (1− τs)p~, z′)
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satisfies 0 ∈ D+
a′F (a, gao (a, z), z). Since EzWb is differentiable by Proposition 6, we have by

the properties of the differentials17

− 1

R
uc(g

c
o(a, z), ~) + βπ [EzWb]

′
(a′ + (1− τs)p~, z′) ∈ −β (1− π)D+EzWo(a

′, z′),

showing that D+EzWo is nonempty at a′ = gao (a, z). This, combined with Lemma 1, and
a reasoning similar to the proof of Proposition 6 above, imply that EzWo is differentiable
at gao (a, z) and that the derivative is given by the unique element in D−EzWo, that is
[EzWo]

′(a′, z) = uc(g
c
o(a
′, z), ~). Finally, the equality D−EzWo(a

′, z′) = D+EzWo(a
′, z′),

gives the owner’s Euler equation.

A more explicit expression of the Euler equation id obtained after replacing [EzWb]
′(a′+

(1− τs)p~, z′) by the value obtained in (D.36) above.

We now study concavity. Given an exogenous shock z, concavity of the value functions
with respect to the endogenous variable a is proved in intervals where the renter’s optimal
consumption policy is non decreasing (to be precise, a suitable selection of gcr). We first
establish concavity of EzWb.

Lemma 4. Let z ∈ Z. Let I ′ be a subinterval of the image of gar (·, z) such that apart(z) /∈ I ′.
Then EzWb is concave in I ′ if and only if gcr(·, z) is nondecreasing in the inverse image of
I ′, (gar )−1(I ′, z) = {a > a : gar (a, z) ∈ I ′}.

Proof. Let a′i ∈ I ′ and let ai > a such that a′i = gar (ai, z), for i = 1, 2. Without loss of
generality, suppose that a′1 < a′2. By the Mean Value Theorem

EzWb(a
′
2, z
′)−EzWb(a

′
1, z
′) = [EzWb]

′(a′z, z
′)(a′1−a′2) =

1

βR
uc(g

c
r(a
′
z, z), ωg

h
r (a′z, z))(a

′
2−a′1),

(D.37)
where a′1 < a′z < a′2. If gcr is non decreasing with respect to a, then gcr(a

′
1, z) ≤ gcr(a′z, z) and

ghr (a′1, z) ≤ ghr (a′z, z); since u is concave, uc is decreasing, thus

uc(g
c
r(a
′
z, z), ωg

h
r (a′z, z)) ≤ uc(gcr(a′1, z), ωghr (a′1, z))

Plugging this inequality into (D.37), we have

EzWb(a
′
2, z
′)−EzWb(a

′
1, z
′) ≤ 1

βR
uc(g

c
r(a
′
1, z), ωg

h
r (a′1, z))(a

′
2−a′1) = [EzWb]

′(a′1, z
′)(a′2−a′1),

proving that EzWb is concave in I ′. Obviously, the reasoning above is reversible, that is, if
EzWb is concave in I ′, then gcr is non decreasing with respect to a.

Proposition 8. Let z ∈ Z. Let I be an interval of A such that gar (I, z) = {a′ ∈ A : a′ =
gar (a, z), a ∈ A} is an interval and apart(z) /∈ gar (I, z). Then Wr is strictly concave in I if
and only if gcr(·, z) is non decreasing in I.

17We are implicitly assuming that there is some asset value ã ∈ A such that gao (a, z) + (1− τs)p~ = gar (ã, z).
Since gar is an upper semicontinuous and unbounded correspondence, this must hold.
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Proof. Let a1, a2 ∈ I and let λ1, λ2 ∈ [0, 1]. Since λ1a1 +λ2a2 ∈ I and gar (I, z) is an interval,
λ1g

a
r (a1, z) + λ2g

a
r (a2, z) ∈ gar (I, z). Hence, (λ1a1 + λ2a2, λ1g

a
r (a1, z) + λ2g

a
r (a2, z)) belongs

to the graph of the buyer’s feasible correspondence, since it is convex. Moreover, Wb is
concave on gar (I, z) by Lemma 4, from which is follows that Wr is concave. Let, to simplify
the notation, (gir)

λ = λ1g
i
r(a1, z) + λ2g

i
r(a2, z), for i = c, a, h. Then

Wr(λ1a1 + λ2a2, z) ≤ u((gcr)
λ), ω(ghr )λ)) + βWb((g

a
r )λ), z)

≤ λ1u(gar (a1, z), ωg
h
r (a1, z))) + λ2u(gar (a2, z), ωg

h
r (a2, z)))

+ βλ1Wb(g
a
r (a1), z) + βλ1Wb(g

a
r (a1), z)

= λ1Wr(a1, z) + λ2Wr(a2, z),

where we have used (C.9), that u is concave and that EzWb is concave in the image of gar .
Hence, Wr is concave in I. Strict concavity of Wr follows from strict concavity of u.

Proposition 9. Let z ∈ Z. Let I be an interval of A such that both gao (I, z) and gar (I, z)
are intervals, apart(z) /∈ gar (I, z) and {(1− τs)p~}+ gao (I, z) ⊆ gar (I, z). Then Wo is strictly
concave on I if and only if gcr(·, z) is non decreasing in I.

Proof. We use the fact that the restriction of the operator To to the set F defined in (C.20)
is a contraction. This restricted operator is defined in the obvious way. Suppose that gcr(·, z)
is non decreasing in I. First, fix the buyer’s value function Wb which, given the hypotheses
of the proposition and Lemma 4, is concave on gar (I, z). The restricted operator is then

T bo (fo)(a, z) = max
c,a′

{
U b(c, ~, z) + β(1− π)Ezfo(a

′, z)
}
, (D.38)

where U b(c, a′, z) = u(c, ~)+β(1−α)EzWb(a
′+(1−τb)p~, z) is strictly concave with respect

to (c, a′). Hence, if fo ∈ F is concave in a, then T bofo is concave in a and hence the limit
of the iterating sequence (T bo )n, Wo, is concave in a. Once this is proved, the dynamic
programming equation (D.38) implies that Wo is in fact strictly concave, since U b is strictly
concave.

Corollary 2. Let z ∈ Z. Suppose that I ⊆ (a,∞) is an open interval where the assumptions
of Propositions 8 and 9 hold and where gcr(·, z) is non decreasing. Then the value functions
Wr and Wo are differentiable on I ∩ gcr(A, z).

Proof. The functions Wr and Wo are (strictly) concave on I, and the F–superdifferential of
a concave function is nonempty. Since the F–subdifferential of Wr and Wo are nonempty at
gcr by Lemma 1, the result follows from the properties of the differentials.

E Proofs of Propositions 1, and 3 to 5

The characterization results in Section 3.4.3 of the main text follow from the properties
of the value functions established in Sections C and D. Buyers solve problem (C.15), or,
equivalently, the problem described right after Lemma 1. Under the conditions of Theorem
1, an optimal solution to this problem exists, by the Theorem of the Maximum. Since the
price function p̂ in (C.13) is strictly increasing and strictly convex, the concavity result in
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Propositions 8 and 9 imply that, conditional on participating in the frictional market, the
optimal solution is unique under the assumptions in Proposition 1.

Proof of Proposition 1. Consider the buyer’s problem (C.15) formulated in terms of the
decision variable mb and the price function p̂(mb). By the properties of p̂ and the mono-
tonicity and concavity of Wo, the function mb 7→Wo(a− (1 + τb)p̂(mb)~, z) is differentiable,

decreasing and strictly concave. Let us denote this function by Ŵo. Note that the function
mb 7→ mbŴ

′
o(mb) is decreasing, since 0 < m1

b < m2
b implies m2

bŴ
′
o(m

2
b) < m1

bŴ
′
o(m

2
b) and

m1
bW
′
o(m

2
b) < m1

bW
′
o(m

1
b), thus

m2
bŴ
′
o(m

2
b) < m1

bŴ
′
o(m

2
b) < m1

bW
′
o(m

1
b).

If follows that (mbŴo(mb))
′ = Ŵo(mb)+mbŴ

′
o(mb) is decreasing, thus mbŴo(mb) is strictly

concave. In consequence, the optimal mb, and hence the optimal gθb , is unique, for each z.
Hence, by the Theorem of the Maximum, the policy function is continuous. �

Proposition 3 follows from the properties of Wo in Theorem 1, and Propositions 7 and 9.

Proof of Proposition 3. Since Wo is differentiable (Proposition 7), the optimal choice of
a buyer with state (a, z) who participates in the frictional market satisfies the first-order
condition:

Wo (a− (1 + τb)~p̂(mb), z)−Wr (a, z)−mb(1 + τb)~p̂′(mb)W
′
o (a− (1 + τb)~p̂(mb), z)

= λ̂(a, z)(1 + τb)~p̂′(mb), (E.39)

where λ̂(a, z) is the Lagrange multiplier of the borrowing constraint in (C.14). If λ̂(a, z) = 0,
(E.39) can be written as:(

1

1 + τb

)(
Wo (a− (1 + τb)~p, z)−Wr (a, z)

mb~W ′o (a− (1 + τb)~p, z)

)
= p̂′(mb). (E.40)

The term in the left-hand side of (E.40) is the buyer’s marginal rate of substitution of p for
mb. Buyers prefer high values of mb and low values of p. Also, Wo is increasing and concave,
given z (by Theorem 1 and Proposition 9). Hence, (E.40) has a unique solution (in line with
Proposition 1), as the buyer’s marginal rate of substitution falls as mb and p increase along
an indifference curve. In addition, if (Wo (a− (1 + τb)~p, z) −Wr (a, z)) is non-decreasing
in a for each z and each p ≥ p̄, the fact that Wo is strictly concave in a implies that the
buyer’s marginal rate of substitution increases with a. Hence, so does the optimal choice
of mb. More generally, this result holds if the second term in the left-hand side of (E.40)
increases with a for each z and each p ≥ p̄. �

When the borrowing constraint binds for some buyers and is slack for other buyers with
identical productivity z, the existence of a threshold ac(z) below which the constraint binds
follows directly from the following result, which uses the differentiability of Wo and Wr and
the strict monotonicity of Wr.

Lemma 5. For a given z ∈ Z, if a < a′ and λ̂(a, z), λ̂(a′, z) > 0 then λ̂(a′, z) < λ̂(a, z).
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Proof. If λ̂(a, z) > 0, the buyer pays price a/~+(1−ζ)p
(1+τb)

and is left with −(1 − ζ)p~ assets.

Thus (E.39) implies

λ̂(a, z) =
Wo (−(1− ζ)p~, z)−Wr(a, z)

(1 + τb)~p̂′(mb)
−mbW

′
o (−(1− ζ)p~, z)

=
Wo (−(1− ζ)p~, z)−Wr(a, z)

(1 + τb)~p̂′(mb)
−mbuc (gco (−(1− ζ)p~, z) , ~) , (E.41)

where the last equality follows from the Envelope Theorem. On the other hand, since p̂(mb)
is given by (C.13), mb satisfies

(1− 1/R+ δ)p

m̂s(mb)
+ (1/R− δ)p =

a/~ + (1− ζ)p

(1 + τb)
. (E.42)

As a increases to a′, mb increases, since m̂s is strictly decreasing. So does p̂′(mb), since p̂ is
strictly increasing and strictly convex. Since Wr is strictly increasing by Theorem 1, (E.41)

then implies λ̂(a′, z) < λ̂(a, z).

Proposition 5 follows from the continuity and differentiability of Wb and Wr, and Propo-
sition 1. The proof is based on the original problem in (4), where buyers choose θ.

Proof of Proposition 5. Let W̃b(a, z) denote the value of problem (18), and let g̃θb (a, z) be
the associated policy function. Then

Wb(a, z) = max{W̃b(a, z),Wr(a, z)}, (E.43)

and gθb (a, z) = g̃θb (a, z) if Wb(a, z) = W̃b(a, z) > Wr(a, z). Fix an arbitrary z ∈ Z. Since
θ0 is the only feasible choice for a potential buyer when a ≤ amin = (τb + ζ) p ~, on this
range Wb(a) = Wr(a). Suppose a > amin, so the constraint set of problem (18) is nonempty.
Applying the Envelope theorem to the Lagrangian of this problem yields

W̃ ′b(a, z)−W ′r(a, z) = mb

(
g̃θb (a, z)

) (
W ′o
(
a− (1 + τb)~p(g̃θb (a, z))

)
−W ′r(a, z)

)
+ λ(a, z).

(E.44)
The right-hand side of (E.44) is strictly positive because mb(θ) > 0 for all θ ∈ R+, the term
in brackets is strictly positive by assumption, and λ(a, z) ≥ 0. Thus W̃b(a, z) −Wr(a, z) is
strictly increasing in a for a > amin. By assumption, Wb(a, z) = W̃b(a, z) > Wr(a, z) for
some a. Since W̃b and Wr are continuous, there then exists apart(z) such that W̃b(a, z) >

Wr(a, z) for all a > apart(z) and W̃b(apart(z), z) = Wr(apart(z), z). Given that p(gθb (a)) > p
for a > apart(z), p(θ) is continuous, and so is gθb (a) on this range (by Proposition 18), it
follows that p(lima→apart(z)+ g

θ
b (apart(z))) > p. Hence, apart(z) > amin and, by continuity,

p(gθb (a)) > p for any a < apart(z) sufficiently close to apart. Since W̃b(a, z) − Wr(a, z)

is strictly increasing on this range, Wr(a, z) > W̃b(a, z) and so gθb (a, z) = {θ0} for any
a < apart(z). �
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F Computation

In order to compute a stationary equilibrium, it is best to rewrite the problems of buyers
and intermediaries as follows. Instead of choosing mb taking p̂(mb) as given, they choose p
taking as given the inverse of the function p̂(mb), which we denote by mb(p). For this, it is
crucial that mb(θ) is a function rather than a correspondence. In particular, we cannot use
the standard “truncated” Cobb-Douglas matching function.

F.1 The matching function and the equilibrium price schedule

Given the Walrasian price p, equation (C.13) determines ms as a function of p:

ms(p) =
(1− 1/R+ δ) p

p− (1/R− δ) p
. (F.45)

This function is strictly decreasing and strictly convex with ms(p) = 1 and limp→∞ms(p) =
0, and does not depend on the choice of the matching technology. We take ms(θ) =

(1 + θ−γ)
−1
γ with γ > 0, and mb(θ) = ms(θ)/θ. Thus m̂s(mb) = (1−mγ

b )
1/γ

, and we
can write

mb(p) = (1−ms(p)
γ)

1/γ
, (F.46)

θ(p) =
ms(p)

(1−ms(p)γ)
1/γ

. (F.47)

Here, θ(p) is the inverse of p(θ), so it is strictly decreasing and strictly convex with
limp→∞ θ(p) = 0 and limp→p θ(p) = ∞. Also, mb(p) is strictly increasing with mb(p) = 0
and limp→∞mb(p) = 1. As shown in Appendix C, mb(p) is strictly concave provided
−m̂′s(mb)/m̂s(mb) is non decreasing. This last assumption can be further relaxed. For
instance, for the value of γ used in our calibration to match the value of median time to
buy (TTB) in the data (and, in fact, for any γ < 1), the assumption only holds for values
of mb above some threshold. Yet we only require that it holds for the range of values of mb

which correspond to the submarkets that are active in equilibrium (since eliminating inactive
submarkets does not change the problem of a potential buyer). One can easily verify that
it suffices to check that the slope of −m̂′s(mb)/m̂s(mb) is positive for the lowest value of mb

observed in equilibrium (which corresponds to the optimal choice of a marginal buyer). If
so, mb(p) is strictly concave on the range of prices at which agents trade in equilibrium, and
the results in Propositions 1, and 3 to 5 again hold.

F.2 The household’s problem

Here we describe in detail the algorithm to solve the household’s problem.
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F.2.1 The optimal choice of buyers

In order to extend the method in Fella (2014) to our framework, we proceed in two steps.
The problem of a buyer with state (a, z), where a > apart(z), can be written as

Wb(a, z) = maxp {Wr(a, z) +mb(p) [Wo (a− (1 + τb) p ~)−Wr(a, z)] }
s. t. p ~ ≤ p ~ ≤ a+(1−ζ) p ~

(1+τb)
,

(F.48)

with associated policy function gp(a, z). Since mb(p) = 0, the constraint p ≥ p does not
bind. The buyer’s gains from trading at price p > p are S(a, z, p) = Wo (a− (1 + τ) p ~, z)−
Wr(a, z). By Theorem 1, S(a, z, p) is strictly decreasing in p. If S(a, z, p) ≤ 0 then
S(a, z, p) < 0 for all p > p, and non-participation is optimal in this case. Suppose that
S(a, z, p) > 0, so the gains from participation are positive. It is direct to check from the first-
order condition of problem (F.48) that the Lagrange multiplier of the borrowing constraint
is given by λ(a, z) = m′b(p)[S(a, z, p)− S̃(a, z, p)], where

S̃(a, z, p) =
mb(p)

m′b(p)
uc (gco (a− (1 + τb) p ~, z) , ~) (1 + τb).

Hence, at an optimal solution, S(a, z, p) ≥ S̃(a, z, p), with equality if the constraint does not
bind. By the Envelope Theorem,

W ′o (a− (1 + τ) p ~, z) = uc (gco (a− (1 + τb) p ~, z) , ~) , so

S̃(a, z, p) =
mb(p)

m′b(p)
(1 + τb)W

′
o (a− (1 + τ) p ~, z) .

If gco(a, z) is non-decreasing then Wo is concave, since u is strictly concave. Since mb is strictly
increasing and strictly concave, this implies that S̃(a, z, p) is strictly increasing in p and non-
increasing in a. Also, S̃ (a, z, p) = 0 regardless of the value of a, since mb (p) /m′b (p) = 0.

There is then a unique value pT which solves S(a, z, pT ) = S̃(a, z, pT ) (in line with Proposi-
tion 1), and S(a, z, pT ) > 0. There are then two cases: (i) if pT ~ ≤ (a+ (1− ζ) p ~) /(1+ τb)
then gp(a, z) = pT , and (ii) otherwise, gp(a, z) ~ = (a+ (1− ζ) p) /(1 + τb).

We use the following algorithm to find gp(a, z). Given the value functions Wo, Wr and
the policy function gco:

1. Check that S (a, z, p) > 0, so the agent’s gains from participation are positive. (Oth-
erwise, gθ(a, z) = θ0).

2. Find the maximum price the agent is willing to pay. This is equal to pr = p̃ where
S (a, z, p̃) = 0 if p̃ ~ ≤ (a+ (1− ζ) p ~) /(1 + τb). Otherwise, this maximum price
satisfies pr ~ = (a+ (1− ζ) p ~) /(1 + τb).

3. If S̃ (a, z, pr) > S (a, z, pr) use any solver to find a price p ∈ (p, pr) for which S̃ (a, z, p) =
S (a, z, p).

4. If S̃ (a, z, pr) ≤ S (a, z, pr), set p = pr.
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If S(a, z, p) is increasing in a, as in our quantitative model, the above arguments imply that
both pr and gp(a, z) increase with a (in line with Proposition 3). Agents with low assets are
constrained and choose p ~ = (a+ (1− ζ) p ~) /(1 + τb). Wealthier agents are unconstrained.

F.2.2 The choice of financial assets

Let us focus on the household’s problem after the frictional market has closed. We focus on
renters (who either did not participate in the frictional market or they did not find a trading
partner). Her choice of housing is intratemporal and always satisfies

ghr (a, z) = min

{(
φω1−σ

rh

) 1
σ

gcr(a, z), ~

}
. (F.49)

To simplify the exposition let us assume that h denotes the services of rented housing.
The expression for the Euler equation of the problem depends on whether the agent can
participate in the frictional market in the next frictional. Thus. there are two cases. If
gar (a, z) + (1− ζ) p ~ < (1 + τb) p ~, the Euler equation is:

−uc (gcr(a, z), h) +Rβ Ez uc (gcr(a
′, z′), h) ≤ 0, (F.50)

with equality if a′ = gar (a, z) > 0. If gar (a, z) ≥ (ζ + τb) p ~, the Euler equation becomes

− uc (gcr(a, z), h) +Rβ Ezmb (gp(a′, z′)) uc (gco (a′ − (1 + τb) g
p(a′, z′) ~, z) , ~)

+Rβ Ez (1−mb (gp(a′, z′))) uc (gcr (a′, z′) , h)

+Rβ Ez
m′b (gp(a′, z′))

1 + τb

[
S (a′, z, gp(a′, z′))− S̃ (a′, z′, gp(a′))

]
≤ 0, (F.51)

with equality if a′ = gar (a, z) > 0. The problem solved by owners is similar, except for the
fact that they can borrow up to (1−ζ) p ~. We build on Fella (2014) and solve for the optimal
consumption rule using a modified version of his generalized endogenous grid method.

F.2.3 Solving the household’s problem

The algorithm is as follows:

1. Choose an initial guess for (W j
o , W

j
r , g

c,j
o , gc,jr ). For the owner’s value function, we

use the value function of an owner that is never hit by any shock. For the renter, we
use that of a renter who never participates in the frictional market. The consumption
policy function of the renter will have a discontinuity point at apart(z) (in the next

iteration). We choose ajpart(z) = (ζ + τb) p as the first guess for this point.

2. Solve the frictional problem as outlined in Section F.2.1 to find gp(a, z) and Wb(a, z).

3. For a given grid for the next period’s assets, a′, we use the Euler equation to find
consumption today. We know that, if a′ < ajpart(z), the Euler equation is (F.50); oth-
erwise it is (F.51). We need to interpolate to obtain the consumption policy function
as a function of the grid of assets today. We also need to be aware of the discontinuity
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at ajpart(z). This is key to use interpolation to find the policy function of consumption
(as a function of assets today). To find the maximum in the region of assets that
correspond to participation and non-participation, respectively, we conduct a Value
Function Iteration step. There is a cutoff point below which the renter will not par-
ticipate in the frictional market in the next period. Save the node as aj+1

part(z). Save

W j+1
o , W j+1

r , gc,j+1
o , gc,j+1

r . Notice that aj+1
part(z) may depend on the earnings state, z.

4. Go to step 2. Iterate until convergence.

A grid of 400 points in financial assets gives very high accuracy and is very fast.

F.3 The stationary distribution

As explained in Section 4, we cannot use Monte Carlo simulations because of the curse
of dimensionality. We thus solve for the stationary distribution as in Huggett (1993) and
as explained in Ŕıos-Rull (1997). We use a much finer grid than the one used to solve the
household’s problem (750 points in our case) and guess the distribution of owners and renters
at the end of a period. Then we use the policy functions for financial assets to integrate
numerically and find the distribution of buyers in the frictional as shown in equations (9)
and (B.4)–(B.5).

F.4 The outer fixed point problem and the algorithm to find the
stationary equilibrium

1. Choose an initial guess for the Walrasian price p and obtain the price function in (F.46).
This guess pins down the rental price, rh = κ/~ + (1− 1/R+ δ) p.

2. Find the households’ value and policy functions and the participation threshold apart(z)
using the process described in Section F.2.

3. Use the policy functions to find the stationary distributions using (9) and (B.4)–(B.5).

4. For each (a, z) in the support of ψb, use gp(a, z) to calculate the probabilities of buying
and selling in the submarkets where the buyers who participate search, mb(g

θ(a, z))
and ms(g

θ(a, z)).

5. Use (13) and (14) to find the amount of vacancies overnight, V .

6. Obtain Ho, Hr and use the market clearing condition in the frictionless Walrasian
market. Given the price find the amount built today, Ih. If Ih is greater than
δ (Ho +Hr + V ), update p downwards. Likewise, if Ih < δ (Ho +Hr + V ), rise p.
Go back to step 1.
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