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Abstract

We consider a dynamic model of pension funding in a defined benefit plan of an employment system.

The prior objective of the sponsor of the pension plan is the determination of the contribution rate

amortizing the unfunded actuarial liability, in order to minimize the contribution rate risk and the

solvency risk. To this end, the promoter invest in a portfolio with n risky assets and a risk–free security.

The aim of this paper is to determine the optimal funding behavior in this dynamic, stochastic framework.
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1 Introduction

In a defined benefit plan of an employment system, it is common to apply the so known Actuarial

Cost Methods, which allow us to determine an ideal contribution rate or normal cost and an

ideal fund level (that could be related with the actuarial liability) in such a way that the benefits

promised to a collective of members be guaranteed along the time. Actually, the existence of

unexpected disturbances can make the evolution of the plan will not be in accordance with the

valuation designed at the beginning. Therefore, the contribution rate must be the normal cost

plus a positive or negative increment, called the supplementary cost. Of course, the promoter

of the fund must planning how to drive the unfunded actuarial liability to zero. We suppose

that the plan is built with the contributions and investment earnings. The sponsoring employer

controls the contribution rate and the amount invested in a portfolio composed of n risky

assets and a risk–free security. No shortselling is allowed but the manager have the possibility

of borrowing.

In Haberman (1993), Haberman and Sung (1994) and Haberman (1997), are considered two

main types of risks which the pension plan is confronted, the contribution rate risk and the

solvency risk. The first is measured with the size of the deviations of the contributions from the

normal cost and it is related with the stability of the plan. The second risk is measured with

the size of the unfunding actuarial liability and it can serve as an indicator of the stability of

the plan.

The promoter wishes to control the stability and security of the pension plan, by minimizing

some convex combination of both types of risk. In this way, the weight in the convex combination
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measures the relative importance of the risk for the promoter. The attained solution is a Pareto

optimum of this multiobjective problem. This means that there is no possible reduction of one

of the risks without augmenting the other one.

Another important feature of the model is the presence of an unbounded horizon. We suppose

that there is not a finish time for the plan but it extends forever and that the preferences of

the sponsor are more concerned with the short run that with the long run; this is modeled by

introducing a positive discount factor in the objective functional.

The assets of the fund can be invested in n+1 securities, n of them following a geometrical

Brownian motion with independent Wiener processes. The risk–free security is constant in time.

It then follows that the assets of the fund obeys a stochastic differential equation closely related

with those proposed in Merton (1971) for portfolio and consumption selection.

Haberman and Sung (1994) considers the minimization of a linear combination of the afore-

mentioned risks on a finite horizon, without discounting, both in deterministic and stochastic

frameworks. The authors do not contemplate the investment as an instrumental variable but all

the assets of the fund are inverted at a random rate of return. As a consequence the optimal con-

trol problem studied in Haberman and Sung (1994) turns out to be one of the linear–quadratic

type, that can be explicitly solved. Although in the model we propose the objective functional is

quadratic, the dynamics is nonlinear, so the control problem is not linear–quadratic. However,

we are able to find a closed form solution for the problem of the optimal management of pension

funding.

O’Brien (1987) analyze a stochastic optimal control problem which shows two sources of
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uncertainty, the investment returns and the benefit outcome. The author makes a linear ap-

proximation of the exponential fund model, see Bowers, Hickman and Nesbitt (1976, 1979), to

retain analytical tractability of the problem. However, no investment decisions are available

for the manager, who wishes to maintain a constant fund ratio (with respect to the actuarial

liability), and penalizes fluctuations of the contribution rate from zero.

Our objective is to extend this prior work, allowing investment decisions in the model. The

paper is structured as follows. In Section 2 we set up the model as a controlled diffusion problem.

In section 3 we outline the dynamic programming approach and we find the optimal controls in

feedback form, obtaining, roughly speaking, that the portfolio choice and contribution rate are

(piecewise) proportional to the unfunded actuarial liability. We also study some properties of

the solution. The last section is devoted to stablish some conclusions.

2 Mathematical model

All the variables listed is this section are related to all the participants in the aggregate pension

fund we will consider. We assume that the actuarial valuation to estimate the main components

of the plan are done at each instant of time.

We denote F (t) as the value of the assets forming the fund at time t; C(t) is the contribution

rate made by the sponsor in order to accrue the amount of the defined benefit at the moment

of retirement; the defined benefits are denoted by P ; the normal cost for all participants, by

NC; the actuarial liability, by AL; the unfunded actuarial liability, by UAL (this is simply the

difference between AL and F (t)) and the supplementary contribution rate amortizing UAL at
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time t, by SC (this is simply the difference between C(t) and NC ).

Let us observe that we have considered constant values of P , NC and AL. This is justified,

as in Haberman and Sung (1994), if the population in the pension plan is stationary from the

start and there is no salary increase (or there is a fixed rate of salary inflation; in this case the

rate of return is net the salary inflation).

If we assume that the valuation of the plan is done with a constant rate δ, then the main

components of the plan are linked by the equation

δAL + NC− P = 0, (1)

as is shown in Bowers, Hickman and Nesbitt (1976).

The sponsoring employer manages the funding process by making a portfolio choice of n risky

assets S1(t), . . . , Sn(t) and a bond S0(t), 0 ≤ t <∞, with dynamics given by the equations

dS0(t) = rS0(t) dt, S0(0) = 1 (2)

dSi(t) = Si(t)
(
bidt+

n∑
j=1

σijdWj(t)
)
, Si(0) = si, 1 ≤ i ≤ n. (3)

Here bi and σij , 1 ≤ i, j ≤ n are positive constants. The vector W(t) = (W1(t), . . .Wn(t))T

is an n–dimensional Brownian motion defined on a probability space (Ω,F , P ), where {Ft}

denotes the completion of the filtration σ{W(s) | 0 ≤ s ≤ t}.

We suppose that the interest rate r is strictly smaller than the mean rates of return bi,

1 ≤ i ≤ n. Next we introduce the matrix σ = (σij) and the vectors b = (b1, . . . , bn)T ,

Λ(t) = (λ1(t), . . . , λn(t))T .

5



A portfolio process or trading strategy Λ(t) is a IRn–measurable process adapted to {Ft}

such that ∫ ∞
0
‖Λ(s)‖2 dx <∞ a.s.

Here λi(t) ≥ 0 denotes the proportion of the fund assets inverted by the promoter in asset i,

0 ≤ i ≤ n. As explained in Section 1, the non negativity constraint on λi avoids shortselling.

The contribution rate process C(t) is a measurable adapted process with respect to {Ft}

verifying ∫ ∞
0
|C(s)|2 dx <∞ a.s.

and

EF0

∫ ∞
0

exp (−ρt)(βSC2(t) + (1− β)UAL2(t)) dt <∞.

Here, EF0 denotes conditional expectation by F0. The class of admissible controls is denoted

by AF0 .

The quantity λi(t)F (t)Si(t) represents the amount invested in asset i, 0 ≤ i ≤ n, and

∫ t
0 C(s) ds is the total contribution made up to time t. Along the lines of Merton (1971), we

suppose that changes in the fund level derive only from changes in the asset prices, interest of

the bond and from the contribution. In consequence:

dF (t) = F (t)

( n∑
i=1

λi(t)
dSi(t)

Si(t)

)
+ F (t)

(
1−

n∑
i=1

λi(t)

)
dS0(t)

S0(t)
+ (C(t)− P ) dt. (4)

Taking into account (2), (3) and (4) we obtain that the fund amount satisfies the following

stochastic differential equation:

dF (t) =

(
rF (t) +

n∑
i=1

λi(t)(bi − r)F (t) + C(t)− P
)
dt+

n∑
i=1

n∑
j=1

λi(t)σijF (t) dWj(t), (5)
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with initial condition F (0) = F0 > 0.

The symmetric matrix Σ = σσT is positive definite. We denote θ = σ−1(b−r1) the market

price of risk, where 1 denotes a (column) vector of 1’s. Obviously, θT θ is a positive scalar.

Now, we turn with the preferences of the controller. We assume that he or she wish to min-

imize a convex combination of the contribution rate risk and the solvency risk. In consequence,

the objective functional to be minimized over AF0 is

J(F,C,Λ) = EF0

∫ ∞
0

exp(−ρt)
(
βSC2(t) + (1− β)UAL2(t)

)
dt.

The parameter β verifies 0 < β ≤ 1 and is a weighting factor reflecting the relative importance

of one type of risk with respect the other one. The restriction in the range of possible values

of β means that the sponsor choose a compromise solution or Pareto optimal solution in the

multiobjective problem arising in this decision model. There is also a positive actualization rate,

ρ. A high actualization rate implies that the promoter is more concerned with the present than

with the distant future. Throughout the paper we make the assumption that δ equals r.

3 Optimal feedback pension funding control

In this section we stablish some properties of the value function of the control problem introduced

in Section 2 and we prove that it is a generalized solution to the Hamilton–Jacobi–Bellman

equation (HJB henceforth). The value function is defined as

V̂ (F ) = inf
(C,Λ)∈AF0

{J(F,C,Λ) | s.t. (5)} .
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The function V̂ (F ) is the minimum value of the deviations from the objectives when the initial

wealth in the fund is F . Given that the problem is autonomous and the horizon is unbounded,

we may suppose that V̂ is time independent. It is clear that the value function so defined is

nonnegative, strictly convex and that V̂ (AL) = 0.

As is well known since Bellman (1957), the knowledge of the value function implies the

knowledge of the optimal controls (at least in an implicit way). The connection between value

functions in optimal control theory (deterministic or stochastic) and optimal feedback controls

is accomplished by the HJB equation, see Fleming and Soner (1993). For our problem of optimal

pension funding, the HJB equation becomes:

ρV (F ) = min
C,Λ≥0

{
β(C −NC)2 + (1− β)(AL− F )2 + (rF + ΛT (b− r1)F + C − P )V ′(F )

+
1

2
ΛTΣΛF 2 V ′′(F )

}
(6)

Whenever a solution V of the above equation is smooth enough, the minimizing arguments are

given by

C̃(V ′(F )) = NC − 1

2β
V ′(F ), (7)

Λ̃(V ′(F ), V ′′(F )) =

(
− V ′(F )

FV ′′(F )
Σ−1(b− r1)

)
+

. (8)

Here, given a = (a1, . . . , an) ∈ IRn, a+ denotes the vector which i–coordinate is max{ai, 0}.

The equalities (7) and (8) are the link between the HJB equation and the optimal controls of the

problem. Observe that the scalar magnitude in (8) is the inverse of the Arrow–Pratt measure

of risk aversion of the value function.
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In order to find V satisfying (6) we make the following observations: (i) deviations of the

wealth of the fund from the actuarial liability are penalized, so the investment in the risky assets

must be zero if F > AL, because their mean of return is higher than that of the bond, and

(ii) the value function V̂ is a solution of (6) if it is smooth enough. Since the running cost

is quadratic we will postulate a piecewise quadratic value function of class C1 (although the

dynamics is non linear)1. The necessity for consider a piecewise smooth function comes from

the impossibility of shortselling. Based on the above considerations, we make the guessing

Λ̃(F ) =


− V ′(F )

FV ′′(F )
Σ−1(b− r1), if F < AL,

0, if F > AL,

(9)

where 0 is a (column) vector of 0’s, and

V (F ) =


a(AL− F )2, if F < AL,

α(AL− F )2, if F > AL,

(10)

as a smooth solution of (6) on the regions F < AL and F > AL with the exception of the point

F = AL. By substituting (10) in (6) we find that the positive constants a, α, must satisfy the

two equations

a2 + β
(
ρ− 2r + θT θ

)
a− β(1− β) = 0, (11)

α2 + β(ρ− 2r)α− β(1− β) = 0. (12)

It is easy to see that (11) and (12) admits each one a unique positive solution verifying a < α.

It turns out that V satisfies the conditions V ′(AL−) = V ′(AL+) = 0 and V ′′(AL+) = 2α >

1A function is of class Ck(IR) if its first k–derivatives exists and are continuous functions on IR.
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2a = V ′′(AL−).

We now proceed to confirm the validity of our conjecture, that is, V as defined in (10)

coincides with the value function V̂ . To this end we will use a Verification Theorem based on a

generalized Itô’s rule.

Theorem 1 The optimum contribution rate in feedback form is given by

C∗(F ) =


NC +

a

β
(AL− F ), if F < AL,

NC +
α

β
(AL− F ), if F > AL.

(13)

The optimal investment policy is

Λ∗(F ) =


AL− F

F
Σ−1(b− r1), if 0 < F < AL,

0, if F > AL.

(14)

Here, a is the unique positive solution of (11) verifying

a > β
(
r − θT θ

)
, (15)

and α is the unique positive solution of (12) such that

α > βr. (16)

Proof. Denote F ∗ the wealth of the fund associated with C∗ and Λ∗, when the initial condition

is F ∗(0) = F . The pair (C∗,Λ∗) belongs to the admissible class of controls AF because of

Proposition 1 below, where it is proved that the expected value of F ∗ converges to AL.
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Now we consider an arbitrary pair (C,Λ) ∈ AF . Applying the generalized Itô’s rule

(Karatzas and Shreve (1991), p. 219) to e−ρtV (t) we obtain, after taking expectations

e−ρtEFV (F (t)) = V (F ) + EF

∫ t

0

[1

2
ΛT (s)ΣΛ(s)F (s)2V ′′(F (s))

+(rF (s) + (b− r1)TΛ(s)F (s) + C(s)− P )V ′(F (s))− ρV (F (s))
]
ds.

We have made use of the fact that V ′ is continuous, so there is no local time term in the

stochastic integral. On the other hand, (6) implies

ρV (F ) ≤ β(C−NC)2+(1−β)(AL−F )2+(rF+(b−r1)TΛF+C−P )V ′(F )+
1

2
ΛTΣΛF 2 V ′′(F )

(17)

for all F 6= AL, with equality whenever we replace C by C∗ and Λ by Λ∗. Integrating and

taking expectations in (17) and making use of the existence of side limits of V ′′ in AL, we have

e−ρtEFV (F (t)) + EF

∫ t

0
e−ρs[β(C(s)−NC)2 + (1− β)(AL− F (s))2]ds ≥ V (F ), (18)

with equality when C = C∗ and Λ = Λ∗.

The transversality condition

lim
t→∞

e−ρtEFV (F (t)) = 0

holds, because of Proposition 1 below. Hence inequality (18) implies J(F ;C,Λ) ≥ V (F ) and

J(F ;C∗,Λ∗) = V (F ). It then follows that (C∗,Λ∗) is optimum on AF . 2

It is interesting to note that, as mentioned above, the value function is not of class C2(IR).

This means that the smooth pasting conditions (Krylov (1980, p. 32)), cannot be fulfilled by

11



the value function of our problem, that is

V ′′(AL−) = a 6= α = V ′′(AL+).

Note that (6) is not uniformly elliptic because the second order term 1
2ΛTΣΛF 2V ′′(F ) becomes

zero when Λ = 0, so we can not be sure of the existence of a smooth solution of the equation, see

Krylov (1980).2 In fact, the optimal Λ∗ goes to zero as F goes to AL. At this point it is worth

comparing with the model of optimal consumption and portfolio choice with no shortselling,

where the value function is proved to be of class C2, see Vila and Zariphopoulou (1997).

The expressions for the optimal rate of contribution and the optimal vector of investments

given in the above theorem can be rephrased as

SC =


a

β
UAL, if UAL > 0,

α

β
UAL, if UAL < 0,

Λ∗(F )F =


UAL Σ−1(b− r1), if UAL > 0,

0, if UAL < 0.

The total investment vector Λ∗F is a constant proportion policy on the region UAL > 0,

because regardless the gap between the wealth of the fund and the goal, the proportion of

wealth invested in the risky stocks is fixed. Thus the manager of the plan gets increasingly more

cautious as the wealth of the fund takes closer values to the actuarial liability. This implies

investing less at each time, eventually reaching zero investment in the limit. Similar comments

apply to the optimal contribution rate on each of the regions UAL > 0 and UAL < 0. Let us

observe that the supplementary cost depends on β but the investment strategy does not.

2However, it is an easy exercise to prove that the function appearing in (10) is a viscosity solution of (6). See

Fleming and Soner (1993) for the appropriated definitions.
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The optimal funding process can be summarized in the two following rules: (i) keep the

supplementary cost proportional to the unfunded actuarial liability, with different constants

of proportionality a
β or α

β , as soon as the wealth of the fund is above or below the actuarial

liability, respectively and (ii) make an investment in the risky assets proportional to the unfunded

actuarial liability whenever the wealth of the fund is below the objective. Do not invest anything

in other case.

Although the investment behavior seems to be paradoxical, we must remember that the prior

objective of the employer sponsor is to reduce the inherent risks of the process funding, and not

to maximize the wealth of the fund. It is very interesting to note that the optimal supplementary

cost for this problem corresponds to a spread method of contribution, see Bowers, Hickman and

Nesbitt (1976). This funding method is very used in the literature and has been proved to have

good properties for the stabilization of the pension plan. Here we find another justification for

this method, because it arise naturally as a consequence of an optimal or extremal aiming of the

controller. Let us observe, however that the constant of proportionality is different in the regions

F < AL and F > AL, being higher, α > a, in the last. This fact has an easy explanation;

the no shortselling condition on the amount invested in the risky assets impose a higher rate

of reduction on the contribution rate on the region F > AL than that would be in the control

problem without constraints.

Let us note that borrowing at rate r is optimal to be invested in asset i (λi > 1), whenever

the fund level is below the critical value

eiΣ
−1(b− r1)

ei(1 + Σ−1(b− r1))
AL,
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where ei = (0, . . . ,
i)

1, 0, . . . , 0).

The main concern of the promoter is to keep the contribution rate and the level of the fund

as close as possible to the ideal values. As the following proposition shows, (15)–(16) implies

the stabilization of the expected wealth of the fund on the desired target. In fact, an additional

constraint on the weighing factor β assure convergence a.s. of the fund to the actuarial liability.

Proposition 1 If (15)–(16) hold, then

1. The fund, the rate of contribution and the total investment converge a.s. to the actuarial

liability, the normal cost and zero, respectively; that is to say,

lim
t−→∞

EF0F
∗(t) = AL, lim

t−→∞
EF0C

∗(t) = NC, and lim
t−→∞

EF0Λ
∗(t)F ∗(t) = 0.

2. If the parameters of the problem verify

a > β

(
r − 1

2
θT θ

)
, (19)

then the variance of the fund, the rate of contribution and the total investment amount

converge to zero, that is to say,

lim
t−→∞

VarF0F
∗(t) = 0, lim

t−→∞
VarF0C

∗(t) = 0 and lim
t−→∞

VarF0Λ
∗(t)F ∗(t) = 0

Proof. By substituting the optimal values of the control variables, the evolution of the fund is

given by the stochastic differential equation

dF ∗(t) = (rF ∗(t) + θT θUAL∗(t) +
a

β
UAL∗(t) + NC− P ) dt+ UAL∗(t)θT dW(t),
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with F ∗(0) = F0, whenever F ∗ < AL and by the ordinary differential equation

dF ∗(t) =

(
α

β
− r

)
(F ∗(t)−AL)dt

with F ∗(0) = F0, if F ∗ ≥ AL.

The first expression can be rewritten in terms of the unfunded actuarial liability as follows:

dUAL∗(t) =

(
r − θT θ − a

β

)
UAL∗(t)dt+ UAL∗(t)θT dW(t),

with UAL∗(0) = AL − F0. The solution of this equation, a geometrical Brownian motion, is

given by

UAL∗(t) = (AL− F0) exp

{
(r − 3

2
θT θ − a

β
)t
)

+ θTW (t)

}
.

Letting t to infinity and taking into account (15) and the properties of Brownian motion, we

have that UAL∗ converges to zero a.s. and its conditional expected value converges to AL. On

the other hand (19) imply

lim
t−→∞

EF0(UAL∗(t))2 = 0,

see Arnold (1974, p. 140). Hence

VarF0UAL∗(t) = EF0(UAL∗(t))2 − E2
F0

(UAL∗(t))

tends to zero as t goes to infinity.

In the region F ∗ ≥ AL the evolution of UAL∗ is given by

dUAL∗(t) = (r − α

β
)UAL∗(t))dt, UAL∗(0) = AL− F0.

In this case it is clear that UAL∗ converges to zero when (16) holds. Now, the statements of

the proposition are immediate consequences of the behavior of UAL∗. 2
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Consider the natural scale function ϕ of the Brownian motion UAL∗. It is defined as

ϕ(x) =

∫ x

exp

(
−
∫ y 2µ(z)

a(z)
dz

)
dy,

where

µ(x) = (r − θT θ − a

β
)x, and a(x) = θT θx2, x ∈ IR

are the drift and difussion coefficients of the process UAL∗, respectively. We obtain

ϕ(x) = −(2γ + 1)−1|x|2γ+1, where γ = 1−

(
r − a

β

)
θT θ

is a positive constant if (15) holds. The velocity density of the process is defined as

m(x) =
(
a(x)

dϕ

dx
(x)
)−1

= θT θ|x|−2(γ+1), x ∈ IR.

Now, for any z ∈ IR let us define τ∗z as the first instant of time such that UAL∗ hits z. The

conditioned probability Px of the event τ∗z > τ∗0 when UAL(0) = x is

Px(τ∗z > τ∗0 ) =
ϕ(x)− ϕ(z)

ϕ(0)− ϕ(z)
=
|z|2γ − |x|2γ

|z|2γ
, (20)

see Karlin and Taylor (1981). In the next proposition we prove that the funding process never

achieve the point AL with positive probability in finite time although this value is an attracting

barrier.

Proposition 2 If (15)–(16) hold, AL is an unattainable and attracting barrier for F ∗.

Proof. The statement is equivalent to prove that 0 is an unattainable and attracting barrier

for UAL∗. First we claim it is unattainable: if x < 0

∫ 0

x
(ϕ(0)− ϕ(y))m(y) dy =

θT θ

2γ + 1

∫ 0

x

1

y
dy =∞.

16



Hence we can apply a result in Durret (1996, p. 241). If x > 0 the result follows from uniqueness

of solutions to ordinary differential equations. Then the claim follows. Second, we claim that

0 is attracting for UAL∗, because Px(τ∗z > τ∗0 ) as defined in (20) converges to 1 as x go to 0.

That is to say, the conditioned probability that UAL∗ takes the value 0 before any other value

z 6= 0 tends to 1 as the gap between AL and F ∗ shrinks. 2

4 Conclusion

This paper has analyzed the pension funding problem from the point of view of a manager that

tries to minimize the solvency risk and the contribution rate risk on an unbounded horizon. To

this end she or he makes a portfolio choice with n risky assets and a bond and also controls the

size of the contribution rate. A spread method of funding arises, as a result of the postulated

optimal behavior. We are able to give a closed form solution to the problem and we also

prove strong stability properties of the solution. In further research we intend to eliminate the

constancy assumption on the actuarial (deterministic) functions used in the model. Suitable

hypothesis from a tractable point of view would include exponential growth for the population

of the plan and the salary. The autonomous character of the optimal control problem could

be preserved in this case with the introduction of additional state variables (the normal cost,

the actuarial liability and the benefits). We shall also consider modeling uncertainty on some

elements of the fund.
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