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This paper studies first–order differentiability properties of the value function

in concave dynamic programs. Motivated by economic considerations, we dis-

pense with commonly imposed interiority assumptions. We suppose that the

correspondence of feasible choices varies with the vector of state variables,

and we allow the optimal solution to belong to the boundary of this corre-

spondence. Under minimal assumptions we prove that the value function is

continuously differentiable. We then discuss this result in the context of some

economic models, and focus on some examples in which our assumptions are

not met and the value function is not differentiable.
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1 Introduction

Dynamic optimization problems are often analyzed by the methods of dynamic program-

ming which build on properties of the value and policy functions. Although these methods

∗We are indebted to Hector Chade, Adrian Peralta–Alva and Kevin Reffett for some insightful re-

marks.
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have been extensively studied, there is an important gap that places this methodology

really behind the static theory of constrained optimization: General results on the dif-

ferentiability of the value function have essentially been established for interior optimal

solutions. This interiority condition is generally subsumed under the following two as-

sumptions: (i) The optimal solution lies in the interior of the choice set [e.g., see Ben-

veniste and Scheinkman (1979), and earlier, more limited results by Lucas (1978) and

Mirman and Zilcha (1975)], and (ii) the choice set does not vary with the vector of states

[e.g., see the seminal work of Danskin (1967), and Milgrom and Segal (2002) for further

results and economic applications]. Both (i) and (ii) turn out to be mathematically

equivalent if the constraint correspondence is continuous. For concave optimization the

differentiability of the value function can then be established by a well–known static ar-

gument in which this function is defined as the envelope of differentiable short–run return

functions. This static envelope construction breaks down for boundary solutions if the

set of feasible choices varies with the vector of state variables. Indeed, in the absence of

(i) and (ii) the derivative of the value function may involve an infinite sum of discounted

marginal utilities and returns.

To circumvent the interiority condition we postulate three additional assumptions.

First, some optimal choice must lie in the interior of the domain. Second, the matrix

of partial derivatives of the saturated constraints must satisfy a full rank condition.

The necessity of these two assumptions is well understood from the static theory. The

third additional assumption is a new asymptotic condition on the behavior of discounted

marginal utilities and returns, and in competitive economies it can be identified with

uniqueness of a bubble term over a given equilibrium allocation. We show how our

conditions can easily be checked in two specific examples: An extended version of the

pure currency model of Lucas (1980), and an optimal growth model with irreversible

investment. Under standard assumptions, in the growth economy the bubble term is

always equal to zero, and in the monetary economy the bubble term can only be positive

in the case of the Friedman rule or zero nominal interest rate.

We also discuss some other examples in the literature where differentiability fails,

linking the lack of differentiability back to the necessary assumptions developed in the

paper. Thomas and Worrall (1994) study a model of foreign direct investment and find

that the value function may not be differentiable for some parameter values. What

happens in this model is that the optimal choice may lie in the boundary of the domain.
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In a related model by Kocherlakota (1996) the value function may also display some

points of non–differentiability [Koeppl (2006)]. We provide a necessary and sufficient

condition for the value function to be differentiable which is tied down to a certain number

of constraints being binding. If too many constraints are binding then the constraint

qualification is not satisfied. In this model it matters for the dynamics as to whether or

not the value function is differentiable. Finally, we discuss a limiting case of an optimal

growth model with irreversible investment in which the derivative of the value function

becomes unbounded even though the production and utility functions have bounded

derivatives.

To prove our differentiability result, we first establish a generalized envelope theorem.

The main idea is as follows. For a concave function, a superdifferential always exists at

interior points. Suppose further that a full rank condition à la Arrow–Hurwicz–Uzawa

[see e.g. Takayama (1990)] applies as a constraint qualification for the optimal solu-

tion. Then, one can use a (generalized) first order condition with respect to tomorrow’s

choice of the state variable to find values for the Kuhn–Tucker multipliers of the con-

strained optimization problem at today’s state. Our envelope theorem then shows that

the superdifferential of the value function can be written in terms of the corresponding

multipliers and the superdifferential of the value function at tomorrow’s states.

This leads to two formulas for computing the derivative of the value function. First,

if eventually (at some finite time T ) the policy falls into the interior of the constraint

correspondence, by Benveniste and Scheinkman (1979) the derivative of the value func-

tion always exists. Then one can iterate backwards to find the derivative of the value

function at today’s state. A special case of course is the Benveniste and Scheinkman

(1979) envelope theorem where T = 0. Second, if a transversality condition on marginal

utilities and returns holds, one can iterate forward indefinitely to obtain the value of

the derivative. In both cases, the derivative will depend on the Kuhn–Tucker multipliers

associated with the saturated constraints.

The importance of these results is clear. First, many problems in macroeconomic

theory have relied on differentiability of the value function when the policy function does

not fall into the interior of the constraint correspondence. As is well known, results in this

literature depend crucially on this assumption (see e.g. Kocherlakota (1996)). Hence,

having necessary and sufficient conditions for differentiability is important. Second, we

show that differentiability of the value function implies that the Kuhn–Tucker multipliers
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must be unique for concave dynamic programming problems. This entails uniqueness of

price systems in decentralized economies or asset pricing models. These shadow values

appear as additional state variables in proofs of existence of Markov equilibria for dy-

namic games of monetary and fiscal policy [Kydland and Prescott (1980) and Phelan and

Stacchetti (2001)] and for competitive economies with heterogeneous agents and market

frictions [Miao and Santos (2005)].

The paper is structured as follows. In Section 2 we set out an abstract (reduced–

form) optimization problem, and recall some basic results from dynamic programming.

In Section 3 we present our main results on the differentiability of the value function.

In Section 4 we consider several economic applications to illustrate the role of our main

assumptions. The Appendix contains all the proofs which are not shown in the main

text.

2 The Model and Preliminary Considerations

As in many other related papers, we lay out an abstract stochastic optimization frame-

work that encompasses various economic applications. For convenience of the presen-

tation, we follow closely the formulation of Stokey, Lucas and Prescott (1989) where

the revelation of information is given by an exogenous stochastic process; however, our

arguments can readily be modified to account for uncertainty as part of optimization.

2.1 Stochastic optimization

Time is discrete, t = 0, 1, 2, . . .. The sequence of choice variables {xt}t≥0 belongs to a set

X ⊂ Rn, and the realizations of the exogenous stochastic process {zt}t≥0 lie in a space

Z. Let X be the Borel σ–algebra of X and Z the σ–algebra of Z. The product space

X × Z is the state space, an is endowed with the product σ–algebra X ×Z. We assume

that X is convex with non–empty interior.

The primitive elements of our optimization problem are given by a constraint corre-

spondence of feasible choices Γ : X × Z −→ 2X with graph Ω = Graph(Γ), a one–period

return function U : Ω −→ R, a discount factor 0 < β < 1, and a transition probability

or stochastic kernel Q : Z × Z −→ [0, 1]. We assume that Γ is continuous in x and

compact–valued. Moreover, for each z the set Ωz = {(x, y) : y ∈ Γ(x, z)} is convex, and

mapping U(·, ·, z) is concave and continuous in (x, y). Transition probability Q satisfies
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the following standard conditions: For each fixed z ∈ Z mapping Q(z, ·) : Z −→ R
is a probability measure, and for each fixed B ∈ Z mapping Q(·, B) : Z −→ R is a

measurable function.

All contingency plans {xt}t≥0 are constructed from the history of past realizations

of the process {zt}t≥0 so that every choice vector xt+1 available at the end of time t

must condition on all the information revealed up to that date. More specifically, let Zt

be the space of sequences zt = (z1, z2, . . . , zt). For each given z0 transition probability

Q induces a unique probability measure µt(z0, ·) on the product σ–algebra of Zt. A

contingency plan {xt}t≥0 is feasible if xt+1 : Zt −→ X is a measurable function and

xt+1(z
t) ∈ Γ(xt(z

t−1), zt), for zt ∈ Zt and t = 0, 1, . . ..

The stochastic optimization problem can be defined as follows: For each initial con-

dition (x0, z0), find the maximum value v(x0, z0) over the set of all feasible contingency

plans {xt+1(z
t)}t≥0 for the following discounted infinite–horizon program

v(x0, z0) = sup
{xt}t≥1

{
U(x0, x1, z0) +

∞∑
t=1

βt

∫
Zt

U(xt, xt+1, zt) µt(z0, dzt)
}

. (1)

We shall often identify optimization problem (1) with the collection of its primitive

elements (Γ, U, β, Q).

2.2 Value and policy functions

Let us write Bellman’s equation

v(x, z) = sup
y∈Γ(x,z)

{
U(x, y, z) + β

∫
Z

v(y, z′) Q(z, dz′)

}
. (2)

As is well known under standard assumptions the value function v(x, z) is measurable,

continuous and concave in x for each given z, and the unique fixed point of Bellman’s

equation. Hence, the policy correspondence

H(x, z) = arg max
y∈Γ(x,z)

{
U(x, y, z) + β

∫
Z

v(y, z′) Q(z, dz′)

}
is compact valued. We assume that H(x, z) admits a measurable selection h(x, z). Func-

tion h is often referred to as a policy function and defines a stationary Markov equilibrium.

The existence of a stationary Markov equilibrium can be derived from various standard

technical conditions. For the sake of brevity, we refrain discussion of these underlying
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conditions since they are not needed for our analysis. Note that we allow for multiple

stationary Markov equilibrium solutions as function U(·, ·, z) is not strictly concave in

(x, y). Multiplicity of solutions does not preclude differentiability of the value function.

Consider the Markov operator Mv(y, z) =
∫

Z
v(y, z′) Q(z, dz′). It follows that for each

z function Mv(·, z) is concave. Hence, at every interior point y ∈ int (X) the superdiffer-

ential ∂1(Mv)(y, z) of Mv(y, z) with respect to y is a compact set [e.g., Rockafellar (1970)].

The following lemma characterizes ∂1(Mv) in terms of ∂1v. We need this characterization

for our results below.

Lemma 2.1 Let (Γ, U, β, Q) be a feasible optimization problem. Then, for every y ∈
int (X) we have

∂1(Mv)(y, z) ≡ ∂1

∫
Z

v(y, z′) Q(z, dz′) =

∫
Z

∂1v(y, z′) Q(z, dz′). (3)

This well–established result can be seen as a non–smooth generalization of the dif-

ferentiation rule under the integral sign. Clarke (1990, Theorem 2.7.2, p. 76) offers a

version of this result for a Lipschitz function defined on an open set, and hence it must

hold for a concave function at an interior point of the domain. The interpretation of

(3) is as follows: For z ∈ Z fixed, qz ∈ ∂1(Mv)(y, z) if and only if there is a measurable

mapping z′ 7→ qz(z
′) with qz(z

′) ∈ ∂1v(y, z′) almost everywhere (a.e.) in the measure

Q(z, ·) such that qz =
∫

Z
qz(z

′) Q(z, dz′).

3 Differentiability of the Value Function

Constrained optimization is pervasive in economics. Constraints may appear in the form

of feasibility and technological restrictions, individual rationality and incentive compat-

ibility conditions, transaction costs, borrowing limits, liquidity and collateral require-

ments, and many other financial frictions. Standard assumptions on utility and pro-

duction functions do not prevent these constraints from being binding. Indeed, a vast

body of research in economic dynamics has focussed on effects of these constraints on

quantitative properties of equilibrium solutions.

3.1 Main results

To establish that function v is of class C1, we require differentiability of the return

function U , and some regularity conditions for boundary solutions. We consider two con-
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ditions transported from the static theory: A boundary restriction on the policy function

over the domain of definition and a constraint qualification [cf. Takayama (1990)]. We

also introduce an asymptotic condition on the expected discounted utility of a marginal

unit invested today.

D1: For every x ∈ int(X) and z ∈ Z function U(·, ·, z) is of class C1 on some open

neighborhood N(x, y) of every point (x, y) with y ∈ H(x, z).

If (x, y) belongs to the boundary of Ωz then D1 should be read as that U(·, ·, z) admits

a differentiable extension on some open neighborhood N(x, y).

D2: For every x ∈ int(X) and z ∈ Z there exists y ∈ H(x, z) with y ∈ int(X).

This simple assumption says that it is always possible to select an optimal path in the

interior of the domain, and should not be confused with the aforementioned interiority

condition y ∈ int(Γ(x, z)). Assumption D2 may be innocuous if the set X can be

appropriately redefined, i.e., the domain could be restricted or expanded so that it is not

optimal to reach its boundary. We nevertheless present an example below (Section 4.3)

in which D2 does not hold and the value function is not differentiable.

D3: There is a finite collection of functions g = (. . . , gi, . . .), for i = 1, 2, · · · , m, such

that Ω = {(x, y, z) ∈ Rn×Rn×Z : g(x, y, z) ≥ 0}. Each function gi(·, ·, z) : Rn×Rn −→ R
is quasiconcave and of class C1. Let I(x, y, z) = {i : gi(x, y, z) = 0} denote the set of

saturated constraints, and let s(x, y, z) denote the cardinality of I(x, y, z). Then for each

(x, z) there exists some optimal solution y ∈ H(x, z) with y ∈ int(X) such that the rank

of the matrix of partial derivatives {D2g
i(x, y, z) : i ∈ I(x, y, z)} is equal to s(x, y, z).

Hence, the graph of the constraint correspondence must be defined by a finite number

of constraints. The full rank condition implies that the number of choice variables cannot

be less than the number of saturated constraints. The constraint qualification is essential

to establish uniqueness of the set of Kuhn–Tucker multipliers as the matrix of partial

derivatives D2g can be inverted in a certain generalized sense.

We use the following notational conventions. All vectors are column vectors. Then,

Djg(x, y, z) for j = 1, 2 is the m × n matrix of partial derivatives at (x, y, z), and

Djgs(x, y, z) for j = 1, 2 refers to the s × n matrix of partial derivatives of the satu-

rated constraints {gi(x, y, z) : i ∈ I(x, y, z)}. By D3, D2gs(x, y, z) has a s × n general-

ized inverse D2g
+
s = (D2gsD2g

>
s )−1D2gs at every (x, y, z), where D2g

>
s (x, y, z) denotes the
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transpose matrix. In all our computations below, we let the n×n matrix G(xt, xt+1, zt) =

−D1g
>
s (xt, xt+1, zt)D2g

+
s (xt, xt+1, zt). It should be understood that if xt+1 ∈ int(Γ(xt, zt))

then G(xt, xt+1, zt) = 0n×n. To simplify notation, let Gt+1 =
∏t

s=0 G(xs, xs+1, zs). Note

that G1 = G(x0, x1, z0), and G0 will stand for the identity matrix In×n.

D4: Let {xt+1(z
t)}t≥0 be an optimal contingency plan with x0 ∈ int(X). Then, there

is a constant B0 such that for every measurable selection of supergradients qt ∈ ∂1v(xt, zt)

a.e. in the measure µt(z0, ·) we have

lim
t→∞

βt

∫
Zt

Gtqt µ
t(z0, dzt) = B0. (4)

This transversality condition is only required for boundary solutions. Indeed, Gt 6=
0n×n implies that for some history {zs}t

s=0 every optimal vector xs+1(z
s) belongs to the

boundary of Γ(xs, zs) for all s = 0, 1, . . . , t. As shown in Proposition 3.2 below for most

well known models we have B0 = 0, and so the above limit is well defined.

In order to prove our main result, we now derive an envelope theorem for constrained,

non–smooth optimization. Let ϕ(x, y, z) = U(x, y, z) + βMv(y, z). Let ∂1,2ϕ be the

superdifferential of ϕ with respect to the first two component variables (x, y). For convex

set Ωz0 at point (x0, y0), the normal cone NΩz0
(x0, y0) is defined as

NΩz0
(x0, y0) = {ξ ∈ R2n : ξ · (x− x0, y − y0) ≤ 0,∀(x, y) ∈ Ωz0}. (5)

Proposition 3.1 Consider a constrained optimization problem (Γ, U, β, Q). Let D1–D3

be satisfied. Then, for any x0 ∈ int (X) and z0 ∈ Z, q0 ∈ ∂v(x0, z0) if and only if there

exists q1(z1) ∈ ∂1v(x1, z1) a.e. in the measure Q(z0, ·) such that

q0 = D1U(x0, y0, z0) + G(x0, y0, z0)

(
D2U(x0, y0, z0) + β

∫
Z

q1(z1)Q(z0, dz1)

)
, (6)

where y0 = h(x0, z0).

Proof. By D1, function ϕ(x, y, z) is differentiable with respect to x. Hence, ∂1ϕ(x, y, z) =

{D1ϕ(x, y, z)}, and so ∂1,2ϕ(x, y, z) = {D1U(x, y, z)}×∂2ϕ(x, y, z) for all (x, y, z). Again,

by D1–D2 the superdifferential ∂2ϕ(x, y, z) = {D2U(x, y, z)}+ β∂1(Mv)(y, z). Then, by
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a standard technical argument (e.g., see Lemma 5.1 in the Appendix below), we obtain

q0 ∈ ∂1v(x0, z0) if and only if there exists q1 ∈ ∂1(Mv)(y0, z0) such that(
q0 −D1U(x0, y0, z0),−D2U(x0, y0, z0)− βq1

)
∈ −NΩz0

(x0, y0). (7)

Moreover, as is well known [e.g., Clarke (1990, Corollary 2, p. 56)] by D3 we must have

−NΩz0
(x0, y0) ={

(q, p) ∈ R2n : (q, p) =
∑

i∈I(x0,z0)

λi(D1g
i(x0, y0, z0), D2g

i(x0, y0, z0)), λ
i ≥ 0

}
.

Now, combining this expression with (7) we get

q0 −D1U(x0, y0, z0) =
∑

i∈I(x0,z0)

λiD1g
i(x0, y0, z0), (8)

−D2U(x0, y0, z0)− βq1 =
∑

i∈I(x0,z0)

λiD2g
i(x0, y0, z0) (9)

for some λi ≥ 0, for all i ∈ I(x0, z0). Let λ = (. . . , λi, . . .). Now, from (9) we obtain

that λ = −D2g
+
s (x0, y0, z0)(D2U(x0, y0, z0) + βq1). To complete the proof we substitute

this expression for λ into (8) and let G(x0, y0, z0) = −D1gs(x0, y0, z0)
>D2g

+
s (x0, y0, z0).

Finally, recall from Lemma 2.1 that for z ∈ Z fixed, qz ∈ ∂1(Mv)(y, z) if and only if there

is a measurable mapping z′ 7→ qz(z
′) with qz(z

′) ∈ ∂1v(y, z′) a.e. in the measure Q(z, ·)
such that qz =

∫
Z

qz(z
′) Q(z, dz′).

This envelope theorem applies to non–differentiable objective functions with boundary

solutions. Indeed, (6) defines the superdifferential of the value function at the current

state in terms of the superdifferentials of the instantaneous utility and of the expected

value function evaluated at the optimal path. For decentralized economies, this result

reduces to the fundamental theorem of finance with binding constraints: The price of an

asset is equal to the sum of all expected discounted gross returns where these returns

may include the shadow values of the binding constraints.

It is easy to see that a repeated iteration of Lemma 2.1 and Proposition 3.1 yields

q0 =
T−1∑
t=0

βt

∫
Zt

Gt

(
D1U(xt, xt+1, zt) + G(xt, xt+1, zt)D2U(xt, xt+1, zt)

)
µt(z0, dzt)

+ βT

∫
ZT

GT qT (zT ) µT (z0, dzT ).

(10)
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Our strategy of proof is then to show that at every interior point x0 the superdifferential

q0 ∈ ∂1v(x0, z0) is a singleton, and hence by concavity [Rockafellar (1970)] function v(·, z0)

is differentiable of class C1 on int(X).

Theorem 3.1 Consider a constrained optimization problem (Γ, U, β, Q). Let {xt+1(z
t)}t≥0

be an optimal contingency plan satisfying D1–D4 with x0 ∈ int(X). Then, function

v(·, z0) : int(X) −→ R is differentiable at x0 and the partial derivative

D1v(x0, z0) =
∞∑

t=0

βt

∫
Zt

Gt

(
D1U(xt, xt+1, zt)+G(xt, xt+1, zt)D2U(xt, xt+1, zt)

)
µt(z0, dzt)+B0.

(11)

Proof. As already pointed out, we just need to show that ∂1v(x0, z0) is a singleton. By

way of contradiction, let q0, q̃0 ∈ ∂1v(x0, z0). Then, after subtracting common terms in

(10) there exist qT (zT ), q̃T (zT ) ∈ ∂1v(xT , zT ) for T ≥ 0 such that

q0 − q̃0 = βt

∫
ZT

GT (qT − q̃T ) µT (z0, dzT ).

By Assumption D4 this expression converges to zero as T goes to ∞. This proves that

∂1v(x0, z0) is a singleton at every point x0 ∈ int(X). Hence, function v(·, z0) : int(X) −→
R is differentiable at x0. The value of the derivative D1v(x0, z0) in (11) is obtained by

letting T go to ∞ in the above expression (10).

For a given optimal contingency plan {xt+1(z
t)}t≥0, let ET = {zT ∈ ZT : GT+1 6=

0n×n}. That is, ET is the set of histories at time T such that the optimal solution

{xt+1(z
t)}t≥0 lies always in the boundary. If with probability one there is a time T such

that ET is empty, then D4 trivially holds.

Corollary 3.1 Consider a constrained optimization problem (Γ, U, β, Q). Let {xt+1(z
t)}t≥0

be an optimal contingency plan satisfying D1–D3 with x0 ∈ int(X). Assume that there

exists a first time T ≥ 0 such that µT (z0, ET ) = 0. Then, function v(·, z0) : int(X) −→ R
is differentiable at x0 and the partial derivative

D1v(x0, z0) =
T−1∑
t=0

βt

∫
Zt

Gt

(
D1U(xt, xt+1, zt) + G(xt, xt+1, zt)D2U(xt, xt+1, zt)

)
µt(z0, dzt)

+ βT

∫
ZT

GT D1U(xT , xT+1, zT ) µT (z0, dzT ).

(12)
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Proof. By the envelope theorem [Benveniste and Scheinkman (1979)] for xT+1 ∈ int(Γ(xT , zT ))

function v(·, zT ) is differentiable and the derivative D1v(xT , zT ) = D1U(xT , xT+1, zT ).

Moreover, GT+1 = 0n×n. Then, expression (12) follows directly from (10). Therefore, the

superdifferential ∂1v(x0, z0) is unique and v(·, z0) is differentiable at x0.

Of course, for T = 0 we get the standard envelope theorem D1v(x0, z0) = D1U(x0, x1, z0).

But it should be noted that for T > 0 this result requires constraint qualification D3 at

those optimal vectors (xt, xt+1, zt) with xt+1 ∈ bd(Γ(xt, zt)).

3.2 Duality theory

As an application of Theorem 3.1 we now show that for every optimal path there exists

a unique set of Kuhn–Tucker multipliers satisfying the Euler equations and the transver-

sality condition. The existence of these multipliers can be established in a simple way

by an induction argument on Bellman’s equation [Weitzman (1973)], but uniqueness has

remained an open issue because of the complexity involved in these equations. By the

welfare theorems, the uniqueness of the multipliers entails that an optimal allocation is

just supported by a unique price system.

Let λ(x, z) be a non–negative vector of Kuhn–Tucker multipliers. As shown in the

proof of Proposition 3.1, the derivative

D1v(x, z) = D1U(x, h(x, z), z) + D1g
>(x, h(x, z), z)λ(x, z) (13)

for every λ(x, z) such that

D2U(x, y, z) + βD1Mv(y, z) + D2g
>(x, y, z)λ(x, z) = 0. (14)

Observe that the above expression (6) readily follows from (13) after substituting

out λ(x, z) from (14). Moreover, from these equations we can see informally the role of

assumption D3: If the matrix of derivatives of the saturated constraints D2g
>
s (x, y, z) has

full rank then (14) implies that the vector of multipliers λ(x, z) is unique. Consequently,

if v(·, z) is differentiable at some y = h(x, z) then there is a unique multiplier λ(x, z) and

so the superdifferential ∂1v(x, z) must contain a unique vector.

Let {xt+1(z
t)}t≥0 be an optimal contingency plan and write λt = λ(xt, zt). If v(·, z)

is differentiable, then by conditions (13) and (14) evaluated over these optimal values we
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can derive the following system of Euler equations

D2U(xt−1, xt,zt−1) + D2g
>(xt−1, xt, zt−1)λt−1

+ β

∫
Z

(
D1U(xt, xt+1, zt) + D1g

>(xt, xt+1, zt)λt

)
Q(zt−1, dzt) = 0,

(15)

where λt ≥ 0 and g(xt, xt+1, zt) ≥ 0 with λ>t g(xt, xt+1, zt) = 0, for all t = 1, 2, . . . . To this

system of equations we also need to append a transversality condition. For simplicity,

let us assume that X is a compact set. Then, let

lim
T→∞

βT

∫
ZT

(
D1U(xT , xT+1, zT ) + D1g

>(xT , xT+1, zT )λT

)
µT (z0, dzT ) = 0. (16)

As is well known [cf. Benveniste and Scheinkman (1982)], both (15)–(16) are sufficient

conditions1 for the characterization of an optimal path {xt}t≥0.

Theorem 3.2 Assume that X is a compact set. Under the conditions of Theorem 3.1,

for every optimal contingency plan {xt+1(z
t)}t≥0 with x0 ∈ int(X) there exists a unique

system of Kuhn–Tucker multipliers {λt}t≥0 satisfying (15)–(16).

This result can be viewed as an envelope theorem for concave infinite-horizon opti-

mization. Indeed, by (13)–(14) we can construct a system of Kuhn–Tucker multipliers

{λt}t≥0 that satisfies the Euler equations (15) and the transversality condition (16). Then,

Theorem 3.2 completes the other direction: The system of multipliers {λt}t≥0 satisfying

the Euler equations (15) and the transversality condition (16) is unique and corresponds

to the derivative of the value function D1v as given by (13)–(14).

3.3 Sensitivity

In many economic applications it is of interest to establish that the derivative of the value

function varies continuously with perturbations of the model. For simplicity, we focus

on perturbations of the return function U under the sup norm. For given two functions

U and Un let ‖U − Un‖ = sup(x,y,z)∈Ω |U(x, y, z) − Un(x, y, z)|. Note that convergence

in the sup norm amounts to uniform convergence in the space of functions. Let vn

1The extension of our uniqueness result below to an unbounded domain X requires some further mild

regularity conditions. The non–negativity conditions of Proposition 3.2 allow for a simple extension of

the transversality condition to unbounded domains, e.g., see Benveniste and Scheinkman (1982).
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refer to the value function of an optimization problem (Γ, Un, β, Q). By Theorem 3.2

the following continuity result applies to the unique system of Kuhn–Tucker multipliers

{λt}t≥0 satisfying the Euler equations (15) and the transversality condition (16).

Theorem 3.3 Let all feasible optimization problems (Γ, U, β, Q) and {(Γ, Un, β, Q)}n≥0

satisfy assumptions D1–D4. Assume that the sequence of functions {Un}n≥0 converges

uniformly to function U . Then, the sequence of value functions {vn}n≥0 converges uni-

formly to the original value function v, and for each z the sequence of derivative functions

{D1vn(·, z)}n≥0 converges uniformly to the derivative function D1v(·, z) on every compact

set K ⊂ int(X).

3.4 Differentiability and bubbles

The decomposition given in Theorem 3.1 of the derivative of the value function into

the fundamental value and a bubble term is common in asset pricing, where B0 can

be identified with the bubble term of some existing assets. It is possible to construct

examples with a non–null bubble component [e.g. Montrucchio and Privileggi (2001), and

the cash-in-advance model below], but given that bubbles occur in general equilibrium

models under rather pathological circumstances [Santos and Woodford (1997)], in what

follows we will focus on cases in which the bubble term B0 = 0. In our next result

we provide some simple conditions that require the value function to be bounded and

increasingly monotone.

Proposition 3.2 Consider a constrained optimization problem (Γ, U, β, Q). Assume that

U is a bounded function. Let {xt+1(z
t)}t≥0 be an optimal contingency plan with x0 ∈

int(X) such that there is a constant α > 0 with xjt ≥ α for each coordinate j and all t.

Let G(x, y, z) ≥ 0 and D1U(x, y, z) + G(x, y, z)D2U(x, y, z) ≥ 0 for all feasible (x, y, z).

Then, under D1–D3 we have B0 = 0 so that expression (4) becomes

lim
t→∞

βt

∫
Zt

Gt qt µ
t(z0, dzt) = 0.

Note that this proposition focuses on non–negative fundamental values in assets in

positive supply [cf. Santos and Woodford (1997)]. Under some mild regularity assump-

tions this result can be extended to unbounded return functions. As shown below, the
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non–negativity conditions are satisfied in standard models of economic growth. If mono-

tonicity does not hold, the bubble term will also vanish in economies in which the funda-

mental pricing equation can be generated by a contraction mapping in a bounded space

of functions [Lucas (1978)]. In our case, the following conditions ensure this contraction

property: (i) Function U(x, y, z) and its partial derivatives DjU(x, y, z), j = 1, 2, are

uniformly bounded on Ω× Z, and (ii) sup(x,y,z)∈Ω β
∥∥∫

Z
G(x, y, z′) µ(z, dz′)

∥∥ < 1.

3.5 Checking our assumptions: Two applications

3.5.1 A pure currency model

We write the recursive formulation of the pure currency model as

v(m,z) = max
c, m′≥0

{
u(c, z) + β

∫
Z

v(m′, z′) µ(dz′)

}
s.t. m′(1 + π) + c−m− y ≤ 0,

c−m ≤ 0.

The utility function u : R+ × Z −→ R is continuous and Z is a compact interval.

Moreover, for each z the utility function u(·, z) : R+ −→ R is strictly increasing, concave

and of class C1. Here, m denotes current real balances of the household, m′ real balances

at the beginning of next period, π is an exogenous inflation tax, c is current consumption,

and y is real income from the sale of goods and government transfers. For this problem,

U(m,m′, z) = u(m + y −m′(1 + π), z), Γ(m) = [y/(1 + π), (y + m)/(1 + π)]. Thus, the

constraints are g1(m,m′) = m′(1 + π)− y ≥ 0, and g2(m, m′) = y + m−m′(1 + π) ≥ 0.

Let us check conditions D1–D4 in this example. D1 and D2 hold for interior points,

m > 0, and m > 0 is satisfied along any equilibrium solution of the Lucas’ model; D3 is

satisfied since g1, g2 can never be both active except at m = 0; D4 is also satisfied for

β/(1+π) < 1. Indeed, if g1 is binding then G = −D1g
1/D2g

1 = 0 since g1 is independent

of m, and if g2 is binding then G = −D1g
2/D2g

2 = 1/(1 + π). Therefore, βG < 1 and

(4) holds since real balances are bounded below.

Note that the optimal quantity of money or Friedman rule occurs for β/(1+π) = 1. In

this borderline case, money may simply be a bubble, and we cannot generally show that

the limit in D4 is satisfied. As is well known, the Friedman rule may not be compatible

with existence of a monetary equilibrium [Bewley (1983)] or there could be a continuum

of equilibrium real balances [Grandmont and Younes (1973)].
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Therefore, it is immediate to check our conditions in this model – without computing

the left and right side limits of the derivative at the point where one of the constraints

becomes active.

3.5.2 A simple growth model with irreversible investment

We provide a simple proof of the differentiability of the value function in the stochastic

one-sector growth model. Here boundary solutions occur when either consumption or

investment are equal to zero. These extreme values may be triggered by the existence of

large shocks. We shall simply check that all our assumptions are satisfied.

Consider the recursive formulation of the problem

v(x,z) = max
c, y≥0

{
u(c, z) + β

∫
Z

v(y, z′) µ(z, dz′)

}
s.t. c + y = f(x, z),

y ≥ (1− δ)x.

We assume that functions u : R+ × Z −→ R and f : R+ × Z −→ R+ are continuous and

Z is a compact set. Moreover, for each z the utility function u(·, z) : R+ −→ R and the

production function f(·, z) : R+ −→ R+ are both increasing, strictly concave and of class

C1. Let f(0, z) = 0, and limx→0 βD1f(x, z) > 1 and (1− δ) + ε ≤ limx→∞ D1f(x, z) < 1
β

for all z and ε > 0.

From these primitive functions, the return function U : R+×R+×Z −→ R is defined

as U(x, y, z) = u(f(x, z)−y, z) and the constraint correspondence Γ : R+×Z −→ 2R+ as

Γ(x, z) = [(1− δ)x, f(x, z)]. For each z the graph of correspondence Γ(x, z) is bordered

by two concave functions g1(x, y, z) = f(x, z)− y ≥ 0 and g2(x, y, z) = −(1− δ)x + y ≥
0. Both constraints depend on state variable x. Hence, the aforementioned interiority

condition does not hold if any of these constraints is saturated.

For x0 > 0 assumption D2 trivially holds for an optimal y with g1(x, y, z) = 0

since y = f(x0, z) > 0, and D2 also holds for an optimal y with g2(x, y, z) = 0 since

y = (1 − δ)x0 > 0. The full rank condition in D3 is always satisfied since functions

g1 and g2 are additively separable in y. Finally, as it is well known the transversality

condition D4 must also hold [Santos and Woodford (1997)] at every optimal path.

Using contractive arguments, Sargent (1980) provides a proof of differentiability for

boundary solutions in which g2(x, y, z) = 0. In this case, G(x, y, z) = (1 − δ) < 1. Our
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proof allows for optimal solutions to reach the upper boundary g1(x, y, z) = 0 without

imposing a restriction of the type βG(x, y, z) = βD1f(x, z) < 1.

Therefore, D1–D4 are all satisfied and for each z the derivative D1v(x0, z0) exists at

all interior points x0. And it seems natural to allow for boundary solutions since the

interiority of the optimal solution is not easy to check.

4 Some counterexamples

We study now the necessity of assumptions D2–D4 in some models of economic growth,

finance, and dynamic contracts. We show that the value function fails to be differentiable

when each of these assumptions is not met. Our results are of interest in other areas

of economics using recursive optimization such as monetary theory, taxation, labor, and

industrial organization.

4.1 A simple growth model with irreversible investment

We show that in the above growth model studied in Section 3.5.2, the derivative of the

value function may become unbounded as the stock of capital approaches zero – even if

the derivatives of the utility and production functions are bounded. We already discussed

that under mild regularity conditions all our assumptions are satisfied and for each z the

derivative D1v(x0, z) exists at all interior points x0. The situation is quite different for

x = 0 as f(0, z) = 0. Then, D2 is not satisfied. Moreover, Figure 1 depicts a simple

deterministic example where D4 does not hold at x = 0. Here, the derivative f ′(0) > 1
β
,

and the policy function lies at the upper boundary h(x0) = f(x0) for x0 near 0.2 From

Corollary 3.1 for x0 near 0 the derivative v′(x0) = βT (x0)GT (x0)v
′(xT (x0)) where T (x0) is

the first time T such that cT > 0 and GT = f ′(x0)f
′(x1) · · · f ′(xT (x0)−1). Then T (x0)

goes to ∞ as x0 goes to 0 and βT (x0)GT (x0) = βT (x0)f ′(x0)f
′(x1) · · · f ′(xT (x0)−1) goes to

∞. Consequently, in this example the derivative v′(0+) will be unbounded even if the

utility and production functions have bounded derivatives.

2For f ′(0) > 1
β this optimal policy arises for a linear utility function and for related utility functions

sufficiently close to the linear utility. Condition f ′(0) > 1
β is required for the existence of an interior

steady–state solution.
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0

f(x)

h(x)

Figure 1: The derivative of the value function may be unbounded even if the utility and

production functions have bounded derivatives. If for all x in a small neighborhood of x = 0

the policy function h(x) = f(x) and βf ′(0) > 1 then v′(x) gets unbounded as x converges to 0.

This example does not satisfy D2 and D4 at x = 0.

4.2 Constrained efficient allocations

We study the differentiability of the Pareto frontier for the model of Kocherlakota (1996).

Koeppl (2006) presents an example in which the value function fails to be differentiable.

He also provides some sufficient conditions for differentiability. Here we offer a complete

analysis of differentiability: We provide a necessary and sufficient condition which is

directly linked to the constraint qualification in assumption D3. We thus identify the

lack of differentiability of the value function with a failure of assumption D3. Under the

special structure of the optimization problem, assumption D4 is not needed. Indeed, in

pure exchange economies with no real assets the transversality condition holds trivially.

The recursive formulation of Kocherlakota’s exchange economy with two agents is as

follows:

V (U0) = max{cs,Us}
∑S

s=1 πs[u(ω − cs) + βV (Us)]

s.t.
∑S

s=1 πs[u(cs) + βUs] ≥ U0, (P1)

u(cs) + βUs ≥ u(ω1
s) + βUaut for all s, (P2)

u(ω − cs) + βV (Us) ≥ u(ω − ω1
s) + βUaut for all s, (P3)

Us ∈ [Uaut, Umax] for all s,

where the value function V (U0) assigns the maximum utility to an agent (say agent 2)

over all possible utility levels U0 of the other agent. Aggregate output is constant, and

denoted by ω, and individual endowments ωi
s > 0, for i = 1, 2, are subject to idiosyncratic

shocks, symmetrically distributed, that follow an iid process. The utility function u is
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bounded, increasing, concave and differentiable.

In the sequel we assume that the Pareto frontier (U0, V (U0)) is non-degenerate, that is,

Umax > Uaut. Let Umax = V (Uaut). One readily checks that function V : [Uaut, Umax] −→
R is well defined, decreasing, concave and continuous. Moreover, even though the value

function is in the constraint set, in the Appendix below we extend the above arguments

so that our differentiability analysis can be applied: The superdifferential of the value

function can be characterized recursively in terms of fundamental values and superdif-

ferentials of the value function at future states.

For given U0, let λ, {µs} and {νs} be a set of Kuhn–Tucker multipliers corresponding

to constraints (P1), (P2) and (P3), respectively. Let S2(U0) be the subset of states s

where constraint (P2) is saturated, and Sb
2(U0) the subset of states s where constraint

(P2) is binding. That is, S2(U0) is the subset of states s where constraint (P2) holds with

equality at the optimal solution {cs, Us}, and Sb
2(U0) is the subset of states s with µs > 0.

Analogously, let S3(U0) be the subset of states s where constraint (P3) is saturated and

Sb
3(U0) be the subset of states s where constraint (P3) is binding. Note that (P1) will

always be binding. Also, it is easy to show that the intersection S2(U0)∩S3(U0) is empty

[cf., Kocherlakota (1996)]. Hence, for each s there is at most one constraint (P2) or (P3)

that is saturated.

D3’: S2(U0) ∪ Sb
3(U0) 6= S and Sb

2(U0) ∪ S3(U0) 6= S.

Theorem 4.1 Let U0 ∈ (Uaut, Umax). Then, S2(U0) 6= S and S3(U0) 6= S. The value

function V is differentiable at U0 if and only if D3′ is satisfied. At points of differentia-

bility, the derivative

V ′(U0) = −u′(ω − cs)

u′(cs)
,

for every state s where none of the constraints (P2)–(P3) are binding.

As one can see from the method of proof of Theorem 4.1, assumption D3′ is a necessary

and sufficient condition. Under this latter condition there is a unique multiplier λ and

so the derivative V ′(U0) = −λ. Note that D3′ can be defined as: (i) S2(U0)∪S3(U0) 6= S

and (ii) for S2(U0) ∪ S3(U0) = S there must be some non–binding constraint in S2(U0)

and some other non–binding constraint in S3(U0). Hence, D3′ is slightly weaker than

S2(U0)∪S3(U0) 6= S. We would like to emphasize that the condition Sb
2(U0)∪Sb

3(U0) 6= S
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leaves out some cases in which V is not differentiable, and so this is merely a sufficient

condition. By concavity the value function V is differentiable at almost all U0. Hence,

D3′ must be satisfied at almost all U0.

4.3 A model of foreign direct investment

We briefly discuss a model of foreign direct investment with risk of expropriation by the

host country [Thomas and Worrall (1994)]. In this model the value function may fail to

be differentiable if D2 is not satisfied.

For illustrative purposes, we focus on the deterministic case. Using Bellman’s equa-

tion, the optimal contracting problem is written as

V (U0) = maxI,τ,U {−I + r(I)− τ + βV (U)]}
s.t. τ + βU ≥ U0 (R1)

τ − r(I) + βU ≥ 0 (R2)

V (U) ≥ 0 (R3)

r(I)− τ ≥ 0 (R4)

τ ≥ 0. (R5)

If none of the constraints are saturated, then optimal investment I∗ achieves the

first–best efficient level, r′(I∗) = 1. Therefore, for first–best Pareto–efficient allocations

(V, U) the value function V is differentiable. And since both parties are risk neutral the

derivative V ′(U) = 1.

Suppose now that a first–best Pareto–efficient allocation cannot be achieved. Then,

constraint (R2) must be binding; moreover, optimality requires that the optimal transfer

τs = 0 and so (R5) is also saturated. Then, by (R1) the reservation utility U grows over

time. As in Thomas and Worrall (1994), we consider two cases:

(i) The optimal path eventually reaches an interior, first–best optimal solution. Then,

Proposition 3.1 applies as constraint qualification D3 is always satisfied. Therefore, the

value function V is differentiable at the initial reservation utility U0.

(ii) The optimal path never reaches an interior, first–best optimal solution. As τs =

0, by (R1) there is a finite time T such that V (UT ) = V (Umax) = 0. Following the

method of proof of Proposition 3.1 and (10), one can check that the value function is not

differentiable at the smallest point UT−1 such that the optimal outcome Umax = h(UT−1).

As a matter of fact, we just need to evaluate the directional derivatives of the value
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function V at UT−1 from Bellman’s equation. To see that these derivatives are different

we first note that the optimal policy U1 = h(U0) is increasing. Then, for the right–hand

side derivative the term βV (UT ) is constant as V (UT ) = V (Umax), whereas for the left–

hand side derivative this term βV (UT ) is decreasing with negative slope bounded away

from zero. Therefore, both directional derivatives cannot have the same value.

In conclusion, the lack of differentiability of the value function for this model appears

as a failure of D2. In Kocherlakota’s model the problem stems from D3, and in the model

with irreversible investment the derivative becomes unbounded as D4 fails for boundary

point x = 0.

5 Appendix

In our first preliminary result we apply basic arguments from convex analysis to the

Bellman equation

v(x, z) = max
y∈Γ(x,z)

{U(x, y, z) + βMv(y, z)}

for all x ∈ X. Recall that ϕ(x, y, z) = U(x, y, z) + βMv(y, z) and ∂1,2ϕ denotes the

superdifferential of ϕ with respect to the first two component variables (x, y). In what

follows x0 refers to an interior point. The normal cone NΩz0
(x0, y0) of the convex pro-

jection set Ωz0 at point (x0, y0) was defined in (5). Throughout the Appendix, y0 means

y0 = h(x0, z0).

Lemma 5.1 q0 ∈ ∂1v(x0, z0) if and only if there exists (ξ1, ξ2) ∈ ∂1,2ϕ(x0, y0, z0) such

that (q0 − ξ1,−ξ2) ∈ −NΩz0
(x0, y0).

Proof. We follow some well-established arguments, e.g. see Aubin (1993, Problem 35).

Define the indicator function of set Ωz as

δ(x, y, z) =

0, (x, y) ∈ Ωz

−∞, (x, y) /∈ Ωz.

Note that function δ is concave and upper semicontinuous in (x, y) for z fixed. Now,

rewrite Bellman’s equation as

v(x, z) = max
y∈Rn

{
ϕ(x, y, z) + δ(x, y, z)

}
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for all x ∈ X, z ∈ Z. This is an unconstrained optimization problem. By Aubin (1993,

Prop. 4.3), q0 ∈ ∂1v(x0, z0) if and only if (q0, 0) ∈ ∂1,2

(
ϕ + δ

)
(x0, y0, z0). Moreover,

∂1,2

(
ϕ + δ

)
(x0, y0, z0) = ∂1,2ϕ(x0, y0, z0) + ∂1,2δ(x0, y0, z0)

= ∂1,2ϕ(x0, y0, z0)−NΩz0
(x0, y0).

Therefore, q0 ∈ ∂v(x0, z0) if and only if there exists (ξ1, ξ2) ∈ ∂1,2ϕ(x0, y0, z0) such that

(q0 − ξ1,−ξ2) ∈ −NΩz0
(x0, y0).

Proof of Theorem 3.2. Suppose that {xt}t≥0 is an optimal contingency plan

starting at x0. For this optimal path assume that there are two sequences of Kuhn–Tucker

multipliers {λt}t≥0 and {λ′t}t≥0 that satisfy equations (15) and (16). For z0 fixed, all initial

conditions x0, all possible realizations zt, and all feasible sequences xt+1 ∈ Γ(xt, zt) for

t = 1, 2, . . . , n, let

vλ,n(x0, z0) = max
{xt}n+1

t=1

n∑
t=0

βt

∫
Zt

U(xt, xt+1, zt) µt(z0, dzt)+βn+1

∫
Zn+1

αn+1xn+1 µn+1(z0, dzn+1),

(17)

where αn+1 = D1U(xn+1, xn+2, zn+1) + D1g
>(xn+1, xn+2, zn+1)λn+1, and

vλ′,n(x0, z0) = max
{xt}n+1

t=1

n∑
t=0

βt

∫
Zt

U(xt, xt+1, zt) µt(z0, dzt)+βn+1

∫
Zn+1

α′n+1xn+1 µn+1(z0, dzn+1),

(18)

where α′n+1 = D1U(xn+1, xn+2, zn+1) + D1g
>(xn+1, xn+2, zn+1)λ

′
n+1. Note that the added

linear parts αn+1 and α′n+1 are chosen so that at point x0 the optimal solution is {xt}n+1
t=0

for both optimization problems, and for this optimal solution {λt}n
t=0 is the sequence of

associated Kuhn–Tucker multipliers under (17), and {λ′t}n
t=0 is the sequence of associated

Kuhn–Tucker multipliers under (18). By D3, each sequence of multipliers is unique.

By the same methods as the proof of Theorem 3.1, we can readily see that functions

vλ,n and vλ′,n are concave and of class C1 in x. Moreover, by (16) and the definitions

of αn+1, α′n+1, the sequences of functions {vλ,n}n≥1 and {vλ′,n}n≥1 converge uniformly to

function v. Hence, the sequences of derivative functions {D1vλ,n}n≥1 and {D1vλ′,n}n≥1

converge uniformly to function D1v on every compact set K ⊂ int(X) [Rockafellar (1970,

Theorem 25.7)]. Observe that D1vλ,n(x0, z0) = D1U(x0, x1, z0) + D1g
>(x0, x1, z0)λ0, and

D1vλ′,n(x0, z0) = D1U(x0, x1, z0)+D1g
>(x0, x1, z0)λ

′
0, for all n. The convergence of these

derivatives to a unique common value implies that D1g
>(x0, x1, z0)λ0 = D1g

>(x0, x1, z0)λ
′
0.
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Moreover, by the same argument it follows that D1g
>(x1, x2, z1)λ1 = D1g

>(x1, x2, z1)λ
′
1

almost everywhere. Then, by condition D3 applied to (15) we get uniqueness of the

multiplier, λ0 = λ′0.

Proof of Theorem 3.3. Let us first prove that {vn}n≥0 converges uniformly to

v. The proof is standard. Pick an initial condition x0. For this initial condition x0,

let {xt}t≥0 be an optimal contingency plan for optimization problem (Γ, U, β, Q), and let

{xnt}t≥0 be an optimal contingency plan for optimization problem (Γ, , Un, β, Q). Without

loss of generality, assume that v(x0, z0) > vn(x0, z0). Then,

v(x0, z0)− vn(x0, z0) =
∞∑

t=0

βt

∫
Zt

(U(xt, xt+1, zt)− Un(xnt, xnt+1, zt)) µt(z0, dzt)

≤
∞∑

t=0

βt

∫
Zt

(U(xt, xt+1, zt)− Un(xt, xt+1, zt)) µt(z0, dzt)

≤ 1

1− β
‖U − Un‖.

Hence, {vn}n≥0 converges uniformly to v. Therefore, for each z the sequence of map-

pings {vn(·, z)}n≥0 converges to v(·, z). By Theorem 3.1, all functions vn(x, z) and v(x, z)

are differentiable in x. As these functions are also concave in x, by Rockafellar (1970,

Theorem 25.7) the sequence of derivative functions {D1vn(·, z)}n≥0 converges uniformly

to D1v(·, z) on every compact set K ⊂ int(X).

Proof of Proposition 3.2. Under the stated non–negativity conditions it is easy

to see that at every point (x0, z0) the superdifferential ∂1v(x0, z0) must be composed of

non–negative numbers. Then this optimization problem can be reconverted into an asset

pricing model with real assets along the lines of Santos and Woodford (1997); see espe-

cially their footnote 10. This asset pricing model considers a matrix of returns – which

in this case it is given by the vector D1U(x, y, z) + G(x, y, z)D2U(x, y, z) – and a matrix

of transformation of securities – which in this case it is given by the matrix G(x, y, z).

Hence, interior solutions correspond to one–period assets, and boundary solutions lead

to multiperiod assets. The bubble term belongs to long–lived assets starting at t = 0.

Then, for every optimal path {xt+1(z
t)}t≥0 we can generate a sequence of asset prices

q(zt) ∈ ∂1v(xt, zt) so that the asset pricing equation (6) is always satisfied. We can also

introduce a single consumption good at each date with relative price equal to unity, and

assume that the marginal utility of consumption at the optimal point is equal to one.
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End–of–period asset holdings can be defined in a rather arbitrary way, as the agent can

be endowed with new securities at the beginning of each period so as to replicate the

optimal path {xt+1(z
t)}t≥0. Hence, under the stated assumptions it follows from Santos

and Woodford (1997) that the bubble term B0 = 0.

An Extension of Theorem 3.1 for non–smooth data. Lemma 5.1 remains true

if the functions gi are concave but not necessarily smooth. Then, our results can be

extended to concave problems with non–smooth data. This extension relies on the char-

acterization of the normal cone to Ω under the much weaker Slater’s condition [cf. Rock-

afellar (1970)]:

−NΩ(x0, y0, z0) =
{

(q, p) ∈ R2n : (q, p) ∈
∑

i∈I(x0,z0)

λi∂1,2 gi(x0, y0, z0), λi ≥ 0
}

. (19)

Therefore, our next result will be useful in the model of Kocherlakota (1996), where the

value function appears in the constraints, and may not be differentiable. This result

should be of interest for some other models with incentive and participation constraints

[e.g., the unemployment insurance model of Hopenhayn and Nicolini (1996) and several

other models discussed in Ljungqvist and Sargent (2004)].

For the following result we modify D3 as follows.

D3”: There is a finite collection of functions g = (. . . , gi, . . .), for i = 1, 2, . . . ,m,

such that Ω = {(x, y, z) ∈ Rn × Rn × Z : g(x, y, z) ≥ 0}. Each function gi(·, ·, z) :

Rn × Rn −→ R is concave.

The following result is a simple consequence of Lemma 5.1.

Corollary 5.1 Consider a feasible optimization problem (Γ, U, β, Q). Let D1–D3′′ be

satisfied. For any x0 ∈ int (X) and z0 ∈ Z, we must have: q0 ∈ ∂1v(x0, z0) if and only

if there exists (ξ1, ξ2) ∈ ∂1,2ϕ(x0, y0, z0) such that (q0− ξ1,−ξ2) ∈ −NΩz0
(x0, y0) for every

y0 ∈ int (X).

Proof of Theorem 4.1. First we show that S2(U0) 6= S and S3(U0) 6= S. Suppose

not. For concreteness, assume that S2(U0) = S. Then, summing over (P2) we get that

U0 =
∑S

s=1 πs[u(cs) + βUs] = Uaut. But this is in contradiction with (P1) as U0 > Uaut.
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By Corollary 5.1 and the characterization of −NΩ(x0, y0, z0) in (19), we now have to

prove that the superdifferential of V at U0 is unique. As this is an exchange economy, one

should expect the derivative of the value function to depend on current utilities. Indeed,

following Kocherlakota (1996) for any U0 ∈ (Uaut, Umax), we get the following system of

first–order conditions

0 = −πsu
′(ω − cs) + λπsu

′(cs) + µsu
′(cs)− νsu

′(ω − cs), (20)

0 = βπsq
′
s + λβπs + µsβ + νsβqs, (21)

for some q′s ∈ ∂V (Us) for all s, and λ, {µs}s, and {νs}s are Kuhn–Tucker multipliers

corresponding to the constraints (P1), (P2), and (P3), respectively. It turns out that the

first equation (20) suffices to pin down the multiplier λ, and hence the derivative of the

value function depends on the consumption allocation in the first period.

To study the solutions of system (20)–(21) we distinguish four cases that encompass

all possibilities. In the first two cases we consider that q′s = qs in (21). This does not

entail any loss of generality, since the case q′s 6= qs may add other multiple solutions.

(i) Sb
2(U0) ∪ Sb

3(U0) = S. That is, for every s we have that either µs > 0 or νs > 0.

Note that λ > 0. Assume that q′s = qs in (21). Multiplying (21) by −u′(cs)
β

, and adding

up (20) and (21) we get that qs = −u′(ω−cs)
u′(cs)

. Hence, in this case (20) and (21) are always

collinear. Therefore, to see the determinacy of these multipliers it suffices to consider

the system of equations (20). There are then S equations in S + 1 unknowns, λ, µs and

νs. (Note that µs and νs appear only in the equation associated with state s and either

µs > 0 or νs > 0.) It follows that there are multiple solutions, and so there is a continuum

of λ that satisfy (20) and (21).

(ii) Sb
2(U0) ∪ S3(U0) = S or S2(U0) ∪ Sb

3(U0) = S, but Sb
2(U0) ∪ Sb

3(U0) 6= S. For

simplicity, let us just consider Sb
2(U0) ∪ S3(U0) = S, where µs > 0 for all s ∈ Sb

2(U0) and

νs ≥ 0 for all s ∈ S3(U0) with νs = 0 for some s. As in (i), indeterminacy of the solutions

does exist, but the multiplier λ can only be increased from the original value as some

νs = 0. (If λ is decreased then some νs is forced to be a negative number.)

(iii) Sb
2(U0) ∪ S3(U0) 6= S and S2(U0) ∪ Sb

3(U0) 6= S but S2(U0) ∪ S3(U0) = S. In

this case, the multiplier λ is unique, and it is just determined by (20). It cannot be

increased because in the above equation system (20) there is some µs = 0, and it cannot

be decreased because there is some νs = 0.

(iv) S2(U0)∪S3(U0) 6= S. In this case there is some state s for which neither (P2) nor
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(P3) are saturated. Then, for some s we have that both µs and νs are equal to zero. It

then follows from (20) that λ is unique.

Therefore, in cases (iii)–(iv) the multiplier λ is unique and the value of the derivative

V ′(U0) = −λ is as stated in the theorem.
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