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1. INTRODUCTION

An alternative proof of Marinacci and Montrucchio’s [44] uniqueness theorem for recursive
utility specified by a Thompson aggregator is available by verifying the Koopmans operator is
a u0− concave operator as defined by Krasnosel’skı̆ı̆ and Zabreı̆ko [37]. An underlying util-
ity space of admissible solutions to the Koopmans functional equation is specified first along
with a determination of the underlying commodity space. The u0− concave operator approach
shares several structural conditions with Marinacci and Montrucchio’s [44] strong subhomo-
geneous technique. Both proofs show the Koopmans operator has a unique fixed point in the
given utility space with the imposition of certain commodity space restrictions. We also con-
sider a stronger Thompson aggregator property: the aggregator is r− concave in its second
argument. This strengthening of the Thompson aggregator’s properties, proposed by Balbus
[10], yields a sequence of successive approximations to the unique fixed point. An a posteriori
error bound governing the distance between each successive approximation and the fixed point
is computable given an r− concave aggregator and appropriate commodity space restrictions.
This error bound implies the successive approximation sequence uniformly converges to the
unique fixed point.
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1.1. The Problem Situation. Recursive utility theory focuses on a broad class of intertemporal
utility functions that are stationary, time consistent, and time invariant, as well as tractable, in an
array of capital theoretic and macrodynamic applications.1 Optimal growth theory with a recur-
sive utility objective was initiated by Beals and Koopmans [11]. This is the major application
arena for discrete time deterministic recursive utility function theories with an infinite horizon
setup. Recursive utility theory describes classes of utility functions with many of the attractive
properties of stationary exponential discounting time additive utility functions. The underlying
commodity space is the set of all nonnegative bounded real-valued sequences, denoted `+∞ . It is
the utility function’s domain.

The need for generalizations of the exponential discounting model derive from theoretical
considerations. For example, the fixed discount factor assumption is known to drive strong re-
sults in optimal growth models and their equilibrium counterparts that may be modified when a
particular recursive utility function replaces the exponential discounted utility function.2 Con-
sequently, the problem of foundations of recursive utility as well as development of methods for
creating recursive utility functions are important for promoting applications of recursive utility
models.

Contemporary recursive utility function research focuses on proving a recursive utility func-
tion solves a particular functional equation, the Koopmans Equation.3 A solution is found as
a fixed point of the equation’s corresponding nonlinear operator, the Koopmans operator. The
decision maker may be the planner of optimal growth theory or an infinitely-lived representative
household in general equilibrium models. This agent has an underlying intertemporal prefer-
ence ordering over elements of the commodity space which are termed consumption sequences
(also known as streams, profiles or bundles) with generic element C = {c1,c2, . . . ,ct , . . .}
where ct is the time-dated consumption at time t = 1,2, . . .. A utility function U represent-
ing an agent’s intertemporal preference over alternative consumption sequences is said to be a
recursive utility function if there is a function W (x,y) of two real variables such that for each
C, U (C) = W (c1,U (SC)), where x is current consumption (t = 1), y = W (x,y), y = U (SC)
is the utility continuing the consumption stream from time two forward into the future with
SC = {c2,c3, . . .} and S is the shift operator. The function W is the aggregator. This form of
the utility representation includes a self-referential property as U appears on the left and right-
hand sides of the Koopmans equation, U (C) =W (c1,U (SC)) for each C. The utility function
on the right side is passed through the aggregator function to form the recursive utility structure.

Koopmans ([31], [32], [33]) derived a recursive utility function representation of an intertem-
poral preference ordering over alternative consumption sequences and its companion aggregator
function based on an axiomatic framework. The axioms embed three economically important
utility functional form restrictions. First is weak separability of the future from the past.4 There
are two mutually exclusive commodity groups when a consumption sequence is viewed at time

1See Halevy [29] on the distinctions between stationarity, time consistency and time invariance. Recursive
utility functions possess all three properties.

2Epstein and Hynes [26] catalog a range of applications where exponential discounting promotes strong con-
clusions about steady state optimal growth/equilibrium solutions. Becker and Boyd ([12], Chapter 1) also develops
this theme.

3There is a parallel literature on dynamic programming with recursive utility functions that is noted in more
detail below.

4The axiomatic treatment of recursive utility is exposited in Becker and Boyd ([12], pp. 71-75).
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zero before consumption begins at time one and continues in each subsequent time period. De-
compose C = (c1,SC) into the first commodity group, {c1}, and the second, {SC}. The weak
separability property suggests utility can be written as U (C) =W (u(c1) ,V (SC)) where u and
V are the subutility functions of each commodity group. In the context of a single all purpose
consumption good in each period the aggregator’s functional form subsumes the utility of the
subgroup {c1}, and U (C) =W (c1,V (SC)).

The second structural feature is stationarity: for C = {c1,SC} and C′ = {c1,SC′}, U (C) ≥
U (C′) if and only if U (SC) ≥ U (SC′). Hence, U (C) = U(c1,V (SC)) ≥ U(c1,V (SC′)) =
U (C′). Since W depends on SC through V (SC), and the preference order does not depend
on calendar time, then U =V .

The last feature is a nontriviality or sensitivity condition: the utility function is not a constant
function on the commodity space. There exist C and C∗ such that U (C)>U (C∗) if and only if
C is strictly preferred to C∗. This condition would apply to non-recursive utility representations
as well. An aggregator strictly increasing in each argument yields a sensitive utility function.

Combining the first two restrictions means U has a recursively separable structure — the
defining distinction for a recursive utility function representation of a preference order. The
aggregator unites the subutility values of the two nonoverlapping commodity groupings to pro-
duce an overall utility value when the two commodity groups are reunited as one consumption
sequence.

Contemporary recursive utility theory emphasizes an alternative to Koopmans’ axiomatic ap-
proach. The aggregator is the primitive building block for a recursive utility function. Given
an aggegator, the problem situation is to solve the Koopmans equation by finding a recursive
utility function within a specified class of possible or admissible utility functions. Formulate this
problem as follows. Specify an economically motivated aggregator function. Align its qualita-
tive properties with a class of possible real-valued utility functions on the underlying commodity
space. This is the utility space. The Koopmans equation is a functional equation in the unknown
utility function. The definition of the Koopmans equation and its corresponding operator de-
pend on the joint properties of the aggregator and the underlying utility space/commodity space
specifications. For example, a nonnegative aggregator suggests utility functions are nonnega-
tive on the commodity space. Hence, the positive cone of an ordered vector space of functions
defined on the commodity space is an appropriate utility space.

The Koopmans operator (belonging to W ), denoted TW , is a self-map on the utility space.
Given a U in the utility space, define the Koopmans operator pointwise by the formula:

(TWU)(C) =W (c1,U (SC)) for each C ∈ `+∞ .

A fixed point of the Koopmans operator solves the Koopmans equation implying U (C) =
TWU (C) for each C defines a recursive utility function. Therefore, the problem is, given an
aggregator, prove the Koopmans operator has a solution in the utility space. Moreover, verify
it is the unique solution in the specified utility space. The main issues in solving this problem
arise from the self-referential utility structure based on the primitive aggregator’s specification.

Lucas and Stokey [42] initiated the aggregator as primitive foundation for finding recursive
utility functions. Their assumed aggregator properties allowed them to prove the Koopmans
equation has a unique solution in the class of sup-norm continuous bounded functions defined
on `+∞ . This utility space is an ordered Banach space. In fact, it is a Banach lattice with unit,
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the constant function taking the value 1 for each C. They verify Koopmans’ operator is a con-
traction mapping. Their proof depends on the utility function’s ordered Banach space structure.
The unique fixed point is a bounded continuous recursive utility function. It represents SOME
agent’s preference order over alternative consumption sequences.

Lucas and Stokey prove the Koopmans operator’s contraction mapping satisfies Blackwell’s
[17] sufficient conditions for a nonlinear operator to be a contraction map. Their verification
argument makes no formal use of the commodity and utility spaces are Banach lattices. They
assume the aggregator W is a nondecreasing, bounded continuous function and satisfies a global
Lipschitz condition in its second argument. This Lipschitz constant is assumed strictly less
than one, a type of discounting property. They verify the Koopmans operator is a monotone
operator, that is U ≤ V (pointwise) implies TWU ≤ TWV (pointwise) and has Blackwell’s
contractive property: TW (U + γϕ) ≤ TWU + γϕ for some constant 0 < γ < 1 where ϕ is the
constant function ϕ (C)≡ ϕ > θ for each C. Becker and Boyd ([12], p. 48) prove a generalized
Blackwell theorem for normed Riesz spaces possessing a principal ideal. For example, the
principal ideal generated by the function ϕ is an order unit in the Banach lattice of all bounded
real-valued functions on the commodity space (see Section 2).

Aggregators satisfying this Lipschitz condition are classified as Blackwell aggregators. Sev-
eral papers extend Lucas and Stokey’s approach to cover other aggregator specifications. Boyd
[21] and Becker and Boyd [12] discuss many extensions in the Blackwell family. A num-
ber of papers published after Becker and Boyd’s monograph extended the Blackwell model in
novel ways where the aggregator’s global Lipschitz condition fails, may not be bounded, and
the Koopmans operator is not a contraction map (see Rincón-Zapatero and Rodriguez-Palmero
([51], [52]), Le Van and Vailakis [39], Martins-da-Rocha and Vailakis ([45], [46])) and Bloise,
Le Van, and Vailakis [20].

Reduction of the existence and uniqueness problem for a Koopmans operator to an appli-
cation of the contraction mapping theorem has another advantage in the Blackwell case. The
sequence of iterations of the Koopmans operator with initial input the zero function,

{
T N

W θ
}

,
has the property that {T N

W θ} uniformly converges to U∞, the fixed point of the Koopmans equa-
tion and for each C,

U∞ (C) = lim
N→∞

T N
W θ (C) = lim

N→∞
W (c1,W (c2, . . . ,W (cN,,0))) .

Here T N
W θ is the Nth iterate of TW θ according to the formula: T N

W θ = TW
(
T N−1

W θ
)

for N ≥ 1,
with θ (C) = 0 for each C, the zero function, and T 0

W θ ≡ θ . The Contraction Mapping Theorem
also implies for any initial choice of a function in the utility space, the corresponding sequence
of iterates converges uniformly to the fixed point U∞, which is a bounded continuous function.
We return to this approximation problem is Section 6.

Marinacci and Montrucchio [43] proposed aggregators that did not fit into the previous lit-
erature. They named these examples as members of the Thompson aggregator class. For
example, the KDW aggregator presented in Section 4.2 may fail to be a Blackwell aggregator
for some interesting economic parameterizations. It is a member of their Thompson class in
those situations.

They proposed new methods for solving the corresponding Koopmans equation for a given
Thompson aggregator. They separated the problems of proving the existence of a solution to the
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Koopmans equation from the determination there is a unique solution. The former proof empha-
sized monotone operator and order theoretic properties attached to the Koopmans operator. A
constructive take on that problem is developed by Becker and Rincón-Zapatero ([14]). It is in-
structive to observe that the Koopmans operator remains a monotone operator in the Thompson
case, but fails to satisfy Blackwell’s contractive condition (at least in the utility space’s natural
norm topology). For this reason, monotone methods have been the pathway to both existence
and uniqueness theorems in the Thompson aggregator literature. On the existence front mono-
tone operator theories yield a pair of extremal fixed points in combination with underlying order
theoretic structures on the utility and commodity space. There is a Least Fixed Point (LFP), U∞,
and a Greatest Fixed Point (GFP), U∞. Our focus in this paper concerns the uniqueness problem
that amounts to proving the LFP and GFP agree.

Counterexamples show that the Koopmans equation attached to a Thompson aggregator may
have multiple solutions in the utility function space (and this specification depends on the cho-
sen underlying commodity space). The LFP and GFP disagree at some point(s) in the commod-
ity space. The LFP’s value is smaller than the GFP’s value in those cases. We show here how
to modify the uniqueness problem to work around the known counterexamples.5

Their uniqueness theories in ([43], [44]) restrict the commodity space more than the nec-
essary structures for existence theorems. More distinctive is their use of Thompson’s [54])
decomposition of the utility space (with its norm topology) into disjoint subsets of the positive
cone with its interior as the focus for uniqueness theory. They exclude fixed points in the pos-
itive cone’s boundary; each fixed point must be in the positive cone’s interior. The method for
removing boundary fixed points in utility space depends on modifying the underlying commod-
ity space. The commodity space restrictions knock out the troublesome consumption sequences
where known examples admit multiple recursive utility functions as solutions to the Koopmans
equation. Moreover, we indicate how these examples yield boundary fixed points. For norm in-
terior consumption sequences alone (and corresponding implicit restrictions in the utility space)
a uniqueness result becomes available. No boundary fixed point exists. The LFP and GFP are
equal to one another in this refined commodity space domain. The Koopmans operator, so re-
stricted in their modified setup, turns out to be a contraction mapping on the implied utility
space with respect to the Thompson metric according to Marinacci and Montrucchio’s earlier
paper, [43].

Their more general methods paper, [44], also uses the Thompson metric. They show the
Koopmans operator for a Thompson aggregator is strongly subhomogeneous (see our Section 2
for this concept). Either way, their approach replaces the original norm topology in the utility
space, which is the norm interior of an ordered Banach space’s positive cone, by a complete met-
ric space using Thompson’s metric.6 They are able to take their Thompson metric space results
back to the original ordered Banach space since the Thompson metric is a stronger topology
than the norm topology in their modified utility space. The relevant sequences are found by
iterating the Koopmans operator over the natural numbers with appropriate initial seeds. Strong
subhomogeneity implies these iterates converge in the Thompson metric to a utility function and

5In particular, Bloise and Vailakis [18] provide three interesting examples where the Koopmans equation has
multiple solutions.

6These manipulations are directly worked out in their first paper, [43] and appear in the mathematical results in
the second paper [44].
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this implies the sequence of iterates norm converges as well. This norm convergence conclusion
is a form of successive approximation to the fixed point. Their results, obtained by either the
contraction or strong subhomogeneous and Thompson metric techniques, prove the existence
of a unique solution to the Koopmans equation with the restricted commodity space. In fact, the
Thompson and norm topologies are equivalent in their setting (see Cobzaş and Rus ([22], pp.
240-241 and Guo, et al ([28], pp. 72-73)). A sequence Thompson converges if and only if the
corresponding sequence norm converges. This topological equivalence suggests an alternative
uniqueness strategy employing ordered Banach space machinery alone might be available.7

We propose an alternative uniqueness theory in this paper employing a natural order-concave
property enjoyed by the Koopmans operator when the Thompson aggegator is a concave func-
tion. This order-concavity property is inherited by the Koopmans operator. We prove it is a
u0− concave operator on the utility space’s interior. The utility space’s Banach lattice proper-
ties are used rather than Thompson metric tools. In this sense, we are working out the way to
apply u0−concave operator methods as a “bench test” comparison of different solution method-
ologies in a the same functional equation setup. This approach abstracts and adapts the notion
of a concave function to the case of a nonlinear operator acting as a selfmap on the space’s
positive cone.

Krasonsel’skı̆ı̆ and Zabreı̆ko’s [37] u0− concave operator theory for ordered Banach spaces
with norm closed positive cones yields at most one solution exists to the given functional equa-
tion. Existence theory for that question is treated separately.

Applications of u0−concave operator theory presented in Krasonsel’skı̆ı̆ and Zabreı̆ko’s [37]
and Guo and Lakshmikantham [27] place a common restriction on the ordered Banach space
— it is a Banach lattice with unit. Likewise, Coleman’s ([23], [24]) variants of u0− concavity
operate on subsets of a Banach lattice with unit. This Banach lattice structure is not officially
recognized in their works, but is apparent from their choices for the functional equation’s un-
derlying space of possible solutions. Marinacci and Montrucchio’s [44] recursive utility and
dynamic programming applications use Banach lattice with unit domains for their functional
equations’s domains. We focus attention in Section 3 on the role played by Banach lattice
properties in verifying a given nonlinear operator is u0− concave.

A major advantage of assuming a Banach lattice with unit is the positive cone is solid and
normal (Section 2). This enables both Marincacci and Montrucchio and us exploit Thompson’s
link (comparable) binary relation to center uniqueness theory in the utility space’s positive
cone’s interior. We have more to say on this point as our approach simplifies and clarifies the
way Thompson’s binary relation enters uniqueness theory and how the presence of an order unit
is critical for proving the Koopmans operator is a u0− concave operator.

In particular, we exploit all the economically motivated mathematical structures available in
the model’s utility and commodity spaces in order to arrive at a satisfactory uniqueness theory.
In our approach the Koopmans operator is strictly subhomogeneous, and hence, weaker than
Marincacci and Montrucchio’s [44] strong subhomogeneous operator property. One important
difference with our two theories is we assume the Thompson aggregator is a concave function.
This implies the Koopmans operator is order-concave and also subhomogeneous. This creates
a way for us to verify the Koopmans operator is u0 − concave based on the order-concave

7Cobzaş and Rus ([22], p. 241) show by an example that a bounded set in one metric may not be bounded in
the other.
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sufficient conditions developed by Liang et al [40]. Our methodology also helps isolate the
source of nonuniqueness problems as cases where the Least Fixed Point (see below) lies in
the topological boundary of the utility space’s positive cone. Commodity space restrictions are
motivated by examination of how nonunique solutions may arise in the commodity space `+∞ .

There is a constructive prong in taking the Krasonsel’skı̆ı̆ and Zabreı̆ko’s [37] u0− concave
operator approach based on iteration of the Koopmans operator over the natural numbers and
initiated at the zero function. The details of how this approach constructs the Koopmans’ oper-
ator’s LFP differ in important details from the ones used by us in [14]. Our successive approx-
imation argument here yields two results. First, the sequence

{
T N

W θ
}

uniformly converges to
the LFP as N→ ∞. More important, for each N we have an error bound, B(N,TW θ) satisfying∥∥T N

W θ −U∞

∥∥≤ B(N,TW θ)→ 0 as N→ ∞. This error bound depends only on the approximate
solution at step N,T N

W θ , the underlying commodity space restrictions detailed in Section 5, and
the bound is independent of U∞. Development of this computable a posteriori error estimate is
of computational theoretic interest.8 A strengthening of the Thompson aggregator conditions is
needed to develop the successive approximation method with its a posteriori error bound. We
follow Balbus’s [10] approach and assume the Thompson aggregator is an r−concave function
in its second argument. This allows us to show the Koopmans operator is an r− concave oper-
ator and apply Balbus’s theory. The linked relation also enters the verification Balbus’s version
of r−concave operator theory applies in our Thompson aggregator setup. This iterative scheme
and its uniform convergence property is reminiscent of the convergence theory for successive
approximations with a contraction map.

The a posteriori error bound approximation significantly improves our earlier paper’s [14]
successive approximation results based on order theoretic structures in the non-Hausdorff Scott
topology. An operator’s continuity in the Scott topology plays a fundamental role in abstract
computational theory based on successive approximations of a fixed point. The difficulty is
that limits of iterative processes are not unique in this topology. A sequence’s (net’s) order
limit might exist and is unique when it does so. However, in that case any possible utility
function less than or equal to it (and not equal to it) with the usual pointwise ordering is also a
Scott limit! Our existence theorem shows the Koopmans operator is Scott continuous and the
sequence of successive approximations

{
T N

W θ
}

Scott converges to the LPF, U∞. However, this
convergence to the LFP does not yield any quantitative information on how “close” a particular
iterate, say T N

W θ , is to the LFP. Scott convergence only verifies
{

T N
W θ
}

is eventually in each of
the LFP’s Scott neighborhoods. The r− concave operator approach, with its a posteriori error
bounds, puts a metric (norm) measure in play and allows us to say something about how many
iterates, in principal, it takes for the iteration over the natural numbers to land in an epsilon
norm-neighborhood of the LFP. In that sense, the corresponding error bounds’ quantitative
measures are a significant theoretical improvement over our Scott topology statements regarding
convergence to the LFP.

1.2. Related Literature: Recursive Utility, Dynamic Programming, and Related Appli-
cations. We consider the deterministic Koopmans equation existence and uniqueness theory
founded in studying the Koopmans equation for Thompson aggregators. There is a closely re-
lated parallel literature devoted to monotone methods for dynamic programming problems when

8See Linz [41] and Krasnosel’skı̆ı̆ [36] et al on the importance of a posteriori errot estimates.
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the Bellman operator is monotone, but not a contraction mapping on the underlying space of
admissible value function solutions to Bellman’s equation. Marinacci and Montrucchio [44] ex-
amine the deterministic Bellman equation for a Thompson aggregator sequential optimization
problem. Many other papers combine deterministic and stochastic problems (e.g. Marinacci
and Montrucchio [43]). Contributions reviewed include Balbus [10], Bloise and Vailakis [18],
Bloise, Le Van, and Vailakis ([19], [20]), and Ren and Stachurski [50]. We note that Bertsekas
[16] draws general attention to the use of monotone and iterative methods in abstract dynamic
programming when contraction mapping techniques are inapplicable.

Balbus [10] takes an aggregator approach. His deterministic features yield existence and
uniqueness theory for the Thompson aggregator class satisfying an additional subhomogeneity
condition (briefly detailed in Section 3). He uses this to prove the Koopmans operator is sub-
homogeneous of degree r (or, r− concave) and the Koopmans equation has a unique solution
in the utility space’s positive cone’s interior provided consumption streams are interior to the
commodity space’s positive cone. He draws on a nonlinear operator uniqueness theorem pre-
sented in Guo, et al [28]. This result implies iteration from any initial function in the utility
space converges in norm to the Koopman’s equation’s unique solution and offers “truncation”
error estimates as well.9 He also provides an example of an aggregator that is neither Thompson
nor Blackwell, yet his approach applies. This example is excluded in our uniqueness theory.

Bloise and Vailakis [18] derive a uniqueness theorem for deterministic and stochastic dy-
namic programs with recursive utility objectives. They also prove some novel results for the de-
terministic Koopmans equation that are relevant for our study.10 Their focus lies on the Greatest
Fixed Point (GFP) belonging to the Koopmans equation for a concave Thompson aggregator in
contrast to our later focus on the Least Fixed Point (LFP) in [14]. These solutions are distinct in
many examples, at least for some consumption sequences in the commodity space’s boundary.
Interestingly, they show that the GFP is the unique product topology upper semicontinuous solu-
tion to the Koopmans equation on norm-bounded subsets of the commodity space (this includes
the consumption space’s boundary as well). The GFP is also monotone and concave. These
are attractive properties for optimization problems with a recursive utility function objective.
So, any other solution, e.g. the LFP, must fail to have this upper semicontinuity property. This
underlies their focus on the GFP as the planner’s objective.

Bloise, Le Van, and Vailakis [19] address the central issue in a dynamic programming con-
text when the Koopmans equation has multiple solutions. The existence of a distinct LFP and
GFP in the Thompson setting (via examples) implies a planner’s objective function is ambigu-
ous. They argue in favor of selecting the GFP and its corresponding greatest Bellman equation
operator’s fixed point — its optimal value function. Their methods also rely on monotone op-
erator techniques as well as the value convexity-concavity methods in Ren and Stachurski [50].
Their message is that uniqueness theory cannot rescue dynamic programmers from the inherent

9These are the a posteriori error estimates in Krasonsel’skı̆ı̆ et al [36].
10Their existence proof for the Koopmans equation follows the auxilliary recursive equation method introduced

by Marincacci and Montrucchio [43]. They fix a consumption sequence and iterate the Koopmans equation in
utility values, which are real numbers. The analog of the Koopmans operator for fixed consumption bundle maps
sequences of bounded utility values to bounded utility values. That is, the sequence of utility values lies in the
positive cone of `∞. This operator has a LFP and GFP. They must separately verify the LFP and GFP are recursive
utility functions. Our theory both here, and in [14], directly studies iterates of the Koopmans operator as a self map
on an order interval of functions in the utility space.
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ambiguity of multiple solutions to the Koopmans equation. Instead, the argue for selecting the
Bellman equation value function’s GFP solution as the one appropriate for optimal growth and
related asset pricing problems whether they be deterministic or stochastic.11

There are other techniques for proving uniqueness in Thompson aggregator settings besides
the one proposed here. For example, our paper [15] verifies the Koopmans operator satisfies
the hypotheses of Du’s [25] order-concave operator theoretic uniqueness theorem and an iter-
ative approximation theory on an economically important order interval in the utility space’s
positive cone. The linked relation also plays a prominent role in this approach. This paper uses
some techniques that also appear in the present work. Related concave operator methods are
developed in Le Van, Morhaim, and Vailakis [38] in the context of deterministic (reduced form)
optimal growth models. Their methods include versions of several techniques that show up in
more recent work derived from Marinacci and Montrucchio’s [43] work. Linked relations and
logarithmic (exponential) transformations of the Bellman operator are two examples along with
the emphasis on monotone methods and subhomogeneous operator notions.

The hypotheses underlying u0− concavity theory as well as the approach taken in [15]) are,
in our view, easier to state and understand in the context of the Thompson aggregator unique-
ness theory compared to the other known uniqueness methods. From a methodological view, we
view the Koopmans equation as a testing methodology for learning about the pros and cons of
various uniqueness strategies when the underlying operator is monotone, but not a contraction.
Experimentation with different tools in a common problem situation, such as that of the Koop-
mans equation, provides researchers with the means to compare the usefulness of one technique
or another in the same setting. For example, it might be interesting to revisit Coleman’s [24]
Euler equation policy iteration solution from the perspective of u0− concavity rather than his
pseudo-concave operator variant of a subhomogeneous operator.

1.3. A Sectional Preview. Section 2 reviews Riesz space and Banach lattice structures. Sec-
tion 3 introduces u0− concave nonlinear operator solution theory. We follow the Riesz space
conventions and definitions in Aliprantis and Border [2] unless otherwise noted. Section 3 cov-
ers the basics of Krasnosel’skı̆ı̆ and Zabreı̆ko’s [37] u0− concave operator uniquness theory as
well as Liang et al’s [40] sufficient condition. That review is specialized to results applicable in
the particular example of a Banach lattice with unit in our application. Thompson aggregators
appear in Section 4 which also sets up the underlying commodity space and the vector space of
possible utility functions, specifies the Koopmans equation in detail as well as a counterexam-
ple to the problem of uniqueness of that equation’s solution. Section 5 presents our uniqueness
theory as an application of Krasnosel’skı̆ı̆ and Zabreı̆ko [37] theory. The main issue is verifying
the Koopmans operator is a u0− concave operator. Section 6 examines approximation of the
unique Koopmans equation’s solution by iterative methods. Two different, but related, strate-
gies are presented. One is based on the utility and commodity spaces’ Banach lattice properties
in conjunction with u0− concavity. The second focuses on building a computable a posteriori
error bound for uniform convergence of successive approximations of the Koopmans equation’s
unique solution. This result is based on methods used by Balbus [10]. This error bound is
derived when the aggregator is r− concave in its second argument and induces an r− concave
Koopmans operator. The final section offers concluding comments.

11They argue in [20] abstract dynamic programs may have spurious solutions. They produce an example where
the GFP is deemed spurious and reject it in favor of the LFP as the economically interesting solution.
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2. MATHEMATICAL STRUCTURES

The uniqueness theory presented in this paper combines order and metric properties of the
commodity and utility function vector spaces. The mathematical structures employed are re-
viewed below. The natural numbers are denoted by N={1,2, . . .}. A generic element of N is
denoted by n (and sometimes by N in our application).

2.1. Positive Cones and Nonlinear Operators in Riesz Spaces. A nonempty set X is said to
be partially ordered, or a poset, if it is nonempty and there is a binary relation x ≥ y relating
certain pairs (x,y) in X ×X which is reflexive, transitive, and antiysmmetric. A poset X is a
lattice provided each pair of elements has a supremum (sup, meet) and an infimum (inf, join).
Standard lattice notation for sups and infs is followed: sup{x,y} = x∨ y and inf{x,y} = x∧ y.
A complete lattice is a lattice in which each nonempty subset Y has a supremum

∨
Y and an

infimum
∧

Y .
Let E denote a real vector space. It is an ordered vector space when it is equipped with a

partial order relation, denoted ≥, that is reflexive, antisymmetric, transitive, and for each x and
y in E: (i) x ≥ y implies x+ z ≥ y+ z for each z ∈ E and (ii) αx ≥ αy for each scalar α ≥ 0.
Understand all vector spaces encountered in this paper are ordered vector spaces over the real
numbers. A Banach space is a complete normed vector space. An ordered vector space that is
also a Banach space is an ordered Banach space.

Denote the zero element in E by θ unless otherwise noted. A nonempty subset P of E is
said to be a cone if (i) P+P ⊆ P,(ii)λP ⊆ P for each scalar λ ≥ 0,(iii)P∩ (−P) = {θ}. We
note that a cone as defined here is also a convex set and is said to be a pointed convex cone,
or more simply, a convex cone.12 A cone induces a partial order on the vectors belonging to
E. A vector x is said to be positive, written x ≥ θ , provided x ∈ P. The cone is then called the
positive cone of E and is denoted by E+ in the sequel. The standard partial relation expressing
x ≥ y whenever x,y ∈ E is defined by requiring x− y ∈ E+. Write x > θ whenever x ≥ θ and
x 6= θ . Likewise, x > y provided x≥ y and x 6= y.

We reserve the notation P to denote an arbitrary cone (which may not be the positive cone
corresponding to the vector space’s given partial order). The main mathematical theorems signal
a formal generality by employing an arbitrary cone, P. Our applications use the positive cone,
E+, and we use that notation to signal this is the particular cone in our economic model. These
distinctions are important in Section 3.

Let E be an ordered vector space equipped with the partial order derived from the cone E+.
It is a Riesz space provided it is also a lattice. In particular, each nonempty finite subset of E
has a supremum and an infimum in E.13 For each element x ∈ E, we define its positive part,
x+, its negative part x−, and its absolute value, |x|, by the formulas:

x+ = x∨θ ,x− = x∧θ , and |x|= x∨ (−x) .

12Our definition follows Aliprantis and Tourky [8]. They note that definitions of cones may vary among authors.
Krasnosel’skı̆ı̆ and Zabreı̆ko [37] define a cone more broadly (basically using property (ii) and the direct assumption
that the cone is closed and convex. Our definition refines their definition by requiring a pointed cone. The cone’s
closure property is automatically satisfied in a locally convex-solid Riesz space (Aliprantis and Burkinshaw ([4],
p. 163).

13Riesz spaces are also known as vector lattices. Consult Aliprantis and Border ([2], Chapter 8) for a thorough
review of Riesz spaces. We follow their terminology. All Riesz spaces appearing in our paper are Archimedean.
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An order interval in the Riesz space E is a set of the form 〈x,y〉 = {z ∈ E : x≤ z≤ y}. A
subset G of a Riesz space is order bounded from above if there is a y ∈ E such that z≤ y for
each z ∈ G. The dual notion that this subset is order bounded from below is defined similarly.
A subset of a Riesz space is order bounded if it is contained in an order interval. E is order
complete, or Dedekind complete, if every nonempty subset that is order bounded from above
has a supremum (and dually, every nonempty subset that is order bounded from below has an
infimum). The specific spaces appearing in our economic model are Dedekind complete.

A lattice norm on a Riesz space E is a norm, ‖•‖, satisfying |x| ≤ |y| in E implies ‖x‖ ≤
‖y‖. A lattice norm is monotonic in the absolute value of a vector. A necessary and sufficient
condition for a lattice norm is ‖x‖= ‖|x|‖ and θ ≤ x≤ y implies ‖x‖≤‖y‖. This norm’s induced
metric may, or may not be complete. A Riesz space equipped with a lattice norm is a normed
Riesz space. A subset S of a Riesz space E is solid if |u| ≤ |v| in E and v ∈ S implies u ∈ S.
A normed Riesz space’s topology is locally-solid if it is equipped with a base of θ consisting
of solid sets. If a locally-solid normed Riesz space’s topology is also locally convex, then the
topology is said to be locally convex-solid.

There is a notion of sequential convergence in a normed Riesz space that is based on order
structure alone; it is not a topological concept. A sequence {xn} in E is said to order converge
to x ∈ E provided liminfn (xn) = supn (infk≥n (xk)), limsupn (xn) = infn

(
supk≥n (xk)

)
exist and

liminf
n
(xn) = x = limsup

n
(xn) .

In the event that {xn} is monotonic write order convergence as {xn} ↗ x, and dually when
{xn} is antitone, {xn} ↘ x. If E is Dedekind complete Riesz space, then in the former case,
x = supn (xn) and in the latter, x = inf(xn).14

A Banach lattice is normed Riesz space that is complete in the sense of Cauchy with respect
to its lattice norm. The function spaces in our applications turn out to be Banach lattices.15 A
Banach lattice’s topology is Hausdorff and locally convex-solid.

Two norms on E, ‖•‖1 and ‖•‖2, are equivalent whenever there exist constants K,M > 0
satisfying K ‖x‖1 ≤ ‖x‖2 ≤ M ‖x‖1 for each x ∈ X . If E has a lattice norm turning it into a
Banach lattice, then Goffman’s Theorem says any other lattice norm that turns E into a Banach
lattice is an equivalent norm.16

Additional restrictions on a Banach space’s positive cone are required for our applications.
First, the cone must be closed in the norm topology. This condition is automatically satisfied by
positive cones in any (complete) normed Riesz space.17

Second, the positive cone E+ is assumed normal — there is a constant N > 0 such that
θ ≤ x ≤ y implies ‖x‖ ≤N ‖y‖ and N does not depend on the choices of x and y. The nor-
mality constant N = 1 in our setup. The property that a cone is normal is a joint restriction
on the space’s norm and its positive cone (in particular, the underlying partial ordering). Coun-
terexamples show that an arbitrary partially ordered Banach space’s positive cone may not be

14Dedekind completeness may be weakened in favor of assuming E is a σ −Dedekind complete Reisz space.
This means each order bounded countable set has a supremum and infimum in E.

15See Aliprantis and Border [2], Aliprantis and Burkinshaw [4], Meyer-Nieberg [47], and Peressini [48] for
details on Riesz spaces and Banach lattices.

16See Aliprantis and Burkinshaw ([4], pp. 175-176) or Aliprantis and Border ([2], p. 352).
17See Aliprantis and Tourky ([8], p.87).
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normal.18 The positive cone in a normed Riesz space is normal.19 This implies order intervals
in E are norm-bounded.20

Consider an abstract nonlinear operator, denoted by A, that is positive on E+. That is, it is
a self-map: A : E+ → E+. It is monotone (isotone, increasing) on E+ if x ≤ y,(x,y ∈ E+)
implies Ax ≤ Ay. The Koopmans operator derived from a Thompson aggregator is monotone.
The operator A is antitone (decreasing) on E+ if x≤ y,(x,y ∈ E+) implies Ax≥ Ay.

Given a nonlinear operator satisfying AE+ ⊆ E+ we are concerned with proving there is a
unique solution in the cone E+ provided a solution exists. The operator equation is Ax = x
with x ∈ E+; a solution is a fixed point of the operator, A. In some applications there may be a
trivial fixed point, θ . We are only interested in nontrivial fixed points x ∈ E+ with x 6= θ . The
Koopmans operator does not admit a trivial fixed point. The set of fixed points belonging to the
operator A is denoted fix(A). A Least Fixed Point (LFP), x∗, is a point in fix(A) satisfying
x∗≤ x for each x∈ fix(A). Dually, a Greatest Fixed Point (GFP), x∗∗ ∈ fix(A), satisfies x≤ x∗∗

for each x ∈ fix(A).
The notation x >> θ means x ∈ int(E+)≡ E++, where int(E+) denotes the norm interior of

E+. Of course, this is only meaningful when int(E+) 6= ∅ — a strong topological restriction
on the underlying Banach space and its positive cone. An arbitrary cone P contained in E with
nonempty interior in its norm topology is said to be a solid cone. The positive cones in our
model are solid. A solid cone need not be a solid set. A solid cone is a topological concept; a
solid set is an order theoretic notion.

Define the principal ideal generated by the vector y in E+:

Ay = {x ∈ E : |x| ≤ λy for some λ > 0} .

This is a Riesz subspace of E. The Riesz space E possesses an order unit (or, simply a unit),
e > 0, whenever Ae = E.

Define the lattice norm on Ae by the formula:

‖x‖e = inf{λ > 0 : |x| ≤ λe}
= inf{λ > 0 :−λe≤ x≤ λe} .

The latter equality tells us that ‖•‖e is the Minkowski functional of the set 〈−e,e〉. It is readily
confirmed the Minkowski functional of 〈−e,e〉 defines a lattice norm on Ae. This principal
ideal’s lattice norm is also known as the order unit norm. If a principal ideal’s lattice norm is
also complete, then the principal ideal is a Banach lattice. This is our particular applied setting.
A Banach lattice has an order unit if and only if that unit is an interior point of the space’s
positive cone; in addition, its positive cone is norm-closed, convex, solid, and normal.21

This Banach lattice, which equals the principal ideal Ae, is also an example of an abstract
M−space with unit, or simply an AM−space with unit: it has the property whenever x∧y= θ ,
then ‖x∨ y‖e = max{‖x‖e .‖y‖e}.

22 Each AM− space with unit is lattice isometric to the space

18See Guo et al ([28], p. 31 and pp. 40-41) and Khaleelulla ([30], p. 86).
19See Aliprantis and Tourky ([8], p.87).
20See Aliprantis and Tourky ([8], p. 87).
21Aliprantis and Tourky ([8], p. 87).
22The norm propery just displayed may hold for Banach lattices which do not possess a unit, such as c0.

These Banach lattices are the AM-spaces (Absract M spaces). We distinguish the broader AM− space from an
AM− space with unit in our setting. See Aliprantis and Burkinshaw ([4], pp. 187-188).
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of continuous real-valued functions defined on some compact Hausdorff space, K, and denoted
by C (K).23 The constant function e(x) = 1 for each x ∈ K is an order unit in Ae and, more
generally, in the alternative representative space C (K).24 An AM− space with unit is a Banach
lattice with a unit. Its positive cone is solid and normal. AM− spaces with unit form the class
of vector spaces that are natural domains for applications of u0−concave operator theory since
an order unit is the obvious choice for u0.

If Ae is a Banach lattice, then Goffman’s Theorem implies there is basically only one lattice
norm for which it is a Banach lattice. Our application employs this equivalence property to link
two different lattice norms in our application (and see below for more details). The unit ball in
Ae is defined by the order interval 〈−e,e〉 = {x ∈ Ae :−e≤ x≤ e}. Clearly, each point in the
unit ball satisfies ‖x‖e≤ 1 since ‖e‖e = 1. The unit ball is both order and norm-bounded, norm-
closed, and convex. The unit ball is norm-compact if and only if it is a finite dimensional subset
of Ae. The topology of Ae induced by the order unit norm is a locally convex-solid topology.

Krasnosel’skı̆ı̆ and Zabreı̆ko’s [37] theory only assumes that E is an ordered Banach space
with a closed positive cone. We verify a nonlinear operator acting as a selfmap on a Banach
space’s positive cone that is also solid. We assume u0 is an order unit in the positive cone
in order to verify the operator is u0− concave. This implies the underlying ordered Banach
space is an AM− space with unit. The uniform approximation theories we develop in Section
6 assume the positive cone is solid and normal, a feature of any AM− space with unit.

There is an equivalence relation on the positive cone that is useful in formulating uniqueness
theorems (e.g. Marinacci and Montrucchio [44]). Thompson’s [54] comparability relation
states: vectors x,y∈ E+, both non-zero, are comparable (linked), written x∼ y, provided there
exist strictly positive scalers α and β (depending on x) such that:

αy≤ x≤ βy. (2.1)

Evidently this binary relation is an equivalence relation partioning the positive cone into disjoint
components, or constituents, and defines a quotient set E+/ ∼. Set Q(x) = {y ∈ E+ : x∼ y}.
The zero vector does not belong to any constituent. Each component forms a complete metric
space (in Thompson’s metric) suitable for application of the Contraction Mapping Theorem
and thereby solve some nonlinear operator existence and uniqueness problems. Our uniqueness
theory avoids the Thompson metric while clarifying the ways in which the constituents enter
the Krasnosel’skı̆ı̆ and Zabreı̆ko [37] u0− concavity theory.

The vector space of all real-valued functions defined on a non-empty set X is designated by
RX . It is a Riesz space with the usual pointwise partial order. It is not a normed Riesz space.
The corresponding positive cone is denoted by

(
RX)+. There are two subspaces of particular

interest. First is the Banach space (and Dedekind complete Riesz space) of all bounded real-
valued functions defined on X :

B(X) =

{
f : X → R : ‖ f‖

∞
= sup

x∈X
| f (x)|< ∞

}
23Schaefer ([53], p.106) finds the promised lattice isometric representation C (K) by compactification arguments

in several examples of AM-spaces with units. Schaefer discusses how the set K arises by compactification of X
in two important cases: B(X), the bounded real-valued functions on a nonempty set X with its sup norm, and the
related subspace, Cb (X), of all bounded continuous functions defined on X .

24See Aliprantis and Border ([2], pp. 358-356) and Aliprantis and Burkinshaw ([4], p. 194).
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with its usual pointwise partial order and sup-norm ‖•‖
∞

, which is also a lattice norm based on
the order unit e, the constant function e : X→R+ defined by e(x) = 1 for each x∈X . Therefore,
B(X) is an AM− space with unit. Its positive cone is denoted by B+ (X). Here e >> θ and
B+ (X) has a nonempty norm interior. Set B++ (X) = int(B+ (X)). We abbreviate B(X) as B,
B+ (X) by B+, and B++ (X) by B++ when the underlying set X is understood.

Second, there is the principal ideal, Ae, corresponding to Endow Ae with its usual pointwise
partial order and corresponding order unit norm, ‖•‖e. Since e is an order unit in Ae, it follows
that B(X) = Ae and the order unit norm is equivalent to the sup-norm ‖•‖

∞
by Goffman’s

Theorem.
An important example of B(X) occurs for X = N; it is the vector space of all bounded real-

valued sequences with its sup-norm. The sequence e = (1,1,1, . . .) is an order unit. A constant
vector is usually denoted as xcon = {x,x,x, . . .}. The zero vector in this space is denoted by 0
instead of 0con as the meaning is clear. Standard notation for B(N) is `∞. The sup-norm for
x ∈ `∞ is ‖x‖

∞
= supn∈N |xn|, where x = {x1,x2, . . .} and sometimes abbreviated as (xn) or {xn}.

The positive cone is `+∞ and its norm interior, `++
∞ , is nonempty.

B(X) is the prototype for the (weighted) vector spaces encountered in our application. We
work in principal ideals of RX generated by weight functions that turn out to be order units in
those principal ideals.

There are unbounded functions in RX (and they arise in our application), so we transform
some of those functions to bounded functions by applying a weight function, which can be any
function ϕ : X → R+ such that ϕ (x) > 0 for each x ∈ X . Define the ϕ – weighted sup-norm
(or simply ϕ – norm) by the formula: for f : X → R,

‖ f‖ϕ

∞
= sup

x∈X

| f (x) |
ϕ (x)

. (2.2)

The ϕ – weighted sup-norm is easily verified to be a lattice norm on Bϕ (X) where

Bϕ (X) =
{

f : X → R : ‖ f‖ϕ

∞
< ∞

}
.

The space Bϕ (X) with its ϕ – weighted sup-norm is a normed Riesz space. It is a Banach
lattice: | f | ≤ |g| and ϕ (x) > 0 for each x implies | f |/ϕ ≤ |g|/ϕ; take the supremum to verify
‖•‖ϕ

∞
is a lattice norm. Clearly ‖ϕ‖ϕ

∞
= 1, ϕ is an order unit and ‖•‖ϕ

∞
is an order unit norm.

The principal ideal Aϕ (X) is well-defined and its corresponding Minkowski functional, ‖ f‖
ϕ

,
is an order-unit norm on Aϕ (X), where:

‖ f‖
ϕ

= inf{λ > 0 : | f | ≤ λϕ} (2.3)

= inf{λ > 0 :−λϕ ≤ f ≤ λϕ} .

Aϕ (X) is a normed Riesz space since ‖•‖
ϕ

is a lattice norm. Evidently ‖ϕ‖
ϕ
= 1. Suppose

f ,g ∈ Aϕ (X) and | f | ≤ |g| ≤ λgϕ for some λ > 0. Set ‖g‖
ϕ
= λg. Then,

‖ f‖
ϕ
= inf{λ > 0 : | f | ≤ λϕ} ≤ ‖g‖

ϕ
= λg

implies ‖ f‖
ϕ
≤ ‖g‖

ϕ
= λg verifying ‖•‖

ϕ
is a lattice (and order unit) norm. The positive cone,

A+
ϕ (X) is automatically a normal cone with normality constant N =1. Since ϕ is an order

unit, Bϕ (X) = Aϕ (X) and Goffman’s Theorem implies the lattice norms ‖•‖ϕ

∞
and ‖•‖

ϕ
are

equivalent. B(X) and Bϕ (X) are lattice (Riesz) isomorphic. Define the positive linear operator
T :Bϕ (X)→B(X) by T f = f/ϕ . T is positive since T f ≥ θ for each f ≥ θ . It is also monotone:
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f ≤ g implies T f ≤ T g; moreover, T is a one-to-one onto mapping and invertible (its left and
right inverses are bounded functions). For each f ,g∈Bϕ (X), T ( f ∨g) = (T f )∨(T g) verifying
the lattice isomporhism connection.25

Every positive linear operator from a Banach lattice to a normed Riesz space is continuous.26

Hence, the inverse mapping T−1 : (B(X) ,‖•‖
∞
)→ (Bϕ (X) ,‖•‖

ϕ
) sends points in the Banach

lattice (B(X) ,‖•‖
∞
) to the normed Riesz space (Bϕ (X) ,‖•‖

ϕ
) is continuous. Moreover, T−1

carries ( f/ϕ) into f and Bϕ (X) inherits the complete norm structure from B(X). A sequence
{ f n} in Bϕ (X) is a Cauchy sequence if and only if { f n/ϕ} is a Cauchy sequence in B(X).
Hence, Bϕ (X) is a Banach lattice as well. Thus, the positive operator T maps a Banach lattice
to another Banach lattice and is a homeomorphism. The Banach lattice features of Bϕ (X) and
B(X) are the same from lattice theoretic and topological perspectives.

Since ϕ ∈Bϕ (X) is an order unit it follows that ϕ ∈ int‖•‖ϕ

(
B+

ϕ (X)
)

. That is, ϕ >> θ

and B+
ϕ (X) is solid. Evidently, it is also a closed, normal and convex cone. The unit ball in

Bϕ (X) coincides with the order interval 〈−ϕ,ϕ〉 where ‖ϕ‖
ϕ
= 1. The unit ball is a ϕ – norm

closed and bounded set. It is not a compact set in our application. Bϕ (X) is Dedekind complete
Riesz space since B(X) is one. The vector space Bϕ (X) =B(X) if and only if ϕ ∈B+ (X), i.e.
supx ϕ (x) < +∞. This weight function may, or may not, belong to B+ (X) depending on the
specification of X . Hence, Bϕ (X) and B(X) are always lattice isomorphic even when they are
otherwise distinct vector spaces (e.g. weighted ϕ-norm versus usual sup-norm topologies).

Three X domains are used to define distinct bounded function spaces. The first is X = `+∞ ,
second, X = `++

∞ , and last, X = 〈ae,be〉 ⊂ `++
∞ when 0 < a < b < ∞. Suppose the weight

function is ϕ (x) = η (1+‖x‖
∞
)1/γ for some γ,η > 0. This weight function choice is central

to our Thompson aggregator applications. Evidently, 1 ≤ ϕ (a) ≤ ϕ (x) ≤ ϕ (b) < ∞ implies
ϕ ∈ Bϕ (〈ae,be〉). Hence, Bϕ (〈ae,be〉) =B(〈ae,be〉) for this particular weight function. Since
`++

∞ = ∪0<a<b<∞ 〈ae,be〉 and ϕ is unbounded in B(`++
∞ ) (and an order unit) it will be useful to

formally work in Bϕ (〈ae,be〉) even though that space equals B(〈ae,be〉).
Our application stresses the ϕ – norm rather than the Minkowski functional when we define

the utility function space. However, the order structure foundation of Bϕ (X) as the principal
ideal Aϕ in RX generated by {ϕ} provides the basis for deriving the order-theoretic properties
of Bϕ (X) with its ϕ-norm. Interpret the elements of the ϕ-weighted space Bϕ (X) as “functions
which cannot grow faster than ϕ grows.” This restricts which functions in RX are considered
when proving theorems about the operator A, a nonlinear self-map on the positive cone Bϕ (X)+.

The following lemma applies to the Banach lattices B(X) and Bϕ (X). These spaces are
endowed with their standard sup-norms, which are lattice norms, or their equivalent order unit
lattice norms. The sequence appearing in the lemma is assumed lattice norm convergent. Lattice
norm convergence and uniform convergence are the same for these Banach lattices. The lemma
is stated for this special case that includes our intended applications. Aliprantis and Burkinshaw
([7], p. 57) prove a general version holds for any Hausdorff locally solid Riesz space E (with
nets replacing sequences). This is the minimal structure sufficient to insure lattice operations in
E are continuous.

25See the discussions in Aliprantis and Tourky ([8], pp. 18-19).
26Aliprantis and Burkinshaw ([4], p. 175).
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Lemma 2.1. Assume that a sequence {xn} lattice norm-converges to x in a Banach lattice and
xn ≤ xn+1 for each n. Then x is the least upper bound of the set {xn} and the sequence {xn}
order-converges to x.

A proof may be found in Aliprantis ([1], p. 110). The completion property of a Banach lattice
does not play a role since the given sequence is assumed to be lattice norm convergent. A direct
argument implies x = supn {xn} in this special case — even when the underlying Riesz space is
not Dedekind complete.

This lemma connects order theoretic LFP theory in [14] and successive approximations re-
sults reported in Section 6. It tells us that a lattice norm monotonic sequence in a Banach lattice
with uniform limit x is also order convergent with x = supn∈N (xn). This is an important use of
Banach lattice structure and allows us to connect sequential approximations in the u0−concave
operator setting to the LPP construction in our earlier work [14]. This is interesting since the
converse is false in the Banach lattices under consideration: order convergence does not imply
norm convergence.27

3. u0−Concave OPERATOR THEORY

Demonstration that an operator equation’s fixed point is uniquely determined without rely-
ing on a (generalized) contraction mapping theorem is important in applications. The approach
taken here draws on features derived from the presence of a partial order on elements in the
operator’s underlying real Banach space domain and range. Krasnosel’skı̆ı̆’s [35] presents his
original work on concave operator theory in a Banach space’s positive cone and also introduces
u0− concave operators. Krasnosel’skı̆ı̆ and Zabreı̆ko’s [37] theory establishes suitable condi-
tions showing at most one solution exists. Guo and Lakshmikantham ([27], pp.59-69) provide
additional theory and examples of u0− concave operators.

3.1. The Krasnosel’skiı̆ and Zabreı̆ko Theorem. Fix a non-zero element, denoted by u0, in
a cone P contained in a Banach space. Maintain the assumption that this cone is nonempty,
norm-closed, and convex. Refer to P as the cone P in our general mathematical overview; E+

features in our applications.
Let θ denote the zero element in P. An operator A : P→ P is called u0− concave on P if for

each non-zero element x ∈ P there are positive scalars a(x) and b(x) such that

a(x)u0 ≤ Ax≤ b(x)u0, (3.1)

and if for each x ∈ P with a1 (x)u0 ≤ x≤ b1 (x)u0, for some a1,b1 > 0, we have

A(tx)≥ [1+η (t,x)] tAx for 0 < t < 1, (3.2)

where η (t,x)> 0.
The restrictions a1 (x)u0 ≤ x ≤ b1 (x)u0 and u0 6= θ taken together mean that x > θ , but not

necessarily that x >> θ as u0 is not assumed to be an order unit in P. Inequality(3.2) implies
A(tx) > tAx holds. This implies A is strictly subhomogeneous, a weaker property than strong
subhomogeneity as featured in Marinacci and Montrucchio [44].

The inequalities in (3.1) express the link relation holds between u0, Ax, and x. That is, (3.1)
is equivalent to Ax∼ u0 for each non-zero x∈ P with x∼ u0. In our application P is a solid cone

27Peressini ([48], p. 91) has an illustrative example.
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and u0 is an order unit in P; hence, u0 is an element of the norm-interior of P. Transitivity of
the link relation implies Ax∼ x as well. This insures that if x is a norm-interior point of P, then
so is Ax. Since the norm-interior of P is a constituent of P/∼ both Ax and x belong to Q(u0).

The main Krasnosel’skiı̆ and Zabreı̆ko result ([37], Theorem 46.1, p. 290) is stated below.28

Theorem 3.1. (Krasnosel’skiı̆ and Zabreı̆ko). Let A be a monotone operator which is u0−
concave on P. Then the equation

Ax = x
has at most one non-zero solution in P.

Their theorem emphasizes order theoretic ideas based on the partial ordering of the underly-
ing function space as determined by the elements of the cone P (E+ in our model). Topological
considerations enter through the underlying Banach space structure (which explicitly deter-
mines the norm-topology) whereby P is a closed set. It is of some interest to note that this result
does not require the cone P to be a normal cone. However, the positive cones are normal in our
setup and this property plays an important structural role in iterative approximation theory.

Krasnosel’skiı̆ and Zabreı̆ko’s Theorem imposes two conditions on the operator A — it is
monotone and u0−concave. The Koopmans operator is monotone, so the only task in applying
their theorem in our setting concerns verification that it is a u0− concave operator. We verify
this property taking a roundabout approach using Liang et al’s [40] sufficient conditions for a
u0− concave operator.

3.2. Subhomogeneous and order-concave Operators. The Koopmans operator belonging to
a Thompson aggregator is a self-map on the positive cone in a real ordered Banach space.
An order-concave operator is a crucial criterion in Liang et al’s ([40]) sufficient condition for
u0 − concavity. General related subhomogeneity conditions along with order-concavity are
reviewed below.

Fix an ordered Banach space (denoted E) as well. Set E+= {x ∈ E : x≥ θ}, where θ denotes
the zero element in E+. Assume it is a nonempty, norm-closed and convex. Fix the monotone
operator A : E+→ E+. Then, A is called:29

(i): subhomogeneous on E+ if A(tx)≥ tAx for each t ∈ [0,1] and each x ∈ E+;
(ii): strictly subhomogeneous if A is subhomogeneous and the inequality A(tx)> tAx for

each t ∈ (0,1) and each θ 6= x ∈ E+

(iii): strongly subhomogeneous on E+ if A(tx)≥ ϕ (t,x)Ax for each x ∈ E+,x 6= θ , and
t ∈ (0,1) , and some ϕ (t,x) where t < ϕ (t,x)< 1.

(iv): subhomogeneous of order r ∈ (0,1) (also known as r− concave) on E+ if for
A(tx)≥ trAx for each t ∈ (0,1) and each x ∈ E+, x 6= θ ;

(v): order-concave if for each t ∈ [0,1] and each x,y ∈ E+ with y≥ x:

A(ty+(1− t)x)≥ tAy+(1− t)Ax. (3.3)
28Krasnosel’skiı̆ ([35], p. 188) presents the first formulation of this result within the context of nonlinear

eigenvalue problems.
29Amman [9] introduced the notion of an order-concave operator. Krasnosel’skiı̆ [35] introduced subhomoge-

neous operators; also see Krasnosel’skiı̆ and Zabreı̆ko [37]. Potter [49] introduced subhomogeous operators of
order r as r− concave, the name we will use in sequel for this subhomogeneity property. An order concave opera-
tor is also an h-subconcave operator for each θ ≤ h≤ Aθ as noted by Marinacci and Montrucchio [44], a property
that implies A is subhomogeneous.
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A nonempty subset S of P is order-convex if x,y ∈ S, y≥ x implies ty+(1− t)x ∈ S for each
t ∈ [0,1]. The positive cone E+ is order convex since that cone is a convex set by assumption.
Set x = θ and let y ≥ θ and suppose A is order-concave on E+. Then, A is subhomogenous.
Order-concavity is a stronger property than subhomogeneity, but it is weaker than assuming A
is concave (i.e. inequality (3.3) holds for arbitrary x,y ∈ E+, not just ordered pairs with y≥ x).
Some authors (e.g. [27] and [28]) identify the terms concave and order-concave operators. We
keep the prefix “order” in place as a reminder the condition y≥ x has an important role to play
in this theory. order-concavity alone does not imply u0− concavity. However, order-concave
operators are monotone operators (Guo et al [28], Lemma 3.1.6).

Krasnosel’skı̆ı̆ and Zabreı̆ko’s [37] theory combines minimal order theoretic ideas based on
the positive cone’s defining partial order and topological properties derived its Banach space
structures. Their formal assumptions are parsimonious. The underlying ordered Banach space
need not be a Riesz space, Dedekind complete, or a Banach lattice. The positive cone may
be neither normal nor solid. We verify the Koopmans operator acts on ordered vector spaces
which are Banach lattices with units in order to verify it is u0− concave. The corresponding
positive cones are normal and solid. These properties play an indispensable role in our proof it is
u0−concave as well as in a construction showing there is an iterative approximation uniformly
converging to the Koopmans equation’s unique solution.

Refinement of Krasnosel’skı̆ı̆ and Zabreı̆ko’s [37] theory to the case of an operator acting
on a AM− space with unit has another benefit. This property enables a connection between
lattice-norm convergent monotone sequences and their order sequence limits. This links itera-
tive methods based on u0− concavity to order theoretic LFP theory [14]. The role of an order
unit in this approach implies each element of fix(A) is an interior point of the space’s positive
cone, which is nonempty when an order unit exists. Verification that the model satisfies Liang
et al’s [40] sufficient condition exploits the existence of order units and the linked relation in a
nontrivial manner.

3.3. The Liang, Wang and Li Order-Concave Operator Theorem. Fix the function u0 > θ

with u0 ∈ P. Define
Q(u0) = {x ∈ P : x∼ u0} . (3.4)

The constituent Q(u0) is readily seen to be a convex subset of P. It may not be a solid cone
since u0 need not be an order unit. Hence, Q(u0) may not equal its norm-interior. Indeed, the
norm-interior of P may be empty at this level of generality.

Let P′ = range(A) ⊆ P denote the range of the operator A acting on the cone P. This range
set P′ may also be a cone, but this is not a formal requirement. What matters is that P′ inherits
the partial order induced by the cone, P as well as be a convex subset of P.

Condition (3.1) differs from (3.4). The former uses the image of x under the mapping A,
whereas the latter employs the domain point, x. The set Q(u0) is the operator’s “target.” This
is why we must establish (3.1) in order to verify A has the u0− concavity property. There is
a subtle point to add — (3.1) excludes the function θ . Liang et al’s [40] sufficient condition
(below) applies to θ as well as all other points in P. This observation underlies our application
of Liang et al’s [40] verification technique.

The convexity of the domain and range spaces is critical for the inequality above to make
sense. The former set is convex since the cone is a convex set. The latter is an assumption that
must be checked in applications.
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The following lemma is crucial. It is implicit in Liang et al’s proof ([40], Lemma 4, p. 579).

Lemma 3.2. Suppose A : P→Q(u0). Then for each x ∈ P there is a positive number µ (x) such
that

Aθ ≥ µ (x)Ax. (3.5)

Proof. Let x∈P. Then Ax∈Q(u0) by assumption. By the definition of Q(u0) there are numbers
a(Ax)> 0, b(Ax)> 0 such that

a(Ax)u0 ≤ Ax≤ b(Ax)u0.

In particular, for x = θ ∈ P, the above inequality is true:

a(Aθ)u0 ≤ Aθ ≤ b(Aθ)u0.

Combining both sets of inequalities as follows we have

Aθ ≥ a(Aθ)u0 =

(
a(Aθ)

b(Ax)

)
b(Ax)u0

≥ µ(x)Ax,

where

µ(x)≡
(

a(Aθ)

b(Ax)

)
> 0.

�

We notice that the function µ (x) depends on the fixed operator, A, and the zero function, θ

as x varies in P.

Theorem 3.3. (Liang et al [40]) Suppose A : P→ Q(u0) is an order-concave operator. Then A
is a u0− concave operator.30

Proof. For each 0 < t < 1: the order-concavity condition implies, since x≥ θ , that

A(tx) = A(tx+(1− t)θ)

≥ tAx+(1− t)Aθ

≥ tAx+(1− t)µ (x)Ax (by (3.5))

= t
(

1+
(1− t)µ (x)

t

)
Ax.

Now set

η (t,x) =
(1− t)µ (x)

t
> 0

since µ (x)> 0. Hence, A is a u0− concave operator as we have shown

A(tx)≥ (1+η (t,x)) tAx.

�

30We include their proof in order to show how the previous lemma implies an ordered concave operator is also
a u0− concave operator.
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The practical impact of this result is plain — check that an operator is a u0−concave operator
on the cone P by verifying the sufficient condition in Liang, Wang, and Li’s Theorem! This
effectively means checking that the given operator is order-concave and satisfies condition (3.5).
As the cone is convex, it is also an order convex set.

Marinacci and Montrucchio ([44], Lemma 1 and Theorem 2) prove existence and uniqueness
theorems for monotone order-concave operators (and, hence subhomogeneous operators) when
the underlying ordered vector space has an order unit and either it is Dedekind complete or the
nonlinear operator is order continuous on the space’s positive cone. In either case, it is important
to clarify that sups and infs of finitely many elements must be well-defined. Hence, the actual
ordered vector space structure assumed must be a Riesz space. In that situation, the principal
ideal generated by the order unit is well-defined. But, it is NOT assigned its usual lattice norm
topology (in fact, any topology). Order-convex sets in Riesz spaces are order intervals. Their
detailed arguments apply to operators that leave certain order intervals invariant; they use the
order unit to exclude lower perimeter fixed points ([44], Theorem 2). The lower perimeter
is an order theoretic analog of the positive cone’s norm boundary when the vector space is a
Riesz space. The lower perimeter is nonempty when an order unit is present ([44], Proposition
3). They comment that for a normed Riesz space the lower perimeter is the positive cone’s
lattice norm topological boundary. If a normed Riesz space has a unit, then the positive cone’s
topological boundary is nonempty.

Their main order theoretic uniqueness result (Theorem 2) does not combine order and topo-
logical structures possible when the underlying ordered vector space is a normed Riesz space.
Marinacci and Montrucchio [44] combine order and topological perspectives into their unique-
ness theorems for recursive utility and dynamic programming applications. We also take this
combined perspective in applying the u0− concave operator theory exposited here to proving
the Koopmans equation based on a Thompson aggregator has a unique solution. This additional
topological structure is the source for improving on the mere existence and uniqueness avail-
able from their purely order theoretic structure (e.g. the possibility of an iterative approximation
theory).

The Koopmans operator is shown by us in [14] to be order continuous on the positive cone
of an AM− space with unit. It is also invariant on the order intervals required by Marinacci
and Montrucchio’s order theoretic result ([44], Theorem 2). The main issue is proving the
Koopmans operator has no fixed points in the positive cone’s lower perimeter. The latter point
is better addressed in the topological setting as that is where full advantage of our Banach
lattice machinery is available and gives an intuitive analytical description of the positive cone’s
topological boundary in Section 3.4 below. Combining order and topological methods sharpens
results and expands them (see Section 6) beyond what order theory alone provides.

3.4. The AM-Space with Unit Case. The application of u0− concave operator theory to the
Koopmans operator, TW , turns on checking Liang et al’s [40] sufficient condition. Doing so
means there must be a clear choice of the cone, P, and selection of the point u0. Verification
that TWU belongs to the corresponding set Q(u0) whenever U ∈ P, and checking TW is an
order-concave operator are critical steps. One important consideration is that we must show
TW θ ∈ Q(u0). Additional restrictions on the underlying commodity space must be imposed to
show that inclusion holds and the Koopmans operator is a u0− concave operator. We restrict
the commodity space domain and employ Banach lattice properties when a unit is present. This
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restriction allows us to prove TW θ ∈ Q(u0) when u0 is an order unit. We offer an economically
motivated condition towards this end in Section 4. The key is to fully employ the commodity
and utility space’s economically motivated Banach lattice with units properties.

Let E be an AM−space with unit in the positive cone, E+. Our model places utility functions
that might solve the Koopmans operator equation in the space B(X) with its usual partial or-
dering and appropriate specifications of the underlying commodity space, X . The advantage of
assuming E has order units is the positive cone’s norm interior is nonempty. Hence, the positive
cone’s boundary, defined by ∂0E+ = E+�E++, is nonempty. In the case of B(X) a function
f : X →R+ is a boundary point if infx∈X f (x) = 0. The positive cone, B+ (X) has an order unit,
namely the constant function e(x) = 1 for each x ∈ X . Hence, its norm-interior is nonempty.
Evidently θ ∈ ∂0B+ (X), so the boundary is also nonempty. Marinacci and Montrucchio [44]
characterize the positive cone’s boundary when the underling Riesz space has an order unit.

Lemma 3.4. An element x ∈ E+ does not belong to ∂0E+ if and only if x is comparable to u for
some order unit, u, in E+.

In particular, when u is an order unit in E, then u>> θ and E+ is solid and the linked relation
yields Q(u) = int(E+). The lemma immediately yields:

Corollary 3.5. An element x ∈ E+ belongs to ∂0E+ if and only if x is NOT comparable to any
order unit u in E+.

Clearly θ ∈ ∂0E+ by this test. The next lemma applies to a monotone operator where E is
a Banach lattice (AM space) with unit, u. The hypothesis A(E+) ⊂ Q(u) is critical. Order-
concavity does not enter into this lemma and its corollary.

Lemma 3.6. Let A : E+→ Q(u) be a monotone operator. Then
(a): Aθ ∼ u;
(b): Ax∗ = x∗ and x∗ > 0 implies x∗ ∼ u, i.e., x∗ >> θ .

Proof. (a) follows by the lemma’s maintained hypotheses.
(b) A monotone, θ ≤ x and θ < x imply Aθ ≤Ax. As Aθ is linked to u, it follows Ax∗= x∗> θ

is also linked to u , i.e. Ax∗ ∼ u. Hence, x∗ ∼ u as well and x∗ ∈ E++. �

Each of the operator’s fixed points (that are non-zero) are norm-interior points of the positive
cone. There is an immediate corollary: A has no fixed points in the positve cone’s boundary.

Corollary 3.7. Ax 6= x for each x ∈ ∂0E+.

Proof. If x ∈ ∂0E+, then x is not linked to u. But Ax ∈ Q(u) by assumption. Therefore Ax 6=
x. �

This corollary has an important implication. Suppose that A(E+) ⊆ E+ and Aθ ∈ ∂0E+.
That is, Aθ /∈Q(u). Suppose further An+1θ = A(Anθ)∈ ∂0E+ with n = 1,2, . . . . If, in addition,
E is a Dedekind complete Riesz space, A is order continuous, {Anθ}∞

n=1 is increasing, and order
bounded from above, then supn {Anθ} = A(x̄) = x̄ ∈ ∂0E+.31 This situation does not exclude
the possibility A has another fixed point in Q(u). Hence, the assumption that A(E+) ⊂ Q(u)
(underlying inequality (3.5)) is important in showing the operator has, at most, one fixed point
in E+ by ruling out the possibility of a fixed point in ∂0E+. Hence, fix(A)⊂ Q(u).

31See Becker and Rincon-Zapatero [14] for details of this possibility in the Koopmans operator setting.
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The Koopmans operator has this feature when we consider the utility space is B+ (`+∞) since
TW θ ∈ ∂0B+ (`+∞) as infC∈`+∞ TW θ (C) = 0 is achieved when C = 0con provided W (0,0) = 0
(see the formal definition of the Koopmans operator below). Moreover, its N− stage iterate,
T N

W θ ∈ ∂0B+ (`+∞). In this instance, we have the situation outlined above and the operator’s
Least Fixed Point belongs to ∂0B+ (`+∞). It cannot be comparable to any order unit. There is
also a Greatest Fixed Point, which resides in B++ (`+∞), and is comparable to an order unit. The
uniqueness theory based on Krasnosel’skı̆ı̆ and Zabreı̆ko’s [37] theory does not apply. Hence,
we must exclude the LFP as an element of ∂0B+ (`+∞). The order unit structure can be exploited
to do so, but we must restrict the commodity space. This eliminates the boundary points in
∂0`

+
∞ as domain elements in the utility space. Thus, we reset the utility space to B+ (`++

∞ ) by
setting X = `++

∞ , the norm interior of `+∞ . We build this structure by first replacing B+ (`+∞)
by B+ (〈ae,be〉). Here, 〈ae,be〉 is the order interval determined by e, the order unit in `+∞ , and
the choice of scalars a,b satisfying 0 < a < b < ∞. The Koopmans operator acting on the zero
function in B+ (〈ae,be〉) produces an order unit in the range space, B+ (〈ae,be〉). Liang et
al’s inequality (3.5) is verified at u0 = TW θ (chosen for the u0− concavity property) as it is an
order unit in B+ (〈ae,be〉). The Koopmans operator will be shown to have a fixed point in this
positive cone’s norm-interior. Once this is established, we can extend the result to B+ (`++

∞ )
by recognizing that `++

∞ is the union of all the order intervals 〈ae,be〉 as a and b vary over the
positive scalars with a < b.

4. RECURSIVE UTILITY THEORY FOR THE THOMPSON AGGREGATOR CLASS

Concave Thompson aggregators are defined in this section. Our assumptions strengthen those
in Marinacci and Montrucchio [43] by imposing joint concavity and continuity properties on
the aggregator. These augmented restrictions on the class of Thompson aggregators imply the
Koopmans operator is order-concave, a critical ingredient in applying Liang et al’s [40] tech-
nique.

4.1. Concave Thomson Aggregators. The class of Thompson aggregators covered by our
uniqueness theory is delineated by the following four basic assumptions.

Definition 4.1. W : R2
+→ R is said to be a concave Thompson aggregator if it satisfies prop-

erties (T1) – (T6):
(T1): W ≥ 0, continuous, and monotone: (x,y)≤ (x′,y′) implies W (x,y)≤W (x′,y′).
(T2): W (x,y) = y has at least one nonnegative solution for each x≥ 0.
(T3): W is a concave function of (x,y).
(T4): W (x,0)> 0 for each x > 0.

(T5): W is γ− subhomogeneous — there is some γ > 0 such that:

W (µγx,µy)≥ µW (x,y)

for each µ ∈ (0,1] and each (x,y)∈R2
+. If the defining inequality in (T 5) is an equality,

then we say W is γ−homogeneous.
(T6): W satisfies the MM-Limit Condition:

lim
t→∞

W (1, t)
t

< 1, (4.1)

with t > 0.
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The definition of a concave Thompson aggregator builds in it is jointly continuous and con-
cave in (x,y) over R2

+. This differs somewhat from the formal assumptions given in Marinacci
and Montrucchio ([43], [44]). In the sequel understand the shortened expression Thompson
aggregator refers to concave Thompson aggregators unless otherwise indicated.

Our strengthened axioms are appropriate for solving the existence and uniqueness problem
for the Koopmans operator equation by u0− concavity theory. Our maintained conditions are
satisfied in the major examples of Thompson aggregators.

(T 6) is a joint restriction on the aggregator function and the underlying commodity space.
For example, it admits productive technologies exhibiting diminishing marginal returns to cap-
ital accumulation while excluding sustainable growth production models.

4.2. Examples of Thompson Aggregators. There are two important sources for examples.
The Koopmans, Diamond, and Williamson [34]), or KDW aggregator (defined below) has
parametrizations placing it outside the Blackwell class and firmly in the Thompson family.
There are also many new examples based on the functional form for utility functions and pro-
duction functions commonly studied in microeconomic theory. For example, both the CES
(Constant Elasticity of Substitution) and KDW aggregators satisfy (T 1)− (T 6).

The class of CES aggregators are defined parametrically by the formula:

W (x,y) = (1−β )xρ +βyρ , for 0 < ρ < 1. (4.2)

The parameter β is restricted — 0 < β < 1. Note that this family of functions is positively
homogeneous of degree ρ . The elasticity of substitution is σ := 1/(1−ρ) ;ρ 6= 1. All six
Thompson aggregator criteria are met when σ > 1. Assume this restriction applies without
further notice. The CES Thompson aggregators are readily shown to satisfy (T 5) with γ = 1.

Other Thompson aggregators are available as variations on the CES theme (see Marinacci and
Montrucchio [43]). For example, the quasi-linear aggregator W (x,y) = x+βyρ is Thompson
for the same parameter restrictions imposed on the CES family.

The KDW aggregator is defined by the formula

W (x,y) =
δ

d
ln
(

1+axb +dy
)

where a,b,d,δ > 0 and b < 1. This is a Thompson aggregator; it satisfies (T 5) with γ =
b−1. It is a Blackwell aggregator when “discounting” is assumed using the restriction δ < 1.
Similarly, “upcounting.” or “no discounting,” is permissible in the Thompson class. These cases
correspond to δ > 1 and δ = 1, respectively.

Bloise and Vailakis ([18], Example 3) define the concave Thompson aggregator W (x,y) =
x+min{y,α +βy} where the parameters satisfy α > 1 and 0 < β < 1. Our existence and
uniqueness theories apply to this functional form. The CES, KDW and Bloise-Vailakis aggre-
gators satisfy W (0,0) = 0.

Balbus [10] assumes the given aggregator is strictly increasing in (x,y), jointly continuous
and W (x,y) = 0 if and only if x = 0 and y = 0. He assumes neither our concavity assumption
nor the weaker concave at the origin condition required by Marinacci and Montrucchio ([43],
[44]). Instead, Balbus imposes the aggregator restriction: W is r-concave in y for each x: there
is a number r ∈ (0,1) such that for each t ∈ (0,1), W (tx, ty)≥ trW (x,y). This property holds,
for example, in the case of CES aggregator (4.2) when for 0 < ρ < 1. Balbus’s assumptions
are sufficient to verify the Koopmans operator is an r-concave operator on the norm interior
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of the utility space’s positive cone. This yields an existence and uniqueness theorem as an
application of Guo, et al ([28], Theorem 3.1.7, p. 94). We apply the r− concavity property in
Section 6 on the uniqueness of the fixed point obtained as the uniform limit of the sequence of
iterations of the Koopmans operator over the natural numbers and the closely related existence
of a posteriori error estimates for each iteration.

4.3. The Commodity Space. The commodity space is the positive cone, `+∞ , of the vector
space `∞, which is a Banach lattice with unit e = (1,1,1, . . .). This is a typical commodity space
in deterministic optimal growth models where all feasible consumption paths are bounded by
diminishing marginal returns in the model’s production sector. There is also a technical reason
for choosing this commodity space — its order intervals underlying our proofs must be shift
invariant in the recursive utility framework. Marinacci and Montrucchio [43] use a different
shift invariant domain that, unlike ours, accommodates growing economies. However, they use
the same order interval constructions in their sequel [44] on uniqueness. Our choice of domain
is motivated by its intuitive economic basis and for its technical convenience in demonstrating
the Koopmans operator satisfies hypotheses supporting u0− concavity theory.

The positive cone’s norm interior, `++
∞ , has a prominent place in Thompson aggregator

uniqueness theories. Counterexamples show uniqueness of the Koopmans operator’s fixed point
can fail at consumption sequences in the positive cone’s boundary.32 The positive cone’s norm
interior is characterized as `++

∞ = {x ∈ `+∞ : inft xt > 0}. It consists of order units. Each or-
der interval 〈ae,be〉 with 0 < a < b < ∞ is a subset of `++

∞ . Moreover, `++
∞ = ∪a,b>0 〈ae,be〉;

evidently liminft xt ≥ inft xt .
The boundary of the positive cone, denoted ∂0`

+
∞ , is the complement of the interior relative

to the positive cone. That is, ∂0`
+
∞ = `+∞�`++

∞ , and it is a normed-closed subset of `+∞ .
A sequence x ∈ ∂0`

+
∞ if and only if inft xt = 0. A sequence belongs to c0 if it converges

to zero. A convergent sequence is also bounded, and hence an element of `∞. The set c0 is
the set of null sequences. Its positive cone, c+0 , is the corresponding set of nonnegative null
sequences. Assign c0 the sup-norm topology. It is a Banach lattice that contains no order
units.33 Each point in c+0 ⊂ `+∞ must be a boundary point in `+∞ . There are other boundary
points. Any sequence in `+∞ with finitely many components equal to zero is also a boundary
point. For instance, the sequence {0,1,1, . . .} ∈ ∂0`

+
∞ . Likewise, each sequence in `+∞ that has a

convergent null subsequence must be a boundary point as well.
Consumption sequences in the commodity space are generally denoted by C = {ct}∞

t=1; we
write C = {ct} when the meaning is clear. Define the shift operator S : `+∞ → `+∞ according
to the rule C = {c1,c2,c3, . . .} 7→ SC =

{
c2,c3, . . .

}
.34 The definition of the shift operator says

that the positive cone is invariant under its action: S (`+∞) ⊆ `+∞ . There are other sets which are
invariant with respect to the shift and they are important in our uniqueness theory. Evidently `++

∞

is shift invariant. However, the boundary set, ∂0`
+
∞ , is NOT shift invariant: S ({0,1,1, . . .}) =

{1,1,1, . . .} /∈ ∂0`
+
∞ .

32See Becker and Rincón-Zapatero [13] and Bloise and Vailakis [18].
33See Aliprantis and Border ([2], p. 529).
34The shift operator can be defined as a self-map on the vector space `∞. However, the shift operator is invariant

on that space’s positive cone and this is the feature we utilize.
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We prove our uniqueness theorem for consumption sequences belonging to an arbitrary order
interval of the form 〈ae,be〉 with 0 < a < b < ∞. Interpret ae as the minimum consumption se-
quence where each term delivers the consumption necessary to sustain life within a time period.
Regard the constant sequence be where the scalar b is the maximum consumption goods out-
put produced using the maximum sustainable capital stock input in a one or two-sector growth
model with diminishing returns. The sequence be overstates prospective consumption in the
sense that it bounds output available for consumption goods at the production level of the max-
imum sustainable capital stock. An agent consuming that level at some time would not be able
to continue production as its capital would be zero thereafter (e.g. assuming a standard Cobb-
Douglas production function). The sequence be places a weak upper bound on the maximum
consumption in any one period given the technology. This suffices to set an upper bound on
consumption in each period. The restriction of consumption to an order intervals of mimimal
and maximal consumption sequences is a proof device designed to build an adequate unique-
ness theory for the Koopmans operator. It first appears in Martins-da Rocha and Vailakis [46].
Subsequently, Marinacci and Montrucchio [44] as well as us [13] use this restricted commodity
space in our uniqueness theories.

4.4. The Space of Possible Utility Functions. Utility functions corresponding to a Thompson
aggregator may be unbounded from above. We introduce a weighted space of possible utility
functions in order to work within a space of suitably bounded real-valued functions.

First, define a weight function, ϕγ following Marinacci and Montrucchio’s [43] specification.
For each C ∈ `+∞ define ϕγ by the formula:

ϕγ (C) = (1+‖C‖
∞
)1/γ . (4.3)

This weight function is uniformly continuous and convex on `+∞ with respect to the sup-norm
topology.35 Here, the parameter γ > 0 appearing in the weight function is taken from (T 5). Note
that This weight function as well the sup-norm entangle preference and technology parameters
— the parameter γ comes from the model’s preference side and the presence of a maximum
sustainable capital stock in standard one and two-sector models subject to diminishing returns
sup-norm bounds consumption sequences. This function is monotone: C≤C′ implies ϕγ (C)≤
ϕγ (C′).

A function U : `+∞ → R is ϕγ− bounded provided

‖U‖
γ

:= sup
C∈`+∞

|U (C)|
(1+‖C‖

∞
)1/γ

<+∞.

The set of all ϕγ− bounded real-valued functions with domain `+∞ is denoted by Bϕ (`
+
∞). This

space is also lattice isomorphic with B(`+∞). As the weight function remains fixed we abbre-
viate this space using the notation B given these spaces are lattice isomorphic and there is no
ambiguity about the underlying commodity space. Then, its positive cone is B+. Put differently,
B is the set of ‖•‖

γ
−bounded real-real valued functions defined on `+∞ .

The zero function, θ , is defined by θ (C) = 0 for each C. The zero function is the origin
in the vector space B; it is a Dedekind complete Riesz space with the usual pointwise partial

35The norm ‖•‖ is a uniformly continuous real-valued function defined on the set `∞. See Aliprantis and
Burkinshaw ([5], p. 218). Hence, the function ϕγ (C) is continuous as the composition of the continuous functions
1+‖C‖ and φ (x) = x1/γ for x > 0.
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ordering. Clearly the weight function ϕγ satisfies ϕγ (θ) = 1 and ϕγ (C)≥ 1 for each C. More-
over,

∥∥ϕγ

∥∥
γ
= 1 as well and ϕγ is an order unit in B. Hence, B is a Banach lattice with unit

equipped with the lattice norm ‖•‖
γ
. The cone B+ is ‖•‖

γ
– closed, solid, convex, and a normal

cone (with normal constant, 1).
The commodity space domain `+∞ may be replaced by the order interval 〈ae,be〉 ⊂ `++

∞ on
economic grounds. The ‖•‖

γ
remains well-defined; set B(a,b) is the set of ‖•‖

γ
− bounded

real-valued functions on 〈ae,be〉 and B+ (a,b) is its positive cone. The weight function ϕγ is an
order unit in B+ (a,b) and B+ (a,b) is a ‖•‖

γ
– closed, solid, convex, and normal cone. It is a

Banach lattice with unit.
Set B(`++

∞ ) equal to the ‖•‖
γ
− bounded real-valued functions defined on `++

∞ with posi-
tive cone B+ (`++

∞ ) and is a Banach lattice with units. Here, consumption sequences in the
positive cone’s boundary are formally excluded from possible consumption. The solution to
the uniqueness problem turns out to be a function in B+ (`++

∞ ). This use of `++
∞ over the do-

main `+∞ amounts to imposing a regularity condition on admissible on possible solutions to the
Koopmans equation by restricting the utility space.36

4.5. The Koopmans Equation. The aggregator approach to recovering recursive utility rep-
resentations of an underlying preference relation defined on the given commodity space is ex-
pressed in terms of a functional equation. This equation takes the aggregator function as the
primitive concept. The Koopmans equation for recursive utility is defined for each C ∈ `+∞ by
the formula (where S is the shift operator):

U (C) =W (c1,U (SC)) . (4.4)

A solution of this equation is a recursive utility function representation of the preference rela-
tion. Of course, it all depends on what is meant by a solution. Proving this functional equation
has a solution turns on recasting the problem as demonstrating a corresponding nonlinear opera-
tor, known as the Koopmans operator (denoted by TW ) has a fixed point in the desired function
space of possible solutions. Formally define the Koopmans operator given a functionU ∈ B+

by the following equation for each C ∈ `+∞ :

(TWU)(C) =W (c1,U (SC)) . (4.5)

The Koopmans operator is a self-map on B+ (`+∞). In fact, there is function UT ∈ B+ (`+∞) with
UT >> θ such that for the order interval

〈
θ ,UT〉⊂B+ (`+∞), it can be shown that TW

(〈
θ ,UT〉)⊂〈

θ ,UT〉.
The function UT is defined by

UT (C) =W (1,y∗)ϕγ (C) .

Here, the element y∗ > 0 is the unique solution to W (1,y∗) = y∗ (which exists since W is a
concave Thompson aggregator and (T 6) holds). Evidently UT ∈B+ (`+∞), UT ≥ θ ,UT (C)> 0
for each C, and

∥∥UT
∥∥

γ
=W (1,y∗)<+∞. As infC∈`+∞ UT (C)> 0 it follows that UT ∈B++ (`+∞)

since it is comparable to the order unit, ϕγ ∈ B+ (`+∞).

36Bertsekas ([16], pp. 141-164; pp. 265-282.) develops notions of regularity conditions for solving dynamic
programming problems. The notion of a restriction on possible solutions in the Thompson aggregator model is
similar in spirit as the regularity ideas presented by Bertsekas.
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The Koopmans operator has extremal fixed points in the order interval
〈
θ ,UT〉 ⊂B+ (`+∞)

according to the existence theory in our paper [14]. That is, there is a LFP, denoted U∞, and a
GFP, U∞, and any U ∈ fix(TW ) ⊂

〈
θ ,UT〉 satisfies U∞ ≤U ≤U∞.37 There is a unique fixed

point whenever U∞ =U∞.
For an aggregator satisfying W (0,0) = 0, as is the case in the concave Thompson aggregator

examples,
inf

C∈`+∞
TW θ (C) = 0

since TW θ (C) = W (c1,0) and for C with c1 = 0, TW θ (C) = 0. Hence, TW θ ∈ ∂0B+ (`+∞) and
T N

W θ ∈ ∂0B+ (`+∞) for each natural number N as W (0,0) = 0. LFP existence theory shows
that T N

W θ ↗U∞ pointwise and in order with U∞ = supn
(
T N

W θ
)
. Clearly W (0,0) = 0 implies

U∞ (0con) = 0 and U∞ ∈ ∂0B+ (`+∞). A parallel argument for iteration of the Koopmans operator
over the natural numbers initiated at UT yields T N

W UT ↘U∞. Each T N
W UT is comparable with

UT , so each iterate T N
W UT is a point in the norm-interior of B+ (`+∞) as well: UT (0con) = y∗ and

UT (C)≥ y∗ > 0 for each C ∈ `+∞ . Hence, for each N,

inf
C∈`+∞

T N
W UT (C)> 0,

and U∞ is a norm interior point of B+ (`+∞).
There are several counterexamples to the Koopmans operator has a unique solution when

evaluated at boundary consumption bundles. One important case is the Bloise and Vailakis
[18] concave Thompson aggregator case. Its corresponding recursive utility function is not
uniquely determined. Uniqueness fails for an uncountable number of consumption sequences
in the positive cone of c0. These points of failure are boundary points in the larger commodity
space’s positive cone. Their uniqueness theory, and ours, exclude such consumption bundles.
We must exclude the entire boundary of `+∞ including all positive null sequences.

The implications of non-uniqueness for boundary consumption sequences has an important
consequence when viewed in the utility space, B+ =B+ (`+∞). Both extremal fixed points are
elements in B+, but exhibit a fundamental difference. The LFP is a boundary point in B+; the
GFP is a norm-interior point of B+.

The common strategy among the uniqueness papers by Martins-da-Rocha and Vailakis [46],
Marinacci and Montrucchio ([43],[44]), Bloise and Vailakis [18], Balbus [10], and Becker and
Rincón-Zapatero [13] is place additional restrictions on the commodity space together with
appropriate utility space modifications. What constitutes a solution to the Koopmans equation
differs between the utility spaces B+ (`+∞) and B+ (`++

∞ ) with their sup norms. The change
from B+ (`+∞) to the utility space, B+ (`++

∞ ) eliminates the commodity sequences where the
LFP and GFP are known, by examples, to differ (i.e ∂0`

+
∞). Since the LFP and GFP are each

order units and belong to B++ (`++
∞ ), and if a unique solution exists, then the LFP and GFP

agree on `++
∞ .38 A unique solution exists in

〈
θ ,UT〉⊂ B++ (`++

∞ ). The overarching point is to
use modified utility spaces, based on their underlying commodity spaces, to remove any utility
function boundary fixed points belonging to the corresponding Koopmans operator. Success

37See Becker and Rincón-Zapatero [14] for details.
38Balbus [10] also excludes the boundary of the positive cone of B+ from the operator’s domain and assumes

it is a selfmap on the interior of B+. His operator is not formally restricted to be a selfmap on an order intervals in
B+.
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on this front implies the GFP and LFP are equal in the modified fixed point problem’s solution
which lies in the interior of B++ (`++

∞ ).
We prove our uniqueness theorem for the restricted commodity space 〈ae,be〉 with 0 < a <

b < ∞ where a and b are arbitrarily chosen. This restriction has an economic motivation (see
Section 4.3). However, the mathematical approach works on a general order interval in the
interior of `+.

∞ . This leads to extension of the uniqueness theorem to B+ (`++
∞ ). The union of

these order intervals covers the positive cone’s norm interior. Details are given in the following
sections. Once the order interval 〈ae,be〉 is specified, the resulting utility space is:

B+ (a,b) = {U : 〈ae,be〉 → R+} .

This space, endowed with the ‖•‖
γ

— norm, equals the space of nonnegative functions on
〈ae,be〉 bounded by the usual ‖•‖

∞
— norm, since the weight function ϕγ (C) is bounded from

above by ϕγ (be). We choose to maintain the original weighting structure in our calculations to
readily extend results obtained for B+ (a,b) to B+ (`++

∞ ).
Given consumption sequences are in 〈ae,be〉, there are upper and lower bounds of the fol-

lowing type (by W monotone and Thompson (T 4)):

inf
C∈〈ae,be〉

TW θ (C) = W (a,0)> 0;

sup
C∈〈ae,be〉

TW θ (C) = W (b,0)< ∞.

The first equation above implies TW θ > θ holds for each C ∈ 〈ae,be〉 and SC ∈ 〈ae,be〉 as well.
This implies TW θ is an order unit in B(a,b). In addition, this implies each iterate, T N

W θ , is
also an order unit in that space as

{
T N

W θ
}

is a monotone sequence in
〈
θ ,UT〉 taken as a sub-

set of B+ (a,b). Constructive existence theory (see [14]) and the norm-convergence of
{

T N
W θ
}

to some point U∗ by u0− concave operator approximation theory (Section 6). This implies
U∗ = supN

{
T N

W θ
}

since
{

T N
W θ
}

is increasing and order convergent by Lemma 1. As an order
convergent sequence has at most one limit point, we conclude that U∗ =U∞ = supN

(
T N

W θ
)

ob-
tains. Once this result is in place, u0−concave operator theory implies uniqueness of the Koop-
mans operator’s fixed point in

〈
θ ,UT〉 ⊂B+ (a,b). For each C ∈ 〈ae,be〉, U∞ (C) = U∞ (C).

Extension of the Koopmans operator’s unique solution to the norm-interior of B+ (`++
∞ ) follows

since 〈ae,be〉 is, from this perspective, arbitrarily chosen.

5. THE KOOPMANS OPERATOR IS u0− concave ON B+ (`++
∞ )

We prove that the Koopmans equation has at most one solution in the set of ϕγ -bounded func-
tions defined on the set `++

∞ by application of Krasnosel’skı̆ı̆ and Zabreı̆ko’s [37] u0− concave
operator theory. Fix the arbitrarily chosen order interval 〈ae,be〉 and the corresponding func-
tion space B(a,b) together with its positive cone, B+ (a,b). We apply Liang et al’s sufficiency
theory in this positive cone.

Consider the Koopmans operator’s LFP, U∞ in
〈
θ ,UT〉⊂ B+. It is γ− norm lower semicon-

tinuous. Moreover, U∞ (C)≥ TW θ (C)≥ θ (C) = 0 for all C ∈ `+∞ and a strict inequality obtains
for some C. The restriction of the LFP to 〈ae,be〉 must also solve the Koopmans equation on
B+ (a,b). The reason is simple: TWU∞ (C) = U∞ (C) = W (c1,U∞ (SC)) must hold for ALL
C ∈ `+∞ , so a fortiori, this equality must also hold for each C ∈ 〈ae,be〉. This observation makes
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use of the shift invariance property of 〈ae,be〉. Note U∞ > θ on each 〈ae,be〉 since S (ae) = ae
and W (a,U∞ (S(ae)))≥W (a,0)> 0.

Thus if we can show there is at most one solution in B+ (a,b), then it is the uniquely de-
termined solution on that domain. Given the LFP exists on `+∞ , this implies U∞ is the unique
solution in B+ (`++

∞ ). The least and greatest fixed points agree on `++
∞ .

The first step is to prove the Koopmans operator is an order-concave operator mapping from
B+ (a,b) to itself.

Lemma 5.1. TW : B+ (a,b)→ B+ (a,b) is an order-concave operator on B+ (a,b).

Proof. That TW is an order-concave operator follows from the concavity of the aggregator func-
tion and convexity of the cone B+ (a,b). Fix an arbitrary C ∈ 〈ae,be〉. Let U0,U1 ∈ B+ (a,b)
and let U t = (1− t)U0 + tU1, for 0 ≤ t ≤ 1. Evidently U t ∈B+ (a,b). By W concave in its
second argument for each c1,

W
(
c1,U t (SC)

)
≥ (1− t)W

(
c1,U0 (SC)

)
+ tW

(
c1,U1 (SC)

)
.

The lefthand side of this inequality is TWU t (C) and the righthand side is the convex combination
(1− t)TWU0 (C)+ tTWU1 (C). Thus,

TWU t ≥ (1− t)TWU0 + tTWU1,

and TW is an order-concave operator on B+ (a,b) as well.39 �

This proof does not actually depend on the order interval 〈ae,be〉 and goes through in B+ (`+∞).
That is, TW is, in general, an order-concave operator acting on the convex cone B+ (`+∞).

The Lemma’s order-concavity result clearly implies the Koopmans operator is subhomoge-
neous on B+ (a,b) as TWU ≥ TW θ ≥ θ . We note below that TW θ is an order unit in B+ (a,b), so
TW θ >> θ . This implies, for each t ∈ (0,1), that TW (tU)> tU for each U ∈B+ (a,b) and U 6= θ

and U =U1 and θ =U0 in the order-concavity condition. This strict subhomogeneity property
for B+ (a,b) is stronger than the Koopmans operator’s subhomogeneity property derived from
its order-concavity on B+ (`+∞). The strict subhomogeneity of the Koopmans operator for con-
cave Thompson aggregators is weaker than the strong subhomogeneous condition employed by
Marinacci and Montrucchio’s [44] Thompson (concave) aggregator uniqueness theorem.

Liang et al’s [40] sufficient condition holds for the Koopmans operator on B+ (a,b). We add
additional notation applicable to the restriction of the general commodity space `+∞ to an order
interval, 〈ae,be〉. For U ∈ B+ (`+∞), its restriction to the order interval is denoted by U [a,b].
In particular, for TW θ ∈ B+ (`+∞) let its restriction be TW θ [a,b]. Denote the set of functions
comparable to TW θ [a,b] ∈B+ (a,b) as the constituent Q(TW θ [a,b]).

B(a,b) is a Banach lattice with unit, ϕγ . Its positive cone B+ (a,b), is a nonempty, ‖•‖
γ
−

norm-closed, normal and solid convex cone. TW is clearly a self map on B+ (a,b).
The next lemma confirms the Koopmans operator’s range is Q(TW θ [a,b]). Its corollary states

the Koopmans operator is TW θ − concave on Q(TW θ [a,b]). In Liang et al’s [40] notational
setup set P≡ B+ (a,b) and u0 ≡ TW θ and Q(TW θ [a,b]) plays the role of Pu0 as follows:

Q(TW θ [a,b]) =
{

V ∈ B+ (a,b) : ∃α (V ) ,β (V )> 0
and α (V )TW θ ≤V ≤ β (V )TW θ

}
.

Let TWU ∈ B+ (a,b) when U ∈ B+ (a,b). We prove TWU ∈ Q(TW θ [a,b]).

39The proof is valid if either U0 ≥U1 or U1 ≥U0.
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Lemma 5.2. TW : B+ (a,b)→ Q(TW θ [a,b]).

Proof. Since TW is a monotone operator, we always have TWU ≥ TW θ whenever U ≥ θ . Set
α (U) = 1 and write the scalar α (TWU) ≡ α (U) to simplify notation. This scalar depends on
U and its image under TW .

On the other hand, since U is ϕγ − bounded, there is a number MU such that U (C) ≤
MU ϕγ (C) for each C ∈ `+∞ . Also note that ϕγ (C)≤ ϕγ (be) = (1+b)1/γ for each C ∈ 〈ae,be〉.
Thus, by monotonicity of the Koopmans operator we obtain for each C ∈ 〈ae,be〉:

TWU (C) ≤ TW (MU
ϕγ (C))≤MUW

(
c1,MU

ϕγ (SC)
)

≤ W
(

c1,MU (1+b)1/γ
)
.

Moreover, TW θ (C) = W (c1,0) ≥W (a,0) by monotonicity of the aggregator function and the
definition of 〈ae,be〉. Therefore, TW θ [a,b] >> θ and it is an order unit in B+ (a,b) since
W (a,0) > 0 by (T 4). This shows Q(TW θ [a,b]) is a well-defined constituent of B+ (a,b).
Evidently B++ (a,b) = Q(TW θ [a,b]).

Next, choose β (U) sufficiently large so that

W
(

c1,MU (1+b)1/γ
)
≤ β (U)W (a,0) .

Then note that β (U)W (a,0)≤ β (U)TW θ (C) and the previous inequality yields for each C ∈
〈ae,be〉:

TWU (C)≤ β (U)TW θ (C) .

Thus, for α (U) = 1, and this choice of β (U), we find

TW θ ≤ TWU ≤ β (U)TW θ . (5.1)

This proves TWU ∈ Q(TW θ [a,b]). �

Inequality (5.1) is readily rearranged in the form of inequality (3.5): for µ (U) = 1/β (U)>
0 :

µ (U)TWU ≤ TW θ . (5.2)

Combining Lemmas 10 and 11 yields:

Corollary 5.3. TW : B+ (a,b)→B+ (a,b) is a TW θ−concave operator for each 0 < a < b < ∞.

Proof. Lemmas 10 and 11 imply the Koopmans operator satisfies the hypotheses of Liang et
al’s Theorem. That is, (5.2) obtains. Hence TW is a TW θ − concave operator acting on each
cone B+ (a,b). �

Finally, we invoke the Krasnosel’skiı̆ and Zabreı̆ko Theorem when the Koopmans operator
acts on B+ (a,b).

Proposition 5.4. For each given 0 < a < b < ∞, the Koopmans equation, TWU =U, has at most
one non-zero solution in the cone B+ (a,b).

The nonzero principal fixed point U∞ ∈B+ (`+∞) remains a nonzero solution to the Koopmans
equation on the domain B+ (a,b). Hence, Proposition 13 implies

TWU∞ [a,b] =U∞ [a,b]
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for each 0 < a < b < ∞ is the unique solution in B+[a,b]. The order interval 〈ae,be〉 is arbitrary.
Hence U∞ is the unique solution among all the functions in B+(`++

∞ ).
Uniqueness on `++

∞ implies U∞ =U∞ on that domain. U∞ is sup norm lower semicontinuous
and U∞ is sup norm upper semicontinuous. Hence, the operator’s principal solution is also a
sup norm continuous function on `++

∞ .
We sum up our findings:

Theorem 5.5. Let W be a concave Thompson aggregator. Then, there is a unique nonzero norm
continuous utility function U∞ ∈ B+ (`++

∞ ) that solves the Koopmans equation. That is, for each
C ∈ `++

∞ :
TWU∞ (C) =U∞ (C) =W (c1,U∞ (SC)) .

6. UNIFORM APPROXIMATION AND a posteriori ERROR ESTIMATION

Order theoretic iterative construction of the LFP and GFP as found in our paper [14] does
not imply the sequence of successive approximations initiated at U0 = θ , {T N

W θ} converges
uniformly to the unique fixed point of the Koopmans operator established in Section 5. More
broadly, the same can be said for iterations initiated at a arbitrary positive U0 ∈B+ (a,b). The
purpose of this section is to note uniform convergence holds for a u0− concave operator acting
on B+ (a,b). However, the uniform convergence does not come with an a posteriori error
estimate yielding information about the rate of convergence to the unique solution, U∞, found
in Theorem 14. We draw on the monographs by Guo and Lakshmikantham [27], Guo et al [28],
and Balbus’s [10] article in order to resolve these issues.

An a posteriori error estimate, denoted E (N), is a function that depends on N and the ap-
proximate solution at iterate stage N.40 The particular error estimate depends on the choice
of U0 that initiates the successive approximations iterations. We are interested in the case
where the sequence is {T N+1

W θ}, so T N+1
W θ is the approximate solution in that step. There-

fore, we set U0 = TW θ to compute an error estimate in terms of the parameters a,b defining
B+ (a,b) and functional form, W . Formally, an a posteriori error estimate yields the inequal-
ity
∥∥T N+1

W θ −U∞

∥∥
γ
≤ E (N) with limN→∞ E (N)→ 0. Computing this error bound is the main

result in this section since uniform convergence of {T N+1
W θ} to U∞ follows.

6.1. Successive Approximations Uniformly Converge to the LFP. Guo and Lakshmikan-
tham ([27], Theorem 2.2.4 and Corollary 2.2.1) show iteration of a u0−concave operator has a
uniform convergence property. We specialize their result for the Banach lattice with unit, B(X).
Recall order unit norm and uniform convergence are equivalent in this situation. Here u0 is an
order unit (and may be different from e).

Theorem 6.1. Suppose A :B+ (X)→B+ (X), is monotone and u0− concave. Assume there is
x∗ > θ with Ax∗ = x∗. Then the successive approximation sequence {xN} with xN = AxN−1 for
each N ∈ N for any initial x0 > θ uniformly converges to x∗. That is,

‖xN− x∗‖
∞
→ 0 as N→ ∞.

40Linz ([41], p.27) describes a posteriori error estimates. It is also addressed in Krasnosel’skii et al ([36], pp.
167-168) in the context of nonlinear operator theory. Krasnosel’skii and Zabreı̆ko ([37], pp. 318-319) note the
importance of uniform convergence in actual computations owing to roundoff errors.
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Apply this result to the Koopmans operator acting as a self-map on B+ (a,b) to obtain for
each U0 ∈B+ (a,b) that

{
T N

W U0
}

converges uniformly to the unique fixed point, U∗. If U0 =

TW θ , then TW is TW θ −concave, the sequence
{

T N+1
W θ

}
is increasing, converges uniformly by

Theorem 15, and order converges to U∗ =U∞ = supN
{

T N+1
W θ

}
by Lemma 1.

This convergence result does not come with an error estimate, so we cannot say anything
about the rate that {T N+1

W θ} converges to U∞. However, this problem can be resolved with
some additional structure, as first noted by Balbus [10].

6.2. A Posteriori Error Estimate for an r−concave Koopmans Operator in B++ (a,b). The
TW θ − concavity of the Koopmans operator for Thompson aggregators can be further special-
ized for some special Thompson aggregator cases, such as the CES aggregator. Balbus [10]
introduces an additional condition (Assumption 3, p. 558), called (T7) here. This property,
together with (T1)-(T6), and concavity of the aggregator, implies the Koopmans operator is also
an r-concave operator. Liang et al ([40], Lemma 2) observe an r− concave operator is also
u0− concave. As such, it is reasonable to expect the additional structure of r− concavity to
yield a stronger solution theory for the Koopmans operator equation than u0− concavity alone
delivers. Indeed, there are two features: there exist a unique fixed point in B++ (a,b) and there
is an a posteriori estimate of the rate of convergence obtained by iterating the operator for a
given initial input. This estimate arises here as a by-product of proving the unique fixed point
of the given operator has a global attracting property as defined below.

The additional aggregator condition sufficient for the Koopmans operator to be r− concave
is:

(T7) W is increasing in (x,y), jointly continuous, and W (0,0) = 0. Furthermore, there is
r ∈ (0,1) such that for each x≥ 0, y > 0, and each t ∈ (0,1)

W (x, ty)≥ trW (x,y) . (6.1)

We say the aggregator is r− concave in y for each x (shortening the expression: r− concave
of order r in y for each x).

Balbus [10] demonstrates by an example that (T7) alone does NOT imply (T3). In particular,
he supplies an example where W is r− concave but is not concave at the origin as required by
Marinacci and Montrucchio ([43], [44]). We combine (T7) and the previous six Thompson ag-
gregator conditions. This yields information on the rate at which the iterates T N+1

W θ uniformly
converge to the operator’s unique fixed point.

Definition 6.2. Let (E,‖•‖) be an ordered Banach space. Let E0 be a nonempty subset of E.
Suppose that an operator A : E0→ E0. Assume that this operator has a fixed point, x∗ ∈ E0. We
say the fixed point x∗ has the global attracting property on E0 if, for each initial input x0 ∈ E0,
x0 > θ , limN→∞ ‖xN− x∗‖= 0, where xN = AxN−1.

In practice E is an AM-space with unit and E0 = E++. Our case arises for E = B(a,b) with
E0 = B++ (a,b). The following Proposition appears in Balbus [10]. It adapts a result in Gou,
et al ([28], Theorem 3.1.7) to the case of a Thompson aggregator that is r− concave in y for
each x. The essential point is that if we iterate the Koopmans operator acting on B++ (a,b)
from an initial seed, say U0 = TW θ >> θ , then the γ-norm difference between the N − th
iterate of the Koopmans operator, T N+1

W θ , and U∞ is bounded above by a term that converges
to zero as N → ∞. We state the proposition for the special case where the solid positive cone
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is B+ (X) for some set X and the normality constant is N = 1. This result does not exclude
the possibility of a second solution in ∂0B+ (X).41 The operator’s domain in this setting differs
from the domain assumed in section 3.4. There, the operator mapped functions in B+ (X) to
ones in Q(u) = B++ (X). The next proposition’s operator is a selfmap on Q(u).

Proposition 6.3. If A : B++ (X)→ B++ (X)is an r− concave operator, then A has a unique
fixed point x∗ ∈ B++ (X). Moreover, this fixed point is globally attracting with a posteriori
error estimate

‖xN− x∗‖ ≤M
(

1− τ
rN
)

for each N,

with xN = AxN−1, and x0 >> θ . The constants M = 2‖x0‖∞
,τ = (t0/s0) , and the numbers t0

and s0 are chosen to satisfy the following comparability inequality:

0 < t0 < 1 < s0 and t1−r
0 x0 ≤ Ax0 ≤ s1−r

0 x0. (6.2)

Inequality (6.2) states Ax0 ∼ x0 obtains for a particular choice of the positive scalars t0 and
s0. Both x0 and Ax0 are linked to the order unit, u. The proposition pins down the particular
choice of scalars in the linking condition (6.2). Krasnosel’skiı̆ and Zabreı̆ko ([37], p. 319)
prove x∗ ∼ u, each xN ∼ x∗, and {xN} converges pointwise to x∗. The error estimate E (N)→ 0
as N→ ∞, due to the r− concavity property, is given by

E (N) = M
(

1− τ
rN
)

for each N.

The proposition’s application to Thompson aggregators requires verification its hypotheses
obtain when the Koopmans operator satisfies the following three conditions when W satisfies
(T1)-(T7).

(1) TW is a self-map on B++ (a,b);
(2) TW is an r− concave operator;
(3) the parameters (t0,s0), as well as the initial seed, U0, can be appropriately chosen in

terms of (a,b) so that (6.2) obtains.
It turns out that this last property holds when U0 = TW θ and we use the link property with

T 2
W θ . This is the special case of interest in our uniqueness theory.

Lemma 6.4. Suppose W is a Thompson aggregator satisfying (T5) and (T6). Then TW : B++ (a,b)→
B++ (a,b).

Proof. Let U ∈ B++ (a,b) . Then

TWU (C) =W (c1,U(SC))≥W (a,0)> 0

for each C ∈ 〈ae,be〉. Set V = TWU . Then V ∈B++ (a,b) with V >> θ , ‖V‖
γ
> 0 and

V ∈B++ (a,b). �

In particular, TW θ ∈B++ (a,b) so T 2
W θ ∈B++ (a,b) and so on. Hence, TW θ may be chosen

as the initial condition yielding the sequence
{

T N+1
W θ

}
.

Lemma 6.5. If W is a concave Thompson aggregator satisfying (T5)-(T7), then TW is an r−
concave operator.

41An obvious example is
√

x for x≥ 0 where both x = 0 and x = 1 are fixed points.
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Proof. Let U ∈B++ (a,b) and C ∈ 〈ae,be〉. Then, for each 0 < t < 1 :

TW (tU)(C) =W (c1, tU (SC)) by definition of TW.

Assumption (T7) implies inequality (6.1) holds and

W (c1, tU (SC)) ≥ trW (c1) ,U (SC))

= tr (TWU)(C) .

Therefore, TW (tU)≥ trTWU holds pointwise and the Koopmans operator is r− concave. �

Proposition 17 implies that there is a unique fixed point for the Koopmans operator in the set
B++ (a,b). We can relate this immediately to our existence theorem [14].

Corollary 6.6. If W is a concave Thompson aggregator satisfying (T5)-(T7), then U∞ =U∞ is
the unique fixed point of the Koopmans operator in B++ (a,b). Moreover, this fixed point is a
ϕγ −bounded,‖•‖

∞
−norm continuous real-valued function defined on 〈ae,be〉.

The final point is to verify an a posteriori estimate holds for the Koopmans operator with an
initial seed in B++ (a,b). Indeed, we verify this estimate when the initial input is TW θ >> θ . It
is the natural choice given the Tarski-Kantorovich fixed point theory underpinning our general
existence theory and the prominence of the LFP in our related theoretical results. This follows
by showing we can choose the numbers (t0,s0) to satisfy the pointwise inequalities in (6.2).

Maintain the assumption that W is a concave Thompson aggregator satisfying (T5)-(T7). As
TW θ ∈ B++ (a,b), T 2

W θ ∈ B++ (a,b), then TW θ ∼ T 2
w θ . Hence, there are positive scalars α and

β , depending on T 2
W θ such that

αTW θ ≤ T 2
W θ ≤ βTW θ . (6.3)

There is no loss in generality in taking α < 1 < β as the previous inequality still obtains.
Here U0 = TW θ ∈ B++ (a,b) and T 2

W θ (C) =W (c1,W (c2,0)) for each C ∈ 〈ae,be〉. Moreover,
T 2

W θ (C)≤W (b,W (b,0)) = T 2
W θ (be); likewise, W (a,0) = TW θ (ae)≤ TW θ (C).

Set M = 2‖Twθ‖
γ
. In fact, we can estimate M for the given aggregator in terms of the

constants a and b by observing

‖TW θ‖
γ
= sup

C∈〈ae,be〉

W (c1,0)
ϕγ (C)

≤ W (b,0)
(1+a)1/γ

.

To see this, recall (1+a)1/γ ≤ ϕγ (C)≤ (1+b)1/γ and TW θ (C) =W (c1,0) with a≤ c1 ≤ b.42

Similarly (T4) implies

‖TW θ‖
γ
≥ inf

C∈〈ae,be〉

W (a,0)

(1+b)1/γ
> 0.

Use the upper bound on ‖Twθ‖
γ

above to set

M = 2
W (b,0)
(1+a)1/γ

.

M clearly depends the order interval 〈ae,be〉, which is well-defined given the parameters (a,b)
and γ (from (T5).

42The comparative ease of this computation is one rationale for choosing TW θ for the initial seed instead of UT

or even TWUT as the initial seed.
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To complete the verification the link parameters α and β must be found in terms of the
aggregator and the pair (a,b). Set

0 < α =
W (a,0)

W (a,W (a,0))
< 1; (6.4)

1 < β =
W (b,W (b,0))

W (b,0)
.

It is clear the LHS (6.3) automatically holds as TW θ ≤ T 2
W θ for each C implies αTW θ ≤ T 2

W θ

for each α < 1.
The RHS (6.3) also obtains:

T 2
W θ (C)≤ βTW θ (C) for some β > 1

since TW θ ∼ T 2
w θ . For each C this inequality implies:

T 2
W θ (C)≤ βTW θ (C)≤ βW (b,0) =W (b,W (b,0))

using the chosen value of β . Hence, the relation TW θ ∼ T 2
w θ for this particular choice of β .

This inequality string implies T 2
W θ (C) ≤ βTW θ (C) obtains. It is equivalent to the inequality

T 2
W θ (C)≤ T 2

W θ (be).
With the above values, the link parameters may be chose so that (6.2) holds with

α = t1−r
0 ;

β = s1−r
0 .

Invert each preceding equation to solve for t0 and s0, in terms of W and the parameters (a,b).
Then α < 1 < β , and 0 < r < 1 imply

0 < t0 = [α]1/(1−r) < 1;

1 < s0 = [β ]1/(1−r) .

The scalars t0 and s0 depend on the parameters (a,b). Clearly τ ≡ (t0/s0) ∈ (0,1) and (6.2)
holds with these values that are determined once the values of a and b are set. Using these
choices of the parameters M and (t0,s0) together with the initial seed, U0 = TW θ , we conclude
there is a unique U∗ = TWU∗ such that∥∥T N+1

W θ −U∗
∥∥

γ
≤M

(
1− τ

rN
)

for each N ∈ N. (6.5)

The existence of a unique solution promised by the next result does not yet insure it coincides
with either the LFP or GFP in fix(TW ). However, the Banach lattice properties of the space
B(a,b) yield a connection to the LFP by way of Lemma 1: norm convergence of

{
T N+1

W θ
}

with
{

T N+1
W θ

}
↗U∗ implies U∗ =U∞ = supN

{
T N+1

W θ
}

.
The importance of establishing a link between norm and order convergence is the latter con-

vergence mode links to the information partial order implicit in the successive approximation
sequence

{
T N+1

W θ
}

and our argument suggesting the LFP, U∞, is a reasonable selection crite-
rion for defining the principal solution of the Koopmans equation when it has multiple solutions.
Becker and Rincon-Zapatero [14] offers a detailed defense of this selection criterion. However,
a dissenting voice favoring the GFP is argued by Bloise, et al [19].
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Theorem 6.7. If W is a concave Thompson aggregator satisfying (T5)-(T7), then U∗ = TWU∗

is the unique fixed point of the Koopmans operator in B++ (a,b). Furthermore, U∗ is glob-
ally attracting for each initial seed, U ∈ B++ (a,b). In particular, we have (6.5) for U0 =
TW θ ∈B++ (a,b) that ∥∥T N+1

W θ −U∗
∥∥

γ
≤M

(
1− τ

rN
)

for each N.

Hence, ∥∥T N+1
W θ −U∗

∥∥
γ
→ 0 as N→ ∞.

Moreover, the constants M, t0, and s0 satisfying (6.2) are given by

M = 2‖TW θ‖
γ

with 0 < ‖TW θ‖
γ
≤ W (b,0)

(1+a)1/γ
;

0 < t0 = [α]1/(1−r) < 1;

1 < s0 = [β ]1/r ,

where τ = (t0/s0) ∈ (0,1) given the choices in (6.4) and r ∈ (0,1) is specified by (T7).

Corollary 6.8. U∗ =U∞ =U∞.

Proof. The sequence
{

T N+1
W θ

}
is increasing and uniformly converges to U∗. Lemma 1 im-

plies supN
{

T N+1
W θ

}
=U∞ =U∗ and

{
T N+1

W θ
}

order converges to U∞. Uniqueness of U∗ also
implies U∞ =U∞. �

The a posteriori error estimate (6.5) shows the Nth approximate solution, T N+1
W θ , belongs to

the ball centered at U∞ with radius M
(

1− τrN
)

. This ball’s radius decreases with N and the

approximation T N
W (TW θ) = T N+1

W θ can be made arbitrarily close to the true solution, U∞, by
choosing N sufficiently large.43 The specific knowledge that the approximate solution, T N+1

W θ ,
lies in a ball whose radius converges to zero as N→ ∞ is new information that does not follow
from the u0− concave Koopmans operator’s uniform approximation feature assuming (T1)-
(T6) hold. In that case,

{
T N+1

W θ
}

order converges to U∞ by our constructive existence theorem.
Alternatively, application of Theorem 15 also yields {T N+1

W θ} converges uniformly and in order
to U∞.

The CES aggregator W (x,y) = (1−β )xρ +βyρ for 0 < β ,ρ < 1 satisfies Assumption (T7).
This follows by checking Balbus’s sufficient condition ([10], pp. 560-561) for (T7): for each
x≥ 0 and y > 0.

W2 (x,y)∗ y
W (x,y)

< 1.

Here, W2 denotes the partial derivative of W with respect to y. A routine computation shows

0 <
W2 (x,y)∗ y

W (x,y)
= ρ

βyρ

(1−β )xρ +βyρ
≤ ρ < 1.

According to Balbus [10] the parameter r found in Assumption (T7) equals ρ in this CES
example. He also shows the KDW aggregator satisfies (T7).

43Our existence theorem also implies that each iteration of the Koopmans operator starting with U0 = TW θ is,
in fact, a ϕγ− bounded continuous function on (ae,be) (endowed with the sup norm topology inherited from `∞).
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7. CONCLUDING COMMENTS

A recursive utility function is uniquely determined by a Thompson aggregator at each con-
sumption sequence in `++

∞ . Null consumption sequences as well as all other consumption se-
quences in ∂0`

+
∞ may be associated with points where the LFP is strictly smaller than the GFP.

These restrictions agree with ones imposed in Martins-da-Rocha and Vailakis [45], Bloise and
Vailakis [18] and Marinacci and Montrucchio ([43],[44]). Restricting the commodity space
in this manner removes potential sources for multiple solutions to the Koopmans equation by
eliminating boundary fixed points.

We strengthen Marinacci and Montrucchio’s [43] Thompson aggregator definition to include
joint continuity and concavity of the aggregator on its domain. The joint concavity assumption
is stronger than their assumption that the aggregator is concave at zero in its second argument.
We strengthen their conditions in order to prove the Koopmans operator is an order-concave
operator and verify it is also a u0− concave operator. This approach differs from the methods
used in the existing literature. This technique is an alternative for demonstrating uniqueness
results compared to the contraction operator theorems based on the Thompson metric employed
by Marinacci and Montrucchio ([43], [44]) or the 0-local contractions introduced by Rincón-
Zapatero and Rodriguez-Palmero ([51], [52]) and Martins-da-Rocha and Vailakis ([45], [46]).

The uniqueness contribution by Marinacci and Montrucchio [43] accommodates some en-
dogenous growth models; we are not able to do so. It would be of some interest to adapt the
u0−concavity approach for an order-concave operator uniqueness theory for the weighted com-
modity space underlying sustainable or endogenous growth models. That is, find a uniqueness
theory compatible with the general existence theory for solutions to the Koopmans equation
when the economic model includes a variety of endogenous growth theories.
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