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Structural Moving Average Representation

The structural moving average representation for yt is

yt = C(L)"t (1)

where yt is an ny £ 1 vector of economic variables, "t is an n" £ 1 vector of shocks

C(L) = C0 + C1L+ :::

where Ck is ny £ n", and we will wite Ck = [cij;k]. For now we allow ny 6= n". Equation (1)
is called the structural moving average model, since the elements of "t are given a structural
economic interpretation. For example, one element of "t might be interpreted as an exoge-
nous shock to labor productivity, another as an exogenous shock to labor supply, another
as an exogenous change in the quantity of money, and so forth. In the jargon developed
for the analysis of dynamic simultaneous equations models, (1) is the ¯nal form of an eco-
nomic model, in which the endogenous variables "t are expressed as a distributed lag of the
exogenous variables, given here by the elements of "t. It will be assumed that the endoge-
nous variables yt are observed, but that the exogenous variables "t are not directly observed.
Rather, the elements of "t are indirectly observed through their e®ect on the elements of yt.
This assumption is made without loss of generality, since any observed exogenous variables
can always be added to the yt vector.

Impulse Response Functions and Variance Decompositions

The model can be used to answer two questions. First, how do the system's endogenous
variables respond dynamically to exogenous shocks? Second, which shocks are the primary
causes of variability in the endogenous variables?

The dynamic e®ects of the elements of "t on the elements of yt are determined by the
elements of the matrix lag polynomial C(L). Speci¯cally

cij;k =
@yi;t+k

@"j;t
=

@yi;t
@"j;t¡k

where \@" means holding all of the other shocks constant ("i;¿ for all ¿ with i 6= j, and all
¿ 6= t when i = j). Viewed as a function of k, cij;k is called the impulse response function of
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"j;t for yi;t. It shows how yi;t changes in response to a one unit "impulse" in "j;t. In the classic
econometric literature on distributed lag models, the impulse responses are called dynamic
multipliers.

To answer the second question concerning the relative importance of the shocks, the prob-
ability structure of the model must be speci¯ed and the question must be re¯ned. In most
applications the probability structure is speci¯ed by assuming that the shocks are iid(0;§"),
so that any serial correlation in the exogenous variables is captured in the lag polynomial
C(L). The assumption of zero mean is inconsequential, since deterministic components such
as constants and trends can always be added to (1). Viewed in this way, "t represents in-
novations or unanticipated shifts in the exogenous variables. The question concerning the
relative importance of the shocks can be made more precise by casting it in terms of the
h-step ahead forecast errors of yt. Let

yt=t¡h = E(ytjf"sg
t¡h
s=¡1g = [C(L)L¡h]+"t

denote the h-step ahead forecast of ytmade at date t¡ h and let

at=t¡h = yt ¡ yt=t¡h =
h¡1X

k=0

Ck"t¡k

denote the associated forecast error. For small values of h, at=t¡h can be interpreted as
\short-run" movements in yt, while for large values of h, at=t¡h can be interpreted as\long-
run" movements. In the limit as h ! 1, at=t¡h = yt. The importance of a speci¯c shock
can then be represented as the fraction of the variance in at=t¡h that is explained by that
shock; it can be calculated for short-run and long-run movements in yt by varying h. When
the shocks are mutually correlated there is no unique way to do this, since their covariance
must somehow be distributed. However, when the shocks are uncorrelated the calculation is
straightforward. If §" is diagonal with diagonal elements ¾2jj, then the variance of the i0th
element of at=t¡h is given by

var(ai;t=t¡h) =
n"X

j=1

h¡1X

k=0

c2ij;k¾
2

jj

And this variance can be decomposed as

R2

ij;h =

Ph¡1
k=0 c

2
ij;k¾

2
jjPn"

m=1

Ph¡1
k=0 c

2
im;k¾

2
mm

which shows the fraction of the h¡step ahead forecast error variance in yi;t attributed to "j;t.
The set of n" values of Rij;h are called the variance decomposition of yi;t at horizon h.

The Structural VAR

The structural VAR representation of (2) is obtained by inverting C(L) to yield:

A(L)yt = "t (2)
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where

A(L) = A0 ¡
1X
k=1

AkL
k

is a one-sided matrix lag polynomial. In (2), the exogenous shocks "t are written as a
distributed lag of current and lagged values of yt. The structural VAR representation is
useful for two reasons. First, when the model parameters are known, it can be used to
construct the unobserved exogenous shocks as a function of current and lagged values of
the observed variables yt. Second, it provides a convenient framework for estimating the
model parameters: with A(L) approximated by a ¯nite order polynomial, equation (2) is a
dynamic simultaneous equations model, and standard GMMmethods can be used to estimate
the parameters.

It is not always possible to invert C(L) and move from the structural moving average
representation (1) to the VAR representation (2). One useful way to discuss the invertibility
problem (see Granger and Anderson (1978)) is in terms of estimates of "t constructed from
(2) using truncated versions of A(L). Since a semi-in¯nite realization of the y process,
fy¿g

T
¿=¡1, is never available, estimates of "t must be constructed from (2) using fy¿g

T
¿=1.

Consider the estimator

e"t =
t¡1X
s=0

Asyt¡s

constructed from the truncated realization. If e"t converges to "t in mean square as t ! 1,
then the structural moving average process (1) is said to be invertible. Thus, when the
process is invertible, the structural errors can be recovered as a one-sided moving average of
the observed data, at least in large samples.

This de¯nition makes it clear that the structural moving average process cannot be
inverted if n" > ny. Even in the static model yt = C"t, a necessary condition for obtaining a
unique solution for "t in terms of yt is that n" � ny. This requirement has a very important
implication for structural analysis using VAR models: in general, small scale VAR's can only
be used for structural analysis when the endogenous variables can be explained by a small
number of structural shocks. Thus, a bivariate VAR of macroeconomic variables is not useful
for structural analysis if there are more than two important macroeconomic shocks a®ecting
the variables.1

In what follows we assume that ny = n". This rules out the simple cause of non-
invertibility just discussed; it also assumes that any dynamic identities relating the elements
of yt when ny > n" have been solved out of the model.

With ny = n" = n, C(L) is square and the general requirement for invertibililty is that
the determinantal polynomial jC(z)j have all of its roots outside the unit circle. Roots on
the unit circle pose no special problems; they are evidence of overdi®erencing and can be
handled by appropriately transforming the variables (e.g., accumulating the necessary linear
combinations of the elements of yt). In any event, unit roots can be detected, at least in large

1
Blanchard and Quah (1989) and Canova, Faust and Leeper (199x) discuss special circumstances when

some structural analysis is possible when n" > ny.. For example, suppose that yt is a scalar and the n"
elements of "t a®ect yt only through the scalar "index" et = D0"t,, where D is a n" £ 1 vector. Then the
impulse response functions can be recovered up to scale.
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samples, by appropriate statistical tests. Roots of jC(z)j that are inside the unit circle pose
a much more di±cult problem, since models with roots inside the unit circle have the same
second moment properties as models with roots outside the unit circle. The simplist example
of this is the univariate MA(1) model yt = (1¡cL)"t, where "t is iid(0; ¾

2
"). The same ¯rst and

second moments of yt occur in the model yt = (1¡bL)atwhere b = c¡1 and at is iid(0; ¾
2
a) with

¾2a = c2¾2e . Thus, the ¯rst two moments of yt cannot be used to discriminate between these
two di®erent models. This is important because it can lead to large speci¯cation errors in
structural VAR models that cannot be detected from the data. For example, suppose that
the true structural model is yt = (1¡ cL)"t with jcj > 1 so that the model is not invertible.
A researcher using the invertible model would not recover the true structural shocks, but
rather at = (1¡ bL)¡1yt = (1¡ bL)(1¡ cL)"t = "t ¡ (b¡ c)

P
1

i=0 b
i"t¡i. A general discussion

of this subject is contained in Hannan (1970) and Rozanov (1967). Implications of these
results for the interpretation of structural VAR's is discussed in Hansen and Sargent (1991)
and Lippi and Reichlin (1993). For related discussion see Quah (1986).

Hansen and Sargent (1991) provides a speci¯c economic model in which noninvertible
structural moving average processes arise. In the model, one set of economic variables,
say xt, are generated by an invertible moving average process. Another set of economic
variables, say yt, are expectational variables, formed as discounted sums of expected future
x0s. Hansen and Sargent then consider what would happen if only the yt data were available
to the econometrician. They show that the implied moving average process of yt, written
in terms of the structural shocks driving xt, is not invertible. A simple version of their
example is as follows: suppose that yt and xt are two scalar time series, with xt generated
by the MA(1) process xt = (1¡ µL)"t. Suppose that yt is related to xt by the expectational
equation

yt = Et

1X

i=0

¯ixt+i

= xt + ¯Etxt+1

= (1¡ ¯µ)"t ¡ µ"t¡1 = c(L)"t

where the second and third lines follow from the MA(1) process for xt. It is readily veri¯ed
that the root of c(z) is (1¡¯µ)=µ, which may be less than 1 even when the root of (1¡¯µz)
is greater than 1. (For example, if µ = ¯ = 0:8, the root of (1¡ ¯µ) is 1:25 and the root of
c(z) is 0:8.)

The Hansen-Sargent example provides an important and constructive lesson for researchers
using structural VAR's: it is important to include variables that are directly related to the
exogenous shocks under consideration (xt in the example above). If the only variables used
in the model are indirect indicators with important expectational elements yt in the example
above), severe misspeci¯cation may result

Identi¯cation of the Structural VAR

Assuming that the lag polynomial of A(L) in (2) is of order p, then structural VAR can
be written as:

A0yt = A1yt¡1 +A2yt¡2 + :::+Apyt¡p + "t (3)
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Since A0 is not restricted to be diagonal, equation (3) is a dynamic simultaneous equations
model. The reduced form of the model is

yt = ©iyt¡i + :::+©pyt¡p + et

where ©i = A¡10 Ai and et = A¡10 "t. The moment conditions that serve to identify the
unknown parameters in A0; :::; Ap follow from the assumption that that "t is serially uncor-
related vector white noise:

E("j;tyi;t¡h) = 0 for all i; j; twith h > 0

Consider identi¯cation of the i0th equation, written as:

aii;0yi;t = ¡
X

j 6=i

aij;0yj;t +
nX

j=1

pX

k=1

aij;0yj;t¡k + "i;t

To ¯x the scale of the equation, impose the identifying restriction that aii;0 = 1. Then the
equation can be written as

yi;t = z0i;t¸i + "i;t

where zi;t denotes the current and lagged values of yt that appear on the right hand side of
the equation. There are n¡ 1+n¤ p elements in zi;t and ¸i From the reduced form, the past
history of all of the y0s is summarized by the vector

xt = (y0t¡1 y
0
t¡2:::y

0
t¡p)

0

which will serve as the vector of instruments. There are n ¤ p elements in xt. Thus, by the
order condition for identi¯cation, the equation is not identi¯ed. n¡ 1 additional restrictions
must be imposed. This is true for eachl of the n equations, so that n ¤ (n ¡ 1) additional
restrictions are needed for identi¯cation.

The identifying restrictions must be dictated by the economic model under consideration.
It makes little sense to discuss the restrictions without reference to a speci¯c economic
system. Here, some general remarks on identi¯cation are made in the context of a simple
bivariate model explaining output and money; a more detailed discussion of identi¯cation in
structural VAR models is presented in Giannini (1991). Let the ¯rst element of yt denote
the rate growth of real output, and the second element denote the rate of growth of money.
Then

y1;t = a0;12y2;t +
pX

k=1

a11;ky1;t¡k +
pX

k=1

a12;ky2;t¡k + "1;t (4)

and

y2;t = a21;0y1;t +
pX

k=1

a21;ky1;t¡k +
pX

k=1

a22;ky2;t¡k + "2;t (5)

Equation (4) is interpreted as an output or "aggregate supply" equation, with "1;t interpreted
as an aggregate supply or productivity shock. Equation (5) is interpreted as a money supply
\reaction function" showing how the money supply responds to contemporary output, lagged
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variables, and a money supply shock "2;t. Identi¯cation requires n(n¡ 1) = 2 restrictions on
the parameters of (4)-(5).

In the standard analysis of simultaneous equation models, identi¯cation is achieved by
imposing zero restrictions on the coe±cients for the predetermined variables. For example,
the order condition is satis¯ed if y1;t¡1 enters (4) but not (5), and y1;t¡2 enters (5) but
not (4); this imposes the two constraints a21;1 = a11;2 = 0. In this case, y1;t¡1 shifts the
output equation but not the money equation, while y1;t¡2 shifts the money equation but not
the output equation. Of course, this is a very odd restriction in the context of the output-
money model, since the lags in the equations capture expectational e®ects, technological and
institutional inertia arising production lags and sticky prices, information lags, etc.. There
is little basis for identifying the model with the restriction. Indeed there is little basis for
identifying the model with any zero restrictions on lag coe±cients. Sims (1980) persuasively
makes this argument in a more general context, and this has led structural VAR modelers
to avoid imposing zero restrictions on lag coe±cients. Instead, structural VAR's have been
identi¯ed using restrictions on the covariance matrix of structural shocks, §", the matrix of
contemporaneous responses, A0, and the matrix of long-run multipliers A(1)

Restrictions on §" have generally taken the form that §" is diagonal, so that the structural
shocks are assumed to be uncorrelated. In the example above, this means that the underlying
productivity shocks and money supply are uncorrelated, so that any contemporaneous cross
equation impacts arise through nonzero values of the o®-diagonal elments of A0. Some
researchers have found this a natural assumption to make, since it follows from a modeling
strategy in which unobserved structural shocks are viewed as distinct phenomena which give
rise to comovement in observed variables only through the speci¯c economic interactions
studied in the model. The restriction that §" is diagonal imposes n(n ¡ 1) restrictions on
the model, leaving only n(n ¡ 1)=2 additional necessary restrictions.(Other restrictions on
the covariance matrix are possible, but will not be discussed here. A more general discussion
of identi¯cation with covariance restrictions can be found in Hausman and Taylor (1983),
Fisher (1966), Rothenberg (1971) and the references cited there.)

These additional restrictions can come from a priori knowledge about the A0 matrix in
(3). In the bivariate output-money model in (4)-(5), if §" is diagonal, then only n(n-1)/2=1
restriction on A0 is required for identi¯cation. Thus, a priori knowledge of a12;0 or a21;0 will
serve to identify the model. For example, if it was assumed that the money shocks a®ect
output only with a lag, so that

@y1;t
@"2;t

= a12;0 = 0

then this restriction identi¯es the model. The generalization of this restriction in the n-
variable model produces the Wold causal chain (see Wold (1954) and Malinvaud (1980,
pages 605-608)), in which

@yi;t

@"j;t
= 0 for i < j

This restriction leads to a recursive model with A0 lower triangular, yielding the required
n(n¡1)=2 identifying restrictions. This restriction was used in Sims (1980), and has become
the \default" identifying restriction implemented automatically in commercial econometric
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software. Like any identifying restriction, it should never be used automatically. In the
context of the output-money example, it is appropriate under the maintained assumption
that exogenous money supply shocks, and the resulting change in interest rates, has no con-
temporaneous e®ect on output. This may be a reasonable assumption for data sampled at
high frequencies, but loses its appeal as the sampling interval increases.(The appropriate-
ness of the Wold causal chain was vigorously debated in the formative years of simultaneous
equations. See Malinvaud (1980), pages 55-58 and the references cited there. Applied re-
searchers sometimes estimate a variety of recursive models in the belief (or hope) that the
set of recursive models somehow \brackets" the truth. There is no basis for this. Statements
like \the ordering of the Wold causal chain didn't matter for the results" say little about the
robustness of the results to di®erent identifying restrictions.)

Other restrictions on A0 can also be used to identify the model. Blanchard and Watson
(1986), Bernanke (1986) and Sims (1986) present empirical models that are identi¯ed by zero
restrictions on A0 that don't yield a lower triangular matrix. Keating (1990) uses a related
set of restrictions. Of course, nonzero equality restrictions can also be used; see Blanchard
and Watson (1986) and King and Watson (1997) for examples.

An alternative set of identifying restrictions relies on long-run relationships. In the
context of structural VAR's these restrictions were used in papers by Blanchard and Quah
(1989) and King, Plosser, Stock and Watson (1991).2

These papers rely on restrictions on the sum of the AR coe±cients

A(1) = A0 ¡
pX

k=1

Ak

for identi¯cation. Since C(1) = A (1)¡1, these can alternatively be viewed as restrictions on
the sum of impulse responses. To motivate these restrictions, consider the output-money
example. (The empirical model analyzed in Blanchard and Quah (1989) has the same struc-
ture as the output-money example with the unemployment rate used in the place of money
growth.)

Let x1;t denote the logarithm of the level of output and x2;t denote the logarithm of the
level of money, so that yt = (1¡ L)xt Then from (1),

@xi;t+h

@"j;t
=

hX

m=1

@yi;t+m

@"j;t
=

hX

m=1

cij;m

so that

lim
h!1

@xi;t+h

@"j;t
=

1X

m=1

cij;m = [C(1)]ij

the ij'th element of C(1). Now, suppose that money is neutral in the long run, in the sense
that shocks to money have no permanent e®ect on the level of output. This means that

lim
h!1

@x1;t+h

@"2;t
= 0

2
For other early applications of this approach, see Shapiro and Watson (1988) and Gali (1992).
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so that C(1) is a lower triangular matrix. Since A(1) = C(1), this means that A(1) is also
lower triangular, and this yields the single extra identifying restriction that is required to
identify the bivariate model. The analogous restriction in the general n-variable VAR, is
the long-run Wold causal chain in which "i;t has no long-run e®ect on yj;t for j < i. This
restriction implies that A(1) is lower triangular yielding the necessary n(n¡ 1)=2 identifying
restrictions.(Of course, restrictions on A0 and A(1) can be used in concert to identify the
model. See Gali (1992) for an empirical example.)

Estimation

Estimation can be carried out by GMM using the moment conditions discussed in the
last section. However, this situation di®ers from the GMM estimators that we have discussed
so far, because one set of moment conditions will be of the form:

E("it"jt) = 0 for i 6= j

Since the "0s are linear functions of the A coe±cients, then this moment condition is quadratic
in the unknown parameters. This will imply that the ¯rst order conditions for the GMM
estimators will also be quadratic in the unknown parameters. Thus, in general non-linear
GMM techniques must be used. We will discuss these estimators next week. The reference
for the GMM in the model considered here is Hausman, Newey and Taylor (1987).

However, there are some special cases in which the GMM estimators can be formed using
recursive linear estimators. I now discuss these.

Consider the Wold causal chain model

y1;t =
nX

j=1

pX

k=1

a1j;kyj;t¡k + "1;t

y2;t = ¡a21;0y1;t +
nX

j=1

pX

k=1

a2j;kyj;t¡k + "2;t

:::

yn;t = ¡
n¡1X

j=1

anj;0yj;t +
nX

j=1

pX

k=1

anj;kyj;t¡k + "n;t

Since E("i;t"j;t) = 0 for i 6= j and since aij;0 = 0 for i < j, it is straightforward to verify
that the variables on the right hand side of each of the equations is uncorrelated with the
equation's error term. OLS can then be performed, and since the model is just identi¯ed,
OLS is the e±cient GMM estimator.

Now consider the long-run Wold causal chain model:

y1;t = ¡
X

j 6=1

a1j;0yj;t +
nX

j=1

pX

k=1

a1j;kyj;t¡k + "1;t

y2;t = ¡
X

j 6=2

a2j;0yj;t +
nX

j=1

pX

k=1

a2j;kyj;t¡k + "2;t

:::

yn;t = ¡
X

j 6=n

anj;0yj;t +
nX

j=1

pX

k=1

anj;kyj;t¡k + "n;t
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Since A(1) is lower triangular

¡aij;0 +
pX

k=1

ai;j;k = 0

for i < j. Solving this constraint out of the equations yields

y1;t =
pX

k=1

a11;ky1;t¡k +
nX

j=2

p¡1X

k=0

b1j;k¢yj;t¡k + "1;t

y2;t = ¡a21;0y1;t +
2X

j=1

pX

k=1

a2j;kyj;t¡k +
nX

j=3

p¡1X

k=0

b2j;k¢yj;t¡k + "2;t

:::

yn;t = ¡
X

j 6=n

anj;0yj;t +
nX

j=1

pX

k=1

anj;kyj;t¡k + "n;t

The ¯rst equation can be estimated by linear GMM using the instruments x1;t = (y0t¡1 y
0
t¡2:::y

0
t¡p)

0.
The second equation can be estimated by linear GMM using the instruments x2;t = (b"1;t; x01;t)0
where b"1;t is the residual from the ¯rst equation. The third equation can be estimated by
linear GMM using the instrument x3;t = (b"2;t; x02;t)0, etc.

While standard linear methods can be used to sequentially carry out the GMM estima-
tion, it turns out the usual GMM covariance matrix is not correct. The complication arises
because of the use of estimated errors (that is residuals b"i;t) as instruments. I will ask you
to calculate the correct modi¯cation for this source of uncertainty on your homework.
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