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Abstract

We introduce a set of test statistics for assessing the presence of regimes in out of sample forecast
errors produced by recursively estimated linear predictive regressions that can accommodate multiple
highly persistent predictors. Our tests statistics are designed to be robust to the chosen starting window
size and are shown to be both consistent and locally powerful. Their limiting null distributions are
also free of nuisance parameters and hence robust to the degree of persistence of the predictors. Our
methods are subsequently applied to the predictability of the value premium whose dynamics are shown
to be characterised by state dependence.
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1 Introduction

A vast body of recent empirical research documented the presence of state dependence in the forecast
errors produced by models used to generate forecasts of a broad range of economic and financial variables
such as stock and bond returns, commodity returns, rates of inflation, currency returns among many others.
State dependence in this context takes the form of forecast errors having different quality characteristics
such as lower variances in periods of economic recessions versus expansions. In Golez and Koudijs (2017)
for instance the authors considered century long stock market data and documented the considerable
strengthening of the in-sample and out of sample predictive power of dividend yields for stock returns
during recessions. Chauvet and Potter (2013) remarked that predictability of output growth is much
harder during recessions while Gargano et al. (2017) established that commodity returns are predictable
using macroeconomic information but solely during recessions.

This state dependence in the behaviour of forecast errors has been typically documented through a
descriptive comparison of prediction errors (e.g. lower MSEs during recessions than expansions) or the
use of recession dummies within the underlying forecasting models. Numerous papers concerned with
the predictability of the equity premium with valuation ratios documented important differences in out
of sample goodness of fit metrics across NBER business cycle dates (see Li and Tsiakas (2016), Rapach,
Strauss and Zhou (2010) amongst others).

The main goal of this paper is to introduce formal diagnostic tools for explicitly testing for the presence
of broadly defined regimes in the out-of-sample prediction errors generated from predictive regression
models. We are interested in both the levels of forecast errors and their squares as considering the two
series can convey useful information on both misspecification issues and regime specificity in MSEs. Rather
than thinking of regimes as matching business cycle dates we take a broader view of the notion of state
dependence and associate regimes with observed proxies of the state of the economy exceeding or falling
below particular levels. Our proposed methods require solely the computation of recursive least squares
residuals which are then used within a CUSUM type construct and are therefore very easily implementable.
Our operating framework is also flexible enough to accommodate predictive regressions with multiple
highly persistent predictors of possibly different persistence strengths. Suppose for instance that one wishes
to evaluate the predictability of the equity premium with the commonly used Goyal and Welch predictors
(Welch and Goyal (2008), Goyal and Welch (2014)). These include quantities such as dividend yields,
price-to-earnings ratios, interest rates all known to be highly persistent variables with potentially different
degrees of persistence and typically modelled as nearly integrated processes with a nuisance parameter that
parameterises persistence strength. How does one go about formally testing whether forecasts generated
from such models lead to forecast errors that behave differently across the business cycle?

The issue is of great practical importance as the presence of regime specificity in prediction errors
would call for a reassessment of the models used to generate forecasts and in particular motivate a switch
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to nonlinear specifications that are explicitly able to capture episodic predictability as for instance in
Gonzalo and Pitarakis (2012, 2017) where the authors considered the inclusion of threshold effects within
predictive regressions driven by a single highly persistent predictor. Such piecewise linear structures are
particularly convenient as they allow the forecaster to control the particular indicator used for proxying
economic times or more generally sentiment. As such they are not necessarily restricted to a rigid regime
structure dictated by formal externally provided business cycle dates. We view the testing procedures
introduced in this paper as useful practical diagnostic tools that can be used to motivate the explicit
inclusion of regime dependence within the predictive model itself. Although post-diagnostic re-evaluation
issues are beyond the scope of this paper such specifications have been shown to lead to considerable
gains in prediction accuracy as demonstrated in an in-sample and single predictor based equity premium
forecasting context in Gonzalo and Pitarakis (2012, 2017). More recent research by Farmer et al. (2018)
also explores the idea of pockets of predictability by proposing novel non-parametric methods to model and
detect such behaviour and offering interesting insights and formal evidence on its causes in the context of
stock returns. This notion of episodic predictability has also been recently revisited via new techniques in
Demetrescu et al. (2020).

In the context of predictive regressions an important issue that has attracted considerable attention
in the literature is the sensitivity of asymptotic distributions to DGP parameterisations and to the
non-centrality parameter used to model high persistence in particular, rendering the conduct of inferences
difficult (see for instance Campbell and Yogo (2006), Jansson and Moreira (2006), Breitung and Demetrescu
(2015), Kostakis et al. (2015), Phillips (2015), Pitarakis (2017), Georgiev et al. (2018)). Although the
same problem also arises in our present setting our proposed methods are able to accommodate unknown
persistence in addition to being able to handle the presence of multiple predictors without the need to
appeal to instrumental variable, bootstrapping or Bonferroni type methods.

The structure of the paper is as follows. Section 2 introduces our main operating model together with
the proposed test statistics. Section 3 develops the asymptotic theory of our tests together with their
consistency and local power properties. Section 4 investigates their finite sample size and power properties.
Section 5 applies our methodology to the predictability of the value premium and Section 6 concludes. All
proofs are relegated to the appendix.

2 The Forecasting Model and Test Statistics

Our baseline specification is given by the following linear multiple predictive regression

yt+1 = β0 + x′tβ1 + ut+1 (1)

where xt is a p-vector of highly persistent predictors parameterised as

xt =
(
Ip −

C

T

)
xt−1 + vt (2)
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with C = diag(c1, . . . , cp), ci > 0 for i = 1, . . . , p and ut and vt denoting stationary disturbances. For
subsequent notational purposes it is also convenient to reformulate (1) as yt+1 = w′tβ + ut+1 with
β = (β0,β

′
1), β1 = (β11, . . . , β1p)′ and wt = (1,xt)′. In order to use (1) for out of sample forecast

evaluation purposes we focus on a recursive least squares based approach whereby the model is re-estimated
within an expanding window. More specifically, letting β̂t = (

∑t
s=1ws−1w

′
s−1)−1(

∑t
s=1ws−1ys) denote

the least squares estimator of β obtained using data up to time period t the one-step ahead forecast of y
made at time t is obtained as ŷt+1|t = w′tβ̂t, leading to the forecast error sequence

et+1|t = yt+1 −w′tβ̂t, t = k, . . . , T − 1. (3)

As it stands the above approach for generating predictions assumes an initially available training sample
of say k observations used to initiate the recursions so that predictions can then be generated over the
remaining T − k periods by re-estimating the model with an additional observation in each step. Given a
choice of k, say k0, recursive forecasts are obtained for t = k0, k0 + 1, . . . , T − 1. Throughout this paper the
initial estimation sample is viewed as a fraction π ∈ (0, 1) of the full sample by setting k = [Tπ], the largest
integer smaller than Tπ, so that the sequence of out of sample forecast errors {et+1|t}T−1

t=k is understood to
be of length T − k.

Given our operating model in (1) our main objective is to develop a simple approach for assessing the
presence of economically meaningful regimes in the forecast errors in (3) and their squares. Throughout
this paper we take a broad view of the notion of state dependence, not necessarily equating it with precise
business cycle phases. More specifically we will be interested in assessing the behaviour of the et+1|t’s and
e2
t+1|t’s across different regimes driven by an observable threshold variable lying above or below an unknown
cut-off. The choice of the specific threshold variable is naturally dictated by the application of interest.
Commonly used options for capturing business cycle movements and the state of the economy include
the growth rate in industrial production or GDP, diffusion indices combining multiple macroeconomic
indicators, sentiment and confidence indicators etc.

Depending on the application and question of interest one may focus solely on assessing the presence
of regimes in et+1|t if interest is about uncovering potential misspecification in the conditional mean of the
forecasting model or alternatively the focus could be on e2

t+1|t if one simply wishes to uncover potential
state dependence in out of sample MSEs with both scenarios being viewed as departures of interest from
(1). As an omitted regime in conditional means may contaminate forecast error variances it will also be
important to assess the information provided by both tests jointly, an issue we explore comprehensively
below when we evaluate the large sample properties of our tests under departures that account for regime
changes in the conditional means and error variances.

Given the potential sensitivity of the accuracy of forecasts to the choice of the length k of the initial
sample used for initiating the recursive forecasts, in what follows we will be interested in assessing the
presence of regimes in the et+1|t’s and e2

t+1|t’s under both a fixed/given k = k0 scenario commonly used in
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practice but also a more general setting whereby k = [Tπ] is allowed to vary over an interval [πa, πb] ⊂ (0, 1).
The motivation of this latter framework is to render inferences robust to data mining along the lines of
Rossi and Inoue (2012). The practical relevance of this issue has been recently highlighted in the context of
the predictability of the equity premium in Kolev and Karapandza (2017) where the authors demonstrate
that for a given set of predictors alternative data splits may lead to contradictory outcomes about return
predictability.

Our proposed inferences about the presence of regimes within et+1|t and e2
t+1|t will rely on suitably

normalised versions of functionals of the following two quantities

C1T (k, γ) =
T−1∑
t=k

(et+1|t − ēT−k)I(qt ≤ γ) (4)

C2T (k, γ) =
T−1∑
t=k

(e2
t+1|t − τ̄

2
T−k)I(qt ≤ γ) (5)

where qt denotes the threshold variable, ēT−k =
∑T−1
t=k et+1|t/(T−k) and τ̄2

T−k =
∑T−1
t=k (et+1|t−ēT−k)2/(T−

k). Note that the quantity ēT−k is maintained in (4) as the et+1|t’s should not be confused with full sample
residuals which would have an exact zero mean. Throughout this paper we also write

qt = µq + uqt (6)

and this threshold variable is understood to be stationary with marginal distribution function F (.) so that
when necessary and convenient we make use of the property I(qt ≤ γ) ≡ I(F (qt) ≤ λ) with F (qt) ∼ U [0, 1]
and refer to the threshold parameter as γ or λ ≡ F (γ) interchangeably.

Note that (4) and (5) are indexed by both the unknown threshold parameter γ as well as k = [Tπ] which
captures the location of the initial sample size used to initiate the recursive forecasts. As highlighted in
Rossi and Inoue (2012) forecast accuracy can vary greatly across alternative choices of π. Our formulations
in (4)-(5) allow us to construct test statistics that take this dependence on π into account and hence
lead to inferences that are less prone to data mining. Nevertheless in what follows we will consider both
scenarios (i.e. π fixed and given, say π = π0 and π ∈ [πa, πb] ⊂ (0, 1)).

We consider two alternative functionals of the CiT (π, λ)’s across the two scenarios on π as formulated
in the following test statistics. For the scenario where k is taken as given, say k = k0 = [Tπ0] we define

SupiT ≡ sup
λ∈Λ

∣∣∣∣∣CiT (π0, λ)√
T φ̂i

∣∣∣∣∣ i = 1, 2 (7)

AveiT ≡ ave
λ∈Λ

(
C2
iT (π0, λ)
T φ̂2

i

)
i = 1, 2 (8)

where the indexing i = 1, 2 distinguishes between the statistic implemented on the level of the forecast errors
and their squares respectively and with φ̂2

1 =
∑T−1
t=k (et+1|t − ēT−k)2/T and φ̂2

2 =
∑T−1
t=k (e2

t+1|t − τ̄
2
T−k)2/T .

Note that for notational simplicity we have suppressed the dependence of SupiT and AveiT on λ.
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In order to robustify our inferences to the specific choice of k0 we also consider a framework where k
is allowed to take a broad range of values (e.g. π ∈ Π = [0.25, 0.75]) by proceeding à la Rossi and Inoue
(2012). For this purpose we introduce the following alternative test statistic formulations indexed by both
π and λ

SupSupiT ≡ sup
π∈Π

sup
λ∈Λ

∣∣∣∣∣CiT (π, λ)√
T φ̂i

∣∣∣∣∣ i = 1, 2 (9)

AveAveiT ≡ ave
π∈Π

ave
λ∈Λ

(
C2
iT (π, λ)
T φ̂2

i

)
i = 1, 2. (10)

The above statistics bear strong resemblance with traditional CUSUM (under i = 1) and CUSUMSQ
(under i = 2) formulations commonly used in the changepoint literature and developed in the early work
of Page (1954), Brown et al. (1975) amongst others. Instead of cumulating the quantity of interest up to a
potential changepoint we here focus on its random sum as dictated by the magnitude of qt. Although such
test statistics have often been viewed as exploratory tools for assessing parameter stability in regression
models and were developed with no particular alternative in mind we have here adapted them to our
specific context of threshold effects in forecast errors and their variances and therefore expect them to
display good power properties against such scenarios. More specifically, the model against which we will
be interested in confronting the out of sample forecast errors estimated from (1) is given by

yt+1 = β′wt + δ0I(qt > γ0) + δ′1xtI(qt > γ0) + ut+1 (11)

where δ0 and δ1 capture the presence of threshold effects associated with the intercept and slope parameters
respectively. We initially concentrate on departures from (1) towards instabilities induced solely by
conditional mean parameters as in (11) but subsequently also explore scenarios where the variance of the
u′ts is itself characterised by threshold effects triggered by qt. This variance based state-dependence may
occur in isolation or in conjunction with state-dependence in the slope parameters.

3 Limiting Distributions and Asymptotic Power Properties

Limiting Distributions

Our main objective here is to obtain the limiting distributions of the test statistics based on C1T (π, λ) and
C2T (π, λ) when the underlying model is given by the linear predictive regression in (1). As our inferences
involve both the level and squares of forecast errors we formulate our operating assumptions accordingly as
the latter scenario requires further restrictions on the dynamics of the u2

t sequence. Assumption A1 below
outlines the probabilistic environment under which we establish the large sample properties of (7)-(10) for
i = 1.

Assumption A1. (i) vt = Ψ(L)εvt with Ψ(L) =
∑∞
j=0 ΨjL

j such that
∑∞
j=0 Ψj has full rank, Ψ0 = Ip

and
∑∞
j=0 ||Ψj || <∞. (ii) η1t = (ut, εvt)′ is a martingale difference sequence with respect to the filtration
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F1,t = σ(η1s, uqs|s ≤ t) satisfying E[η1tη
′
1t|F1,t−1] = Ση1 > 0 and E||η11||4 < ∞. (iii) The probability

density function fq(.) of the threshold variable qt = µq + uqt is bounded away from zero and ∞ over each
bounded set. (iv) The zero mean sequence {uqt} is strictly stationary, ergodic, strong mixing with mixing
numbers αm such that

∑∞
m=1 α

1
2−

1
r <∞ for some r > 2.

Assumption A1 mimics closely the environment considered in Gonzalo and Pitarakis (2012, 2017)
and excluding the probabilistic properties of qt has been the operating standard in the linear predictive
regression literature. Both vt and qt are allowed to display a rich dependence structure while ut is restricted
to be a conditionally homoskedastic martingale difference sequence. The threshold variable is assumed
to be stationary throughout and its innovations possibly contemporaneously correlated with the shocks
driving the predictive regression in (1). The strong mixing assumption on qt is in line with Caner and
Hansen (2001) and allows the sequence to follow very general stationary ARMA type specifications. As
our focus is on using qt to capture business cycle movements stationarity of qt is naturally intuitive in the
context of this paper. Finally, it is also important to point out that the covariance between the u′ts and
the shocks εvt associated with the predictors, say Ση1 = {{σ2

u,σ
′
uεv
}, {σuεv ,Σεvεv}}, can be non-diagonal

allowing them to be correlated as it is commonly observed in applications involving returns and dividend
yields for instance.

An implication of the above assumptions is that a functional central limit theorem (FCLT) holds for
zt = (ut, utI(qt−1 ≤ λ),vt)′ which we write as

T−
1
2

[Tr]∑
t=1
zt ⇒ (B1(r), B1(r, λ),Bv(r))′ ≡ BM(Ω) (12)

where Ω =
∑∞

=−∞E[z0z
′
k] > 0. Here B1(r, λ) is a two-parameter Brownian Motion i.e. a zero mean

Gaussian process with covariance kernel σ2
u(r1 ∧ r2)(λ1 ∧ λ2) as introduced in a related context in Caner

and Hansen (2001). Our assumptions under A1(ii) also imply a particular structure for Ω without forcing
it to be diagonal as both serial correlation and heteroskedasticity are ruled out from the dynamics of the
u′ts. More specifically we can formulate Ω as

Ω =


σ2
u λσ2

u σ′uεv
Ψ(1)

λσ2
u λσ2

u λσ′uεv
Ψ(1)

σuεv Ψ(1) λσuεv Ψ(1) Ψ(1)Σεvεv Ψ(1)′

 (13)

and for later use we also write B1(r, λ) = φ1W1(r, λ) with φ2
1 ≡ σ2

u ≡ E[u2
t ] and W1(r, λ) a two parameter

standard Brownian Motion.

Assumption A2 below introduces the conditions under which we obtain the limiting distributions of
(7)-(10) for i = 2 based on the squared forecast errors. In order to handle the asymptotics associated
with the use of squared CUSUMs as in (5) we supplement Assumption A1 with additional restrictions
involving the dynamics of the u2

t sequence and its interactions with the remaining random disturbances in
the system.
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Assumption A2. Assumption A1 continues to hold with η1t replaced with η2t = (ut, u2
t − σ2

u, εvt)′.

We note that Assumption A2 essentially imposes further conditional and unconditional moment restrictions
on the ut sequence. This is needed to ensure that an FCLT type result holds for the marked empirical process
YT (r, λ) = T−1/2∑[Tr]

t=1 (u2
t − σ2

u)I(qt ≤ λ). Assumption A2 ensures for instance that E[(u2
t − σ2

u)I(qt ≤
λ)] = λφ2

2 for φ2
2 = E[(u2

t − σ2
u)]2 while the finiteness of the fourth moments of (u2

t − σ2) is needed to
establish the stochastic equicontinuity of YT (r, u) (see Caner and Hansen (2001)). These assumptions
ensure for instance that

T−
1
2

[Tr]∑
t=1

(u2
t − σ2

u)I(qt−1 ≤ λ) ⇒ B2(r, λ) ≡ φ2W2(r, λ) (14)

where W2(r, λ) is a two parameter standard Brownian Motion.

We initially focus on the large sample behaviour of (7)-(8) for π = π0, taking the starting point of
the expanding window used to initiate forecasts as given. Their limiting behaviour is summarised in
Proposition 1 below.

Proposition 1. Under assumptions A1 for i = 1 and under assumptions A2 for i = 2 we have as T →∞

SupiT ⇒ sup
λ∈Λ
|W 0

i (λ)| i = 1, 2 (15)

AveiT ⇒
∫ 1

0
W 0
i (λ)2dλ i = 1, 2 (16)

with W 0
i (λ) denoting a standard Brownian Bridge process.

It is here interesting to note that given our operating model in (1)-(2) the above limiting distributions are
free of any nuisance parameters, including the magnitudes of the underlying non-centrality parameters
appearing in C. This is quite a unique outcome in the time series literature involving nearly integrated
processes where the handling of the unknown c′is has become an important topic in itself. Also noteworthy
is the fact that the limiting distributions are the same regardless of whether we implement our tests on the
et+1|t’s or e2

t+1|t’s.

Another important and convenient feature of (15)-(16) is that their tabulations are readily available in
the literature, including the possibility of obtaining exact p-values. These distributions are well defined
for λ ∈ [0, 1] (see Billingsley (1986)). In the case of (15) the 10%, 5% and 1% cutoffs are given by 1.224,
1.358 and 1.628. For the distribution in (16) the corresponding cutoffs are 0.347, 0.461 and 0.744. It is
also worth pointing out that restricting mildly the [0, 1] intervals by taking the supremum in (15) over a
subset such as [0.1, 0.9] or [0.2, 0.8] leads to almost identical critical values (e.g. the 1.224 cut-off decreases
to 1.222 under λ ∈ [0.2, 0.8] while under [0.1, 0.9] it remains unchanged at the chosen precision level).

Next, we focus on the case where the practitioner does not wish to take a stance on where to start the
build-up of the recursive forecast errors. The parameter π is now allowed to be such that π ∈ Π so that
the test statistics are evaluated for each possible magnitude of π (or k), say for instance starting from
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the 25% of the sample up to 75% of the sample. The test statistics are now given by (9)-(10) and their
limiting distribution is summarised in Proposition 2 below.

Proposition 2. Under Assumptions A1 for i = 1 and under Assumptions A2 for i = 2 we have as
T →∞

SupSupiT ⇒ sup
π∈Π

sup
λ∈[0,1]

∣∣∣∣Wi(1− π, λ)− λWi(1− π, 1)√
1− π

∣∣∣∣ i = 1, 2 (17)

AveAveiT ⇒ 1
πb − πa

∫
Π

∫ 1

0

(
Wi(1− π, λ)− λWi(1− π, 1)√

1− π

)2
dπdλ i = 1, 2 (18)

with Wi(1− π, λ) denoting a two-parameter standard Brownian Motion.

As in Proposition 1 and for notational simplicity we have here suppressed the dependence of SupSupiT and
AveAveiT on λ and π. We continue to note that the limiting distributions in (17)-(18) are free of nuisance
parameters. Both distributions are functionals of a process of the type K(ζ, λ) = W (ζ, λ) − λW (ζ, 1)
commonly known as a Kiefer-Müller process which is a zero mean Gaussian processes with covariance
kernel Cov[K(ζ1, λ1),K(ζ2, λ2)] = (ζ1 ∧ ζ2)(λ1 ∧ λ2 − λ1λ2).

Although free of nuisance parameters it is clear that critical points of these distributions will depend on
the interval Π = [πa, πb]. Tabulations of (17)-(18) are to our knowledge not available in the literature. To
approximate these distributions we have generated a sequence of i.i.d random variables of length T = 500
that are uniformly distributed on [0, 1]. K(1− π, λ) is then approximated by

∑T
t=[Tπ](I(Ut ≤ λ)− λ)/

√
T .

Equivalently, K(1− π, λ)/
√

1− π is approximated via
∑T
t=[Tπ](I(Ut ≤ λ)− λ)/

√
T − [Tπ]. The supremum

and average of the approximating process is obtained by maximising over π and λ with the process being
repeated across N = 10000 replications. Key quantiles of (17)-(18) are presented in Table 1 across a
selection of Π intervals.

Consistency and Local Power Properties

Having established the asymptotic distributions of our test statistics when the underlying model is given
by (1) we next assess their ability to detect fixed as well as local departures from (1) driven by the presence
of threshold effects as in (11). In the case of local departures δ is understood to be parameterised as
δT = (δ0T , δ

′
1T )′ with δT → 0 at suitable rates as T →∞.

We initially focus on the consistency properties of our four test statistics establishing their large sample
behaviour under a fixed magnitude of δ. The main result is summarised in Proposition 3 below.

Proposition 3. Under (11) with δT = δ 6= 0 and the same assumption structure as in Propositions 1-2
{SupiT , AveiT , SupSupiT , AveAveiT } diverge to infinity for i = 1 and provided that λ0 6= 0.5 for i = 2.

Proposition 3 establishes the consistency of all four test statistics, noting also that their stated divergence
occurs regardless of whether solely the intercept δ0, the slopes δ1 or both are allowed to shift. There is one
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instance however under which our squared error based statistics (i.e. for i = 2) will display little power.
This happens when the true threshold parameter is such that P (qt ≤ γ0) = P (qt > γ0), equivalently when
λ0 = 0.5. A similar phenomenon has also been documented in the context of the changepoint literature
and inferences based on CUSUMSQ type statistics (see for instance Theorem 1 in Deng and Perron (2008)).
It is also important to point out that the power loss that occurs under λ0 = 0.5 when dealing with test
statistics involving squared forecast errors is not unique to our CUSUMSQ type formulations as the same
phenomenon will also occur if one were to use a Wald type statistic instead (e.g. a Wald statistic for
detecting shifts in the mean of the e2

t+1|t sequence).

We next focus on the local power properties of our test statistics. For the simplicity of the exposition
and with no loss of generality we concentrate our attention on the quantities |CiT (π0, λ)|/

√
T φ̂i for i = 1, 2

in (7) as the supremum and average functionals of the resulting limits as well as those associated with
CiT (π0, λ)2/T φ̂2

i would follow straightforwardly.

Proposition 4. (i) Suppose model (11) holds with δT = (δ0/
√
T ,0′) (intercept shifts only). Under assump-

tion A1, lim|δ0|→∞ limT→∞ |C1T (π0;λ, λ0)/
√
T φ̂1| =∞ in probability. (ii) Suppose model (11) holds with

δT = (0, δ1/T
′) (slope shifts only). Under assumption A1, lim||δ1||→∞ limT→∞ |C1T (π0;λ, λ0)/

√
T φ̂1| =∞

in probability.

Proposition 5. (i) Suppose model (11) holds with δT = (δ0/T
1/4,0′) (intercept shifts only). Under assump-

tion A2, lim|δ0|→∞ limT→∞ |C2T (π0;λ, λ0)/
√
T φ̂2| =∞ in probability. (ii) Suppose model (11) holds with

δT = (0, δ′1/T 3/4) (slope shifts only). Under assumption A2, lim||δ1||→∞ limT→∞ |C2T (π0;λ, λ0)/
√
T φ̂2| =

∞ in probability. (iii) Suppose model (11) holds with δT = (δ0/
√
T ,0′) and/or δT = (0, δ′1/T ) then

C2T (π0;λ, λ0)/
√
T φ̂2 ⇒W 0

2 (λ) as T →∞.

Proposition 4 focused on the local power properties of our test statistics associated with the levels
of the forecast errors while Proposition 5 focused on the corresponding outcomes for the test statistics
based on squared forecast errors instead. We note that C1T based inferences are able to detect local
departures of the type (δ0/

√
T , δ′1/T ) while C2T based statistics require the mildly slower vanishing rates

of (δ0/T
1/4, δ′1/T

3/4) in order to be able to detect them as otherwise their power will equal their size as
implied by Proposition 5(iii).

Overall our proposed tests statistics based on either C1T or C2T are expected to display good power
properties provided that the presence of regimes comes from the slope parameters while C2T based
inferences are unlikely to pickup regimes if the latter are solely originating from small shifts in intercepts.
This distinct behaviour of C1T and C2T will also be particularly important when it comes to detecting
departures from (1) that also include the potential presence of threshold effects in the variances of the ut’s.
Before proceeding with such generalisations it is instructive to also present the explicit form of the limiting
random variables associated with the large sample behaviour of CiT (π0;λ, λ0)/

√
T φ̂i in Propositions 4 and

5 as this will help to explicitly highligh the key parameters affecting the power properties of our tests.
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Focusing first on the C1T based inferences as in Proposition 4 we have∣∣∣∣∣C1T (π0;λ, λ0)√
T φ̂1

∣∣∣∣∣ ⇒
∣∣∣∣∣W 0

1 (λ)−
√

1− π0(λ ∧ λ0 − λλ0)δ0
σu

∣∣∣∣∣ for δT = (δ0/
√
T ,0′)′, (19)∣∣∣∣∣C1T (π0;λ, λ0)√

T φ̂1

∣∣∣∣∣ ⇒
∣∣∣∣∣W 0

1 (λ)− (λ ∧ λ0 − λλ0)
σu
√

1− π0
δ1
′
∫ 1

π0
Jc

∣∣∣∣∣ for δT = (0, δ′1/T )′ (20)

as T → ∞. As stated in Proposition 4 we note that both quantities in the right hand side of (19)-(20)
diverge with δ0 and δ1 respectively. Similarly under the setting of Proposition 5 for C2T we have∣∣∣∣∣C2T (π0;λ, λ0)√

T φ̂1

∣∣∣∣∣ ⇒
∣∣∣∣∣W 0

2 (λ)−
√

1− π0(1− 2λ0)(λ ∧ λ0 − λλ0)δ2
0

φ2

∣∣∣∣∣ for δT = (δ0/T
1/4,0′)′, (21)∣∣∣∣∣C2T (π0;λ, λ0)√

T φ̂1

∣∣∣∣∣ ⇒
∣∣∣∣∣W 0

2 (λ)− (λ ∧ λ0 − λλ0)(1− 2λ0)
φ2
√

1− π0
δ1
′
∫ 1

π0
JcJ

′
c δ1

∣∣∣∣∣ for δT = (0, δ′1/T 3/4)′ (22)

as T →∞.

The results in (19)-(20) indicate that the power of C1T based inferences are affected by (π0, λ0, σu, δ0)
under intercept shifts only scenarios and by (π0, λ0, σu, δ0, c1, . . . , cp) under slope shifts. For both scenarios
power is expected to improve for lower magnitudes of σu (holding all else equal), larger magnitudes of δ0

and/or δ1 and a smaller fraction of the sample size used to initiate the recursive forecasts. Power is of
course also expected to be more favourable under slope shifts than it is under intercept shifts alone as the
tests can detect departures from (1) that are more local (e.g. δ0/

√
T vs δ1/T for C1T based inferences).

The results in (21)-(22) indicate that inferences based on C2T will be affected by (π0, λ0, σu, E[u4
t ], δ0)

and (π0, λ0, σu, E[u4
t ], δ1, c1, . . . , cp) so that all other things being equal a high kurtosis in the u′ts is expected

to also deteriorate power via φ2
2 = E[u2

t −σ2
u]2. It is also clear that C2T based tests will have no meaningful

power when λ0 = 0.5 due to the appearance of the (1− 2λ0) factor on both numerators.

Another important point that follows from the above outcomes is related to the role played by the
non-centrality parameter c on the power properties of the tests. From (19) and (21) we note that the
degree of persistence of the predictors is not expected to have any influence on the detection ability of our
tests when the models under consideration have intercept shifts only. In contrast, persistence is expected to
play an important role when it comes to detecting slope shifts as can be seen from the distinct appearance
of the Jc process in (20) versus (22).

It is here also interesting to point out that although C1T based inferences are able to detect less distant
slope departures than C2T based inferences (i.e. δ1/T versus δ1/T

3/4) it is not clear whether this will
necessarily translate into better finite sample power properties for the associated statistics (provided
that λ0 6= 0.5). Indeed, comparing (20) with (22) and focusing on a single predictor scenario we note
the presence of the term δ1

∫
Jc in (20) versus δ2

1
∫
J2
c in (22). Depending on the magnitude of δ1 this

distinction introduces a degree of ambiguity on whether C1T or C2T based statistics should lead to more
favourable power outcomes.
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The Case of Variance Shifts

An issue we hinted at earlier and which we may be confronted with in applied work is the possibility that
the shocks driving the predictive regression in (1) may themselves be subject to regime specific volatility.
An important issue that arises in this context is the behaviour of our C1T and C2T based statistics under
such a scenario and whether our current toolkit can help detect such occurrences and possibly be used to
disentangle between regimes induced by the conditional mean and regimes induced by threshold effects in
variances. To explore these issues we consider a setting where ut+1 in (1) is now formulated as

ut+1 = σ1εt+1 + (σ2 − σ1)εt+1I(qt > γv0) (23)

where the threshold parameter γv0 may or may not equal the threshold parameter γ0 associated with
(potential) changes in the intercept/slope parameters of the forecasting model in (11). The εt+1’s are
here understood to satisfy assumptions A1 and/or A2 with εt replacing ut in η1t and η2t respectively as
summarised under Assumptions B1 and B2 below.

Assumption B1. Assumption A1 holds with η1t = (εt, εvt)′ and where E[ε2t |F1,t−1] = 1 in Ση1 .

Assumption B2. Assumption A2 holds with η2t = (εt, ε2t − 1, εvt)′ and where E[ε2t |F2,t−1] = 1, E[(ε2t −
1)2|F2,t−1] = κ4, E[εt(ε2t − 1)|F2,t−1] = κ3 in Ση2 .

The formulation in (23) imposes a piecewise linear structure on the variances of the u′ts and has been a
commonly used parameterisation considered in the structural break literature where qt is typically given
by a deterministic time trend. Despite its simplicity the piecewise linear structure of ut is able to capture
very rich dynamics including serial correlation in the u2

t . It is indeed straightforward to observe from (23)
that although ut+1 continues to be a martingale difference sequence, unlike the εt+1’s, it no longer satisfies
assumptions A1(ii) or A2 as it is no longer conditionally homoskedastic. Using (23) we note for instance
that E[u2

t+1|Fi,t] = σ2
1 + (σ2

2 − σ2
1)I(qt > γvo). As a consequence the null limiting distributions of our test

statistics as stated in Propositions 1 and 2 will no longer hold.

Before proceeding further it is useful to recall that the main objective behind our proposed tests
is to detect the presence of state dependence in forecast errors. This state dependence may originate
from omitted regimes in conditional mean parameters as in (11), from variances as in (23) or from both.
Although our main concern is for our inferences based on C1T and C2T to be able to detect such departures
from (1) regardless of where they originate, it may also be possible to disentangle between the two through
the joint use of both statistics. We may for instance want our C1T based inferences not to be sensitive to
the presence of variance shifts so that a non-rejection based on C1T followed by a rejection based on C2T

may be used to argue that state dependence originates in the variances.

Borrowing from the changepoint literature where it is customary to explore test properties within small
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shift asymptotic frameworks we adapt the same idea to (23), parameterising it as

ut+1 = σ1εt+1 + (σ2 − σ1)
T θ

εt+1I(qt > γv0) (24)

for some 0 < θ ≤ 1/2. We can interpret (24) as a limited heterogeneity framework similar to that considered
in a different context in Steland (2020). The formulation in (24) is essentially saying that the difference in
variances across the two regimes gets small as the sample size increases. Differently put we operate under
an asymptotic approximation that is valid for small magnitudes of the spread (σ2−σ1) with the parameter
θ controlling the rate at which this spread decreases to zero, i.e., how small we are forcing (σ2 − σ1) to be.
Smaller values of θ are thus less restrictive.

We next focus on the limiting behaviour of our test statistics based on C1T and C2T under Assumptions
B1 and B2 respectively. Model (1) is understood to hold with ut+1 as in (24) so that the forecasting
regression is characterised by threshold effects in the variance of its innovations while having a correctly
specified conditional mean.

Proposition 6. (i) Suppose model (1) holds with ut+1 as in (24) and θ > 0. As T → ∞ we have
|C1T (π0;λ, λv0)/

√
T φ̂1| ⇒ |W 0

1 (λ)|. (ii) Suppose model (1) holds with ut+1 as in (24) and 0 < θ < 1/2,
then |C2T (π0;λ, λv0)/

√
T φ̂2| diverges to infinity in probability as T →∞. (iii) Suppose model (1) holds

with ut+1 as in (24) and θ = 1/2, then lim|σ2−σ1|→∞ limT→∞ |C2T (π0;λ, λv0)/
√
T φ̂2| =∞.

The results in Proposition 6 are particularly important as they imply that inferences based on C1T will
remain as in Proposition 1, unaffected by the presence of regime specific heteroskedasticity. On the other
hand under the same setting, C2T based inferences should be able to detect departures from (1) as in (24)
due to our results in Proposition 6(ii)-(iii). This suggests for instance that a scenario whereby C1T based
test statistics fail to reject the null while C2T based inferences lead to rejections would indicate that state
dependence in forecast errors originates solely in the variances. Our Monte-Carlo based results do indeed
demonstrate that even under large spreads in variances (i.e. large magnitudes of |σ2 − σ1| ), C1T based
inferences remain very close to their nominal size as expected from Proposition 6(i).

If C1T based inferences result in rejections due to shifts in slopes then from our result in Proposition
5(ii) it is also almost certainly the case that C2T based inferences should also follow suit. A rejection by
both statistics would then indicate that state dependence in forecast errors originates from shifts in the
slopes of (1) and potentially also shifts in variances, the latter being picked up by C2T . Finally if C1T based
inferences lead to rejections while C2T based inferences do not then based on our results in Propositions
5(iii) such a scenario is likely to indicate that state dependence originates solely from intercept shifts.
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4 Experimental Evidence

Our initial objective is to document the finite sample adequacy of the distributions presented in (15)-(18)
when the DGP is given by (1)-(2). We subsequently assess the ability of our test statistics to reject the
null of a linear predictive regression when the true specification is given by the threshold model in (11),
illustrating our key outcomes presented in Propositions 4 and 5. In analogy to the structure of Section
3 above these size and power properties of our tests are in a first instance evaluated in the context of
conditionally homoskedastic u′ts satisfying Assumptions A1 and A2. We subsequently concentrate on the
case of variance shifts as in (24) and illustrate our key results in Proposition 6 within a DGP given by
(1)-(2) but with the ut’s characterised by threshold effects in their variances. In this latter context we are
particularly interested in documenting the ability of our test statistics to disentangle between threshold
effects in the slopes and threshold effects in variances.

DGPs

The main DGP for our size experiments is given by (1)-(2) with xit = (1−ci/T )xit−1+vit, vit = 0.5vit−1+εivt,
εivt ∼ (0, σ2

εiv
= 1) for i = 1, 2, 3 so as to accommodate up to three predictors. This allows us to explore

the robustness of our limiting distributions in Propositions 1-2 to alternative magnitudes of the c′is
and the influence of the latter on test powers. Throughout both our size and power experiments the
threshold variable as described in (6) is taken to follow the centered AR(1) process uqt = 0.5uqt−1 + εqt,
εqt ∼ (0, σ2

εq = 1). The random disturbance driving (1) is such that ut ∼ (0, σ2
u = 1).

The covariance matrix of the (p+ 2) dimensional vector (ut, ε1vt, ε2vt, . . . , εpvt, εqt) collecting all ran-
dom disturbances driving the system allows for non-zero contemporaneous correlations between these
disturbances. In line with the empirical literature on the predictability of returns with valuation ratios
the covariances between the u′ts in (1) and the ε′ivts are chosen to ensure a strong negative correlation
between the shocks to the y′s and the shocks to the predictors. For the single predictor case (p = 1) we
set σu,ε1v = −0.7, σu,εq = 0.4 and σε1v ,εq = 0.2. For p = 2 we set σu,ε1v = −0.7, σu,ε2v = −0.5, σu,εq = 0.3,
σε1v ,ε2v = 0.3, σε2v ,εq = 0.2 and σε1v ,εq = 0.2. Finally for p = 3 we use the same covariances as under
p = 2 together with σu,ε3v = −0.2, σε1v ,ε3v = 0.3, σε2v ,ε3v = 0.3, σε2v ,εq = 0.3 and σε3v ,εq = 0.4. Throughout
this paper all simulations are conducted using normally distributed random variables across N = 5000
replications.

Our power experiments are conducted with a DGP as in (11), distinguishing between intercept shifts
only scenarios (δ1 = 0) and slope shifts only scenarios (δ0 = 0) for γ0 = {−0.5, 0}. Here we note that the
case γ0 = 0 corresponds to a regime structure with a 50/50 split between the qt observations that lie above
and below γ0 so that λ0 = 0.5. Such a parameterisation is important for illustrating the power failures
affecting inferences based on e2

t+1|t’s when λ0 = 0.5 as theoretically established in (21)-(22).
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Size experiments

We initially focus on the SupiT and AveiT statistics in (7)-(8) which assume a given/known starting point
for the start of the recursions to generate the out of sample forecast errors (say k0 = [Tπ0] with π0 = 0.25).
For each generated (yt,x′t, qt), the sequence of forecast errors and their squares is first obtained as in (3).
These sequences are subsequently used to construct the test statistics in (7)-(8). Results are presented in
Tables 2-3 which compare empirical sizes with the chosen nominal size of 5%. Table 2 presents results for
predictive regressions with p = 1, 2, 3 predictors when the latter are constrained to have the same degree
of persistence. Table 3 provides additional outcomes when each predictor has a different non-centrality
parameter.

Empirical sizes are seen to match their nominal counterparts closely across all sample sizes except
perhaps for a very mild undersizeness under T = 400 characterising the Sup2T based tests that rely on
the squared forecast errors. It is also generally the case that the SupiT based tests display mildly lower
empirical sizes compared to the AveiT based statistics which marginally overshoot the nominal size of 5%.
Overall our proposed tests can be seen to be accurately sized across a rich set of alternative scenarios and
sample sizes. As expected from our asymptotics it is also particularly important to note the robustness of
outcomes to alternative choices of the non-centrality parameters and the number of predictors included in
the predictive regressions.

We next consider the case of the SupSupiT and AveAveiT statistics in (9)-(10) which are designed
to robustify inferences to the chosen starting period of the recursions. Our experiments use the range
Π = [0.50, 0.75] for scanning across recursion starting points. The corresponding 5% quantile cut-offs of the
two test statistics are given by 1.573 and 0.415 respectively (see Table 1) and results on specifications with
p = 1, 2, 3 predictors are presented in Table 4. We continue to note good to excellent matches of nominal
sizes across all parameterisations. Empirical sizes associated with the SupSupiT statistics typically lie
mildly below those associated with the AveAveiT statistics as documented previously. Also noteworthy
is the robustness of finite sample sizes to the number of predictors and their associated non-centrality
parameters as it was the case for the SupiT /AveiT statistics above.

Power experiments

We next explore the power properties of our test statistics under intercept only and slope shift only
scenarios. Our empirical results in Tables 5-8 are designed to illustrate both the correct decision frequencies
associated with each statistic as T grows but also the evolution of power for fixed T as the parameterisations
of the DGP move further away from linearity.

Tables 5-6 focus on the power of the SupiT and AveiT statistics across intercept shift only and slope
shift only scenarios. Focusing first on the case of intercept shifts (Table 5) we note empirical correct
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decision frequencies at or very near 100% for samples of size T = 400 or above when inferences are based on
the Sup1T /Ave1T statistics under moderately large departures such as δ0 ≥ 0.5. Even under δ0 = 0.25 we
note empirical powers above 80% for T = 1000. These outcomes are in line with our results in Proposition
4 where we documented the ability of C1T based statistics to detect local intercept departures of the
type δ0/

√
T . Table 5 also highlights the robustness of power outcomes to the magnitude of non-centrality

parameters as expected from (19) and (21) where c is seen not to play any role under intercept shift only
scenarios.

The empirical power outcomes associated with intercept shifts only change significantly when inferences
are based on the squared forecast errors via the Sup2T /Ave2T statistics. These squared forecast error
based statistics are unable to detect intercept shifts unless the latter are very large and λ0 6= 0.5. This
is in total agreement with our result in Proposition 5(i) from which we note that to be detectable by
Sup2T /Ave2T , local departures should be of the form δ0/T

1/4 as opposed to δ0/
√
T in the case of the

Sup1T /Ave1T statistics.

Table 6 repeats the same exercise for slope shifts only. The first two vertical panels distinguish between
p=1 and p=2 predictor scenarios while the third panel reconsiders the case of p=2 predictors but with
only one of the two associated slopes shifting. As in the intercept shift only case, Sup1T /Ave1T based tests
display correct decision frequencies either close to 100% or quickly converging to 100% as δ1 increases.
Power is also seen to improve with the degree of persistence of predictors with the most favourable outcomes
occurring under c = 1. This is in total agreement with our result in (20) which documents the explicit role
played by the non-centrality parameter c on the local power properties of the tests.

In this context of slope shifts and unlike the earlier intercept shift only scenarios, the squared forecast
errors based statistics Sup2T /Ave2T also display good power properties provided that λ0 6= 0.5. They can
in fact also be seen to dominate Sup1T /Ave1T based inferences in many instances (under c = 20 and c = 40
in particular) despite the fact that the latter are able to detect departures of the type δ1/T versus δ1/T

3/4

for the former. Our results in (20) and (22) and the terms involving
∫
Jc versus

∫
J2
c in particular provide

the intuition for these empirical occurrences. It is also interesting to observe that the power properties
of the Sup2T /Ave2T based tests appear to deteriorate much less compared with Sup1T /Ave1T when the
predictors move closer to the stationarity region (e.g. under c = 20 and c = 40).

Tables (7)-(8) extend the above analysis to our class of SupSupiT /AveAveiT based tests and broadly
corroborate our findings based on the Sup/Ave statistics. The use of SupSup/AveAve based tests does
not appear to lead to any meaningful finite sample power losses relative to the Sup/Ave statistics which
were based on a fixed recursion starting point.
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Variance shifts

The last set of experiments focuses on the behaviour of our C1T and C2T based statistics under variance
shifts and aim to illustrate our key results in Proposition 6. Specifically, we expect that provided the shifts
in variance are not too large, C1T based statistics will maintain their correct size. At the same time we
expect C2T based tests to display good power properties for either small or large variance shifts. We view
these features as particularly useful as they may resolve the issue of identifying whether state dependence
originates from conditional mean parameters or variances (e.g. if C1T based inferences fail to reject while
C2T based inferences lead to rejections).

Results are presented in Table 9. As expected from Proposition 6(ii) we note that the C2T based
statistics display excellent power to detect variance shifts even under moderately sized samples while C1T

based inferences tend to remain close to nominal size even for moderately large shifts, as expected from
Proposition 6(i). Thus although rejections by C2T may be caused by either variance shifts and/or slope
parameter shifts, a non-rejection by C1T followed by a rejection by C2T would indicate state dependence
induced solely by variance shifts.

5 Application: Regime Specificity in the Value Premium

In this section we use our methods to assess the potential presence of state dependence in the forecasts
of the value premium, a series which has been the subject of considerable research in the asset pricing
literature and which refers to the commonly observed out-performance of cheap/value stocks (e.g. stocks
having high Book-to-Market value (BM), high Earnings-to-Price ratios) relative to more expensive growth
stocks (e.g. low Book-to-Market stocks). Although there is broad consensus on its existence across most
developed and emerging markets the debate on whether this premium reflects compensation for risk or a
behavioural anomaly is still very much on-going (see Lakonishok et al. (1994) , Fama and French (2012)
and references therein). A related agenda that parallels our own objectives here has also been concerned
with establishing whether such risk premiums are time varying and their relationship with the business
cycle (see Petkova and Zhang (2005), Long et al. (2008), Gülen et al. (2011)).

Although there is no unique way of defining the value premium a standard approach in the literature
has involved forming decile or quintile portfolios on firm specific characteristics such as Book-to-Market
Value, Dividend Yields, Ernings-to-Price ratios and evaluating the return spreads between upper and lower
deciles in each time period and for a broad cross-section. This is also the approach we adopt here using
Kenneth French’s publicly available data library. More specifically we focus on monthly US data covering
the period 1930-2017 and construct our value premium series as the difference between the top and bottom
decile portfolios formed on Book-to-Market (D10BM-D1BM). In addition to this decile based series we
also consider the well-known value premium factor known as HML (High minus Low) and which is one of
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the three factors used in Fama and French’s three factor model (see Fama and French (2012)) to capture
the sensitivity and exposure of a given portfolios or individual stock to value. Our choice of predictors is
based on a selection of variables that have been commonly considered in the equity premium forecasting
literature and given by the well known Goyal and Welch data set (see Goyal and Welch (2014)). We
restrict our analysis to a selection of these variables which have been commonly found to play a significant
role in the predictability of the equity premium. These are the log dividend yield (LDY), the treasury
bill rate (TBL), the term spread (TMS), the long term government bond returns (LTR) and the default
yield spread (DEF). Finally our choice of threshold variable (and business cycle proxy) qt is given by the
monthly growth rate in the US index of industrial production (IPGR). A standard ADF test applied to
this series led to a strong rejection of the unit root hypothesis, supporting our setting that operates under
a stationary threshold variable. As our test statistics are able to accommodate predictive regressions with
both single and multiple predictors our empirical analysis considers the above variables both individually
and in a selection of groups. All our inferences that are based on a given π0 use π0 = 0.25 throughout
while our SupSupiT and AveAveiT based outcomes use the range Π = [0.25, 0.75].

Results are presented in Table 10. Focusing first on the single predictor based specifications we note
that our empirical results provide a consistent picture for the two series both across the selection of
predictors and the two types of test statistics being considered. The big picture that comes across is the
obvious absence of any threshold effects induced by our business cycle proxy on the level of the out of
sample forecast errors suggesting no evidence of state dependence in the conditional mean specifications.
This finding is supported by both our SupiT and AveiT based statistics across all predictors as well as
our SupSupiT and AveAveiT based inferences. Indeed we can note that none of the inferences based on
Sup1T /Ave1T and SupSup1T /AveAve1T lead to any significant rejections at or above a 5% nominal level.

Perhaps more interestingly our inferences strongly and convincingly point to the presence of state
dependence in the volatility of the value premium instead which in turn leads to distinct MSEs in good
versus bad times, a phenomenon also pointed out in Gülen et al. (2011). In the context of the HML
sequence we note that inferences based on Sup2T /Ave2T and SupSup2T /AveAve2T fully coincide across all
predictors, leading to strong rejections of linearity. For the D10BM-D1BM sequence it continues to be the
case that both Ave2T and AveAve2T lead to strong rejections with consistent outcomes throughout. The
stronger power properties of AveAveiT based statistics relative to their SupSupiT versions may also explain
the inability of SupSup2T to point to threshold effects for this series when AveAve2T based inferences
point to strong rejections.

More generally our results highlight the need for inferences about predictability to account for the
possibility of regime specific heteroskedasticity. Although predictability is often assessed via the statistical
significance of estimated slope coefficients and the use of standard heteroskedasticity consistent standard
errors the latter are not necessarily able to correct for such effects as documented for instance in Pitarakis
(2002).
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6 Conclusions and Discussion

The goal of this paper was to propose a set of diagnostic tools for assessing the presence of regimes in the
out of sample forecast errors generated by commonly used predictive regressions. An important motivation
for this research was driven by the observation in numerous empirical studies that predictability may
often be a cyclical phenomenon kicking in during particular periods while vanishing in other times. The
tests developed in this paper were therefore designed to provide a simple toolkit for formally assessing the
occurrence of such phenomena.

Unique features of our methods include their ability to accommodate multiple predictors with varying
persistence strengths and their ability to robustify inferences to the size of the starting sample used to
initiate the recursive forecasts. Equally importantly, the practical implementation of these methods is
particularly straightforward as inferences rely on nuisance parameter free distributions whose critical values
are available. This, despite the fact that predictors are parameterised with unknown persistence parameters
in the underlying DGP. Finally, another particularly noteworthy feature of our tests is their ability, under
certain circumstances, to identify whether state-dependence originates in the mean or variance related
parameters of the process.

The recent literature on predictive regressions has devoted considerable attention to the issue of time
variation in the conditional mean parameters of such specifications. These developments have typically
differed in the type of parameterisations used to capture parameter instability with an important emphasis
placed on traditional structural breaks and more recently on more general forms of time variation via
random coefficient models specified in a way that accommodates slowly evolving changes as for instance in
Georgiev et al. (2018) or smoothly varying coefficients as in Farmer et al. (2018). A common objective
behind the bulk of this research agenda has been the development of in-sample tests of linearity (i.e.
parameter stability) against such time-varying alternatives with a particular effort devoted to robustifying
inferences to unknown forms of conditional and/or unconditional heteroskedasticity via bootstrap based
approaches. In contrast to this rich agenda our own interest has instead been on using out of sample
forecast errors and their squares to uncover the presence of regimes in their respective dynamics. This has
also allowed us to explicitly address the important issue of distinguishing between time variation driven by
conditional mean parameters and/or error variances which is of interest in its own right. Another distinctive
feature of our environment stems from our use of threshold effects to capture parameter variation. This
freedom to place a cause to what drives regimes via a user-selected threshold variable enhances the scope
of our proposed methods and depending on its dynamics can accommodate both noisy and smoother
parameter variations.
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TABLES

TABLE 1
Quantiles of the Asymptotic Distributions of SupSup and AveAve statistics

10% 5% 2.5% 1%

π ∈ [0.25, 0.75]
SupSup 1.504 1.632 1.736 1.874
AveAve 0.317 0.412 0.518 0.638

π ∈ [0.50, 0.75]
SupSup 1.446 1.573 1.684 1.816
AveAve 0.325 0.415 0.517 0.658

π ∈ [0.50, 0.90]
SupSup 1.550 1.670 1.785 1.916
AveAve 0.315 0.392 0.484 0.603
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TABLE 2
Empirical sizes of Supi and Avei statistics under single and multiple predictors (5% Nominal)

p=1 p=2 p=3

Sup1 Sup2 Ave1 Ave2 Sup1 Sup2 Ave1 Ave2 Sup1 Sup2 Ave1 Ave2

c=1
T=400 4.68 4.22 6.26 5.06 4.96 3.88 6.62 5.38 5.78 3.48 7.28 5.92
T=600 4.42 4.18 5.78 5.20 5.16 4.86 5.78 6.16 5.68 4.20 6.98 5.46
T=1000 5.22 4.30 6.08 5.32 4.92 4.22 5.58 4.88 4.96 4.26 6.22 5.52

c=20
T=400 4.18 4.06 5.24 5.60 4.90 4.18 6.42 5.62 5.26 3.54 6.80 5.40
T=600 4.86 3.92 5.64 5.06 4.90 4.26 5.62 5.60 4.60 3.88 6.04 5.08
T=1000 4.24 4.28 5.52 5.62 4.42 4.52 5.34 5.68 5.10 3.80 6.24 4.70

c=40
T=400 4.36 3.66 5.74 4.84 4.46 3.90 6.00 5.62 4.74 3.92 6.10 5.26
T=600 4.18 3.96 5.16 5.26 4.58 4.30 6.08 5.22 4.80 4.16 6.10 5.34
T=1000 4.42 4.18 5.38 5.20 4.56 4.46 5.76 5.54 4.52 4.06 5.44 4.92
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TABLE 3
Empirical sizes of Supi and Avei with heterogeneous predictors (5% Nominal)

p=2 p=3

Sup1 Sup2 Ave1 Ave2 Sup1 Sup2 Ave1 Ave2

(c1, c2) = (1, 20) (c1, c2, c3) = (1, 1, 20)
T=400 5.20 3.62 6.74 5.76 4.72 3.94 6.68 5.62
T=600 4.86 4.14 6.22 5.30 5.44 3.78 6.44 4.82
T=1000 4.94 3.88 5.84 5.08 4.88 4.24 5.94 5.24

(c1, c2) = (1, 40) (c1, c2, c3) = (1, 20, 40)
T=400 4.68 3.96 5.92 5.32 5.08 4.34 6.70 5.80
T=600 4.34 4.16 5.84 5.50 4.88 4.52 5.72 5.70
T=1000 4.56 4.14 5.52 4.74 4.76 4.38 5.68 5.50

(c1, c2) = (20, 40) (c1, c2, c3) = (20, 20, 40)
T=400 4.44 3.84 5.86 5.00 4.94 3.90 6.68 5.20
T=600 5.06 4.18 5.92 5.82 4.74 4.22 6.26 5.74
T=1000 4.82 4.14 5.92 5.08 4.76 4.76 6.08 5.32
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TABLE 4
Empirical sizes of SupSupi and AveAvei under Π = [0.50, 0.75] (5% nominal)

p=1 p=2 p=3

SupSup1 SupSup2 AveAve1 AveAve2 SupSup1 SupSup2 AveAve1 AveAve2 SupSup1 SupSup2 AveAve1 AveAve2

c=1
T=400 3.86 3.50 5.56 6.30 4.74 3.86 6.32 6.70 4.12 3.80 6.02 6.82
T=600 4.52 4.22 5.94 6.24 4.94 4.44 5.80 5.86 4.76 4.48 6.02 6.70
T=1000 5.22 4.44 6.42 6.00 4.94 4.76 6.04 6.40 5.04 4.08 5.90 5.66

c=20
T=400 4.26 3.68 6.68 6.30 3.62 3.62 6.02 5.98 4.30 3.36 6.04 6.30
T=600 4.64 3.54 5.72 5.46 5.46 3.60 6.66 5.74 5.08 4.02 6.42 5.74
T=1000 4.96 4.20 5.80 5.46 4.98 4.48 5.60 5.76 4.98 4.58 5.92 6.30

c=40
T=400 4.16 4.02 5.44 6.82 4.18 3.50 5.78 5.62 4.54 3.14 6.22 5.64
T=600 4.94 3.88 6.20 5.82 4.38 3.60 5.94 6.14 4.64 3.62 6.04 5.78
T=1000 4.74 4.62 6.18 6.08 5.12 4.78 5.84 6.26 5.24 4.36 6.38 5.70

23



TABLE 5
Empirical power of Supi and Avei under intercept shifts of magnitude δ0

γ0 = 0 γ0 = −0.5

δ0 0.25 0.50 0.75 1.00 1.25 1.50 0.25 0.50 0.75 1.00 1.25 1.50

c=1 T=400
Sup1 0.37 0.95 1.00 1.00 1.00 1.00 0.38 0.86 1.00 1.00 1.00 1.00
Sup2 0.04 0.05 0.06 0.09 0.13 0.18 0.06 0.04 0.08 0.34 0.40 0.60
Ave1 0.40 0.95 1.00 1.00 1.00 1.00 0.40 0.90 1.00 1.00 1.00 1.00
Ave2 0.06 0.06 0.09 0.12 0.16 0.22 0.00 0.06 0.14 0.40 0.46 0.64

T=600
Sup1 0.58 1.00 1.00 1.00 1.00 1.00 0.46 1.00 1.00 1.00 1.00 1.00
Sup2 0.04 0.05 0.07 0.10 0.14 0.18 0.02 0.06 0.18 0.48 0.54 0.64
Ave1 0.60 1.00 1.00 1.00 1.00 1.00 0.52 1.00 1.00 1.00 1.00 1.00
Ave2 0.06 0.06 0.09 0.12 0.16 0.21 0.04 0.06 0.20 0.48 0.62 0.74

T=1000
Sup1 0.83 1.00 1.00 1.00 1.00 1.00 0.68 1.00 1.00 1.00 1.00 1.00
Sup2 0.04 0.05 0.07 0.10 0.15 0.19 0.04 0.02 0.30 0.58 0.80 0.96
Ave1 0.84 1.00 1.00 1.00 1.00 1.00 0.68 1.00 1.00 1.00 1.00 1.00
Ave2 0.06 0.06 0.08 0.12 0.17 0.22 0.00 0.10 0.32 0.60 0.74 0.96
c=20 T=400
Sup1 0.38 0.95 1.00 1.00 1.00 1.00 0.20 0.82 1.00 1.00 1.00 1.00
Sup2 0.04 0.04 0.06 0.08 0.10 0.14 0.02 0.02 0.16 0.36 0.50 0.70
Ave1 0.41 0.95 1.00 1.00 1.00 1.00 0.24 0.82 1.00 1.00 1.00 1.00
Ave2 0.06 0.06 0.08 0.10 0.12 0.17 0.00 0.06 0.20 0.34 0.52 0.78

T=600
Sup1 0.58 1.00 1.00 1.00 1.00 1.00 0.46 1.00 1.00 1.00 1.00 1.00
Sup2 0.04 0.04 0.06 0.07 0.10 0.15 0.02 0.12 0.14 0.24 0.64 0.76
Ave1 0.61 0.99 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00
Ave2 0.06 0.06 0.07 0.09 0.13 0.17 0.02 0.10 0.16 0.28 0.66 0.80

T=1000
Sup1 0.84 1.00 1.00 1.00 1.00 1.00 0.84 1.00 1.00 1.00 1.00 1.00
Sup2 0.04 0.04 0.06 0.08 0.11 0.16 0.02 0.04 0.28 0.62 0.78 0.90
Ave1 0.85 1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00
Ave2 0.05 0.06 0.08 0.10 0.13 0.17 0.02 0.06 0.34 0.70 0.76 0.94
c=40 T=400
Sup1 0.39 0.95 1.00 1.00 1.00 1.00 0.32 0.78 1.00 1.00 1.00 1.00
Sup2 0.04 0.04 0.05 0.07 0.10 0.14 0.06 0.06 0.12 0.28 0.44 0.64
Ave1 0.42 0.95 1.00 1.00 1.00 1.00 0.36 0.82 1.00 1.00 1.00 1.00
Ave2 0.05 0.07 0.07 0.09 0.12 0.16 0.12 0.06 0.18 0.30 0.48 0.70

T=600
Sup1 0.57 1.00 1.00 1.00 1.00 1.00 0.40 0.98 1.00 1.00 1.00 1.00
Sup2 0.04 0.05 0.05 0.07 0.11 0.14 0.00 0.10 0.14 0.40 0.66 0.84
Ave1 0.60 1.00 1.00 1.00 1.00 1.00 0.40 0.98 1.00 1.00 1.00 1.00
Ave2 0.06 0.06 0.07 0.09 0.13 0.17 0.04 0.12 0.14 0.44 0.70 0.90

T=1000
Sup1 0.84 1.00 1.00 1.00 1.00 1.00 0.70 1.00 1.00 1.00 1.00 1.00
Sup2 0.04 0.04 0.06 0.08 0.11 0.16 0.04 0.06 0.22 0.52 0.72 0.96
Ave1 0.84 1.00 1.00 1.00 1.00 1.00 0.72 1.00 1.00 1.00 1.00 1.00
Ave2 0.05 0.05 0.08 0.10 0.13 0.18 0.06 0.08 0.20 0.58 0.82 0.96
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TABLE 6
Empirical power of Supi and Avei under slope shifts of magnitude δ1

γ0 = 0 γ0 = −0.5 γ0 = 0 γ0 = −0.5 γ0 = 0 γ0 = −0.5

p=1 p=2 p=2 (one slope shift)
δ1 0.50 0.75 1.00 0.50 0.75 1.00 0.50 0.75 1.00 0.50 0.75 1.00 0.50 0.75 1.00 0.50 0.75 1.00

c=1 T=400
Sup1 0.93 0.93 0.94 0.92 0.93 0.94 0.93 0.93 0.94 0.93 0.94 0.94 0.92 0.94 0.94 0.91 0.94 0.93
Sup2 0.44 0.54 0.56 0.96 0.99 0.99 0.51 0.55 0.56 0.98 0.99 0.99 0.44 0.51 0.56 0.95 0.98 0.99
Ave1 0.93 0.94 0.94 0.92 0.93 0.94 0.93 0.94 0.94 0.93 0.94 0.94 0.93 0.95 0.94 0.92 0.94 0.93
Ave2 0.46 0.56 0.58 0.97 0.99 0.99 0.53 0.57 0.58 0.98 0.99 0.99 0.47 0.54 0.58 0.96 0.99 0.99

T=600
Sup1 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95
Sup2 0.49 0.56 0.59 0.99 1.00 1.00 0.55 0.57 0.59 1.00 1.00 1.00 0.48 0.56 0.58 0.99 1.00 1.00
Ave1 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96
Ave2 0.51 0.57 0.60 0.99 1.00 1.00 0.57 0.59 0.61 1.00 1.00 1.00 0.50 0.58 0.60 0.99 1.00 1.00

T=1000
Sup1 0.96 0.96 0.97 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.97 0.96 0.96 0.96
Sup2 0.54 0.58 0.59 1.00 1.00 1.00 0.57 0.58 0.60 1.00 1.00 1.00 0.54 0.57 0.59 1.00 1.00 1.00
Ave1 0.96 0.96 0.97 0.95 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.96 0.97 0.97 0.96 0.96 0.96
Ave2 0.55 0.59 0.60 1.00 1.00 1.00 0.58 0.59 0.61 1.00 1.00 1.00 0.55 0.58 0.60 1.00 1.00 1.00
c=20 T=400
Sup1 0.57 0.68 0.73 0.56 0.66 0.70 0.67 0.72 0.74 0.64 0.71 0.72 0.56 0.69 0.72 0.54 0.66 0.70
Sup2 0.13 0.32 0.41 0.59 0.91 0.95 0.26 0.41 0.46 0.86 0.95 0.96 0.14 0.32 0.41 0.59 0.91 0.95
Ave1 0.59 0.70 0.74 0.58 0.68 0.71 0.68 0.74 0.75 0.65 0.72 0.73 0.58 0.70 0.74 0.56 0.68 0.71
Ave2 0.16 0.35 0.44 0.63 0.92 0.95 0.30 0.44 0.48 0.87 0.95 0.96 0.17 0.34 0.43 0.62 0.92 0.95

T=600
Sup1 0.68 0.76 0.78 0.67 0.75 0.76 0.75 0.78 0.79 0.73 0.76 0.77 0.69 0.76 0.78 0.66 0.74 0.77
Sup2 0.20 0.40 0.46 0.86 0.98 0.99 0.34 0.47 0.50 0.96 0.99 0.99 0.18 0.40 0.44 0.85 0.98 0.99
Ave1 0.69 0.77 0.79 0.68 0.76 0.76 0.76 0.79 0.80 0.74 0.76 0.77 0.69 0.77 0.79 0.67 0.75 0.78
Ave2 0.22 0.43 0.48 0.87 0.98 0.99 0.36 0.49 0.52 0.97 0.99 0.99 0.21 0.41 0.46 0.86 0.98 0.99

T=1000
Sup1 0.78 0.84 0.84 0.76 0.81 0.83 0.81 0.84 0.84 0.80 0.82 0.82 0.79 0.83 0.83 0.77 0.81 0.83
Sup2 0.29 0.45 0.50 0.99 1.00 1.00 0.42 0.51 0.52 1.00 1.00 1.00 0.28 0.45 0.48 0.99 1.00 1.00
Ave1 0.78 0.84 0.84 0.77 0.82 0.84 0.82 0.84 0.85 0.81 0.82 0.83 0.79 0.83 0.84 0.78 0.82 0.84
Ave2 0.31 0.47 0.51 0.99 1.00 1.00 0.43 0.52 0.53 1.00 1.00 1.00 0.30 0.46 0.50 0.99 1.00 1.00
c=40 T=400
Sup1 0.35 0.52 0.59 0.32 0.52 0.57 0.47 0.61 0.62 0.46 0.60 0.62 0.35 0.51 0.58 0.31 0.51 0.56
Sup2 0.07 0.23 0.34 0.30 0.82 0.92 0.16 0.35 0.44 0.68 0.92 0.94 0.07 0.21 0.34 0.28 0.80 0.92
Ave1 0.37 0.53 0.61 0.35 0.53 0.58 0.49 0.62 0.64 0.48 0.61 0.62 0.36 0.53 0.60 0.33 0.52 0.58
Ave2 0.09 0.27 0.37 0.35 0.83 0.93 0.19 0.38 0.46 0.72 0.93 0.95 0.09 0.24 0.37 0.33 0.82 0.93

T=600
Sup1 0.49 0.64 0.67 0.47 0.62 0.66 0.60 0.68 0.71 0.58 0.67 0.70 0.50 0.63 0.67 0.46 0.62 0.66
Sup2 0.12 0.31 0.40 0.63 0.95 0.98 0.24 0.42 0.47 0.91 0.98 0.99 0.12 0.30 0.40 0.60 0.95 0.98
Ave1 0.52 0.65 0.68 0.48 0.63 0.66 0.61 0.69 0.73 0.59 0.68 0.70 0.51 0.64 0.68 0.48 0.63 0.66
Ave2 0.14 0.34 0.43 0.66 0.96 0.98 0.26 0.44 0.48 0.92 0.98 0.99 0.14 0.33 0.43 0.64 0.96 0.98

T=1000
Sup1 0.65 0.74 0.77 0.63 0.73 0.74 0.72 0.76 0.78 0.71 0.75 0.76 0.65 0.74 0.75 0.63 0.72 0.75
Sup2 0.19 0.38 0.46 0.94 0.99 1.00 0.34 0.47 0.50 0.99 1.00 1.00 0.18 0.40 0.44 0.94 1.00 1.00
Ave1 0.66 0.75 0.77 0.63 0.73 0.75 0.73 0.77 0.78 0.71 0.76 0.76 0.66 0.75 0.76 0.64 0.73 0.76
Ave2 0.21 0.40 0.48 0.95 1.00 1.00 0.37 0.49 0.50 0.99 1.00 1.00 0.21 0.42 0.46 0.95 1.00 1.00

25



TABLE 7
Empirical power of SupSupi and AveAvei under intercept shifts of magnitude δ0 and Π = [0.50, 0.75]

γ0 = 0 γ0 = −0.5

δ0 0.25 0.5 0.75 1 1.25 1.5 0.25 0.5 0.75 1 1.25 1.5
c=1 T=400
SupSup1 0.22 0.77 1.00 1.00 1.00 1.00 0.17 0.67 0.96 1.00 1.00 1.00
SupSup2 0.04 0.05 0.06 0.08 0.11 0.16 0.04 0.06 0.10 0.20 0.32 0.47
AveAve1 0.27 0.79 0.99 1.00 1.00 1.00 0.23 0.68 0.95 1.00 1.00 1.00
AveAve2 0.06 0.07 0.10 0.11 0.14 0.19 0.07 0.09 0.15 0.26 0.38 0.52

T=600
SupSup1 0.37 0.94 1.00 1.00 1.00 1.00 0.27 0.88 1.00 1.00 1.00 1.00
SupSup2 0.04 0.06 0.07 0.09 0.11 0.16 0.05 0.07 0.13 0.25 0.43 0.65
AveAve1 0.40 0.94 1.00 1.00 1.00 1.00 0.31 0.87 1.00 1.00 1.00 1.00
AveAve2 0.06 0.08 0.09 0.12 0.14 0.18 0.07 0.10 0.17 0.31 0.48 0.68

T=1000
SupSup1 0.61 1.00 1.00 1.00 1.00 1.00 0.50 0.99 1.00 1.00 1.00 1.00
SupSup2 0.04 0.06 0.07 0.09 0.13 0.17 0.05 0.08 0.18 0.40 0.64 0.83
AveAve1 0.61 1.00 1.00 1.00 1.00 1.00 0.52 0.99 1.00 1.00 1.00 1.00
AveAve2 0.06 0.08 0.09 0.11 0.15 0.18 0.07 0.10 0.22 0.42 0.66 0.83

TABLE 8
Empirical power of SupSupi and AveAvei under slope shifts of magnitude δ1 and Π = [0.50, 0.75]

γ0 = 0 γ0 = −0.5 γ0 = 0 γ0 = −0.5

p=1 p=2
δ1 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25

c=1 T=400
SupSup1 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.98 0.99 0.99 0.99
SupSup2 0.48 0.62 0.63 0.69 0.92 0.98 0.98 0.99 0.60 0.69 0.70 0.72 0.96 0.98 0.99 0.99
AveAve1 0.97 0.98 0.98 0.98 0.96 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.97 0.98 0.98 0.98
AveAve2 0.46 0.57 0.59 0.64 0.92 0.97 0.98 0.99 0.56 0.63 0.64 0.64 0.95 0.98 0.99 0.99

T=600
SupSup1 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00
SupSup2 0.52 0.65 0.67 0.70 0.97 1.00 1.00 1.00 0.65 0.72 0.73 0.76 0.99 1.00 1.00 1.00
AveAve1 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99
AveAve2 0.47 0.59 0.61 0.63 0.97 0.99 1.00 1.00 0.60 0.64 0.67 0.69 0.99 0.99 1.00 1.00

T=1000
SupSup1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SupSup2 0.62 0.70 0.72 0.72 1.00 1.00 1.00 1.00 0.72 0.75 0.77 0.77 1.00 1.00 1.00 1.00
AveAve1 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00
AveAve2 0.54 0.60 0.62 0.64 1.00 1.00 1.00 1.00 0.63 0.66 0.67 0.68 1.00 1.00 1.00 1.00
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TABLE 9
Empirical size (Sup1, Ave1) and power (Sup2, Ave2) under variance shifts

γ0v = 0 γ0v = −0.5 γ0v = 0.5

σ2 − σ1 0.00 1.00 2.00 3.00 4.00 0.00 1.00 2.00 3.00 4.00 0.00 1.00 2.00 3.00 4.00

c=1 T=400
Sup1 0.04 0.07 0.08 0.09 0.09 0.04 0.06 0.06 0.06 0.07 0.05 0.05 0.06 0.06 0.06
Sup2 0.04 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00
Ave1 0.06 0.06 0.06 0.06 0.07 0.05 0.05 0.05 0.05 0.04 0.06 0.04 0.04 0.04 0.04
Ave2 0.05 1.00 1.00 1.00 1.00 0.06 1.00 1.00 1.00 1.00 0.06 1.00 1.00 1.00 1.00

T=600
Sup1 0.04 0.07 0.09 0.09 0.10 0.04 0.05 0.06 0.06 0.07 0.05 0.06 0.07 0.06 0.07
Sup2 0.04 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00
Ave1 0.05 0.06 0.07 0.06 0.06 0.05 0.04 0.04 0.04 0.04 0.06 0.04 0.05 0.04 0.05
Ave2 0.06 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00

T=1000
Sup1 0.05 0.07 0.09 0.09 0.10 0.05 0.05 0.06 0.07 0.07 0.05 0.05 0.06 0.07 0.06
Sup2 0.04 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00
Ave1 0.06 0.06 0.06 0.06 0.06 0.05 0.04 0.04 0.04 0.04 0.06 0.04 0.04 0.04 0.04
Ave2 0.05 1.00 1.00 1.00 1.00 0.06 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00
c=20 T=400
Sup1 0.04 0.07 0.09 0.09 0.10 0.04 0.06 0.06 0.05 0.06 0.05 0.05 0.06 0.06 0.06
Sup2 0.04 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00
Ave1 0.06 0.05 0.06 0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.06 0.04 0.04 0.04 0.04
Ave2 0.05 1.00 1.00 1.00 1.00 0.06 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00

T=600
Sup1 0.05 0.07 0.09 0.09 0.10 0.05 0.05 0.06 0.07 0.06 0.05 0.05 0.06 0.06 0.06
Sup2 0.04 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00
Ave1 0.06 0.06 0.07 0.06 0.06 0.06 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04
Ave2 0.05 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00 0.06 1.00 1.00 1.00 1.00

T=1000
Sup1 0.04 0.07 0.08 0.09 0.10 0.05 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06
Sup2 0.05 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00
Ave1 0.05 0.06 0.06 0.05 0.06 0.06 0.04 0.04 0.03 0.04 0.05 0.04 0.04 0.04 0.03
Ave2 0.06 1.00 1.00 1.00 1.00 0.06 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00
c=40 T=400
Sup1 0.05 0.06 0.08 0.09 0.09 0.05 0.05 0.06 0.07 0.06 0.04 0.05 0.06 0.06 0.07
Sup2 0.04 1.00 1.00 1.00 1.00 0.03 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00
Ave1 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.04 0.05 0.04 0.05 0.04 0.04 0.04 0.04
Ave2 0.05 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00

T=600
Sup1 0.05 0.07 0.08 0.09 0.10 0.04 0.06 0.06 0.07 0.07 0.05 0.06 0.06 0.06 0.06
Sup2 0.04 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00
Ave1 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.03 0.05 0.04 0.06 0.05 0.04 0.04 0.04
Ave2 0.05 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00

T=1000
Sup1 0.04 0.07 0.10 0.09 0.10 0.05 0.06 0.06 0.07 0.07 0.05 0.05 0.06 0.06 0.07
Sup2 0.04 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00
Ave1 0.05 0.05 0.06 0.05 0.06 0.05 0.05 0.04 0.04 0.04 0.06 0.04 0.04 0.03 0.04
Ave2 0.05 1.00 1.00 1.00 1.00 0.06 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00
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TABLE 10
State Dependence in Value Premium Forecasts (∗∗∗, ∗∗ and ∗ indicate significance at 2.5%, 5% and 10%

levels respectively)

Value Premium (D10BM-D1BM) Value Premium (HML)

Sup1 Sup2 Ave1 Ave2 Sup1 Sup2 Ave1 Ave2

LDY 0.693 1.287* 0.104 0.594*** 0.930 1.713*** 0.268 0.773***
TBL 0.721 1.274* 0.119 0.556** 0.893 1.714*** 0.278 0.746***
TMS 0.661 1.311* 0.071 0.606*** 0.824 1.678*** 0.194 0.763***
DEF 0.879 1.407** 0.225 0.723*** 1.078 1.734*** 0.452* 0.838***
LTR 0.717 1.256* 0.153 0.557** 1.091 1.694*** 0.387* 0.787***
INFL 0.712 1.253* 0.117 0.545** 0.979 1.655*** 0.307 0.713***
LDY+TBL 0.805 1.211 0.130 0.516*** 0.960 1.663*** 0.296 0.692***
LDY+TMS 0.823 1.215 0.117 0.492** 0.981 1.620*** 0.291 0.663***
LDY+INFL 0.686 1.291* 0.098 0.598*** 0.916 1.713*** 0.259 0.772***
LDY+TBL+LTR 0.799 1.244* 0.139 0.549** 1.025 1.712*** 0.335 0.756***

SupSup1 SupSup2 AveAve1 AveAve2 SupSup1 SupSup2 AveAve1 AveAve2

LDY 1.106 1.392 0.100 0.594*** 0.953 1.764*** 0.076 0.627***
TBL 1.118 1.388 0.102 0.583*** 0.931 1.774*** 0.079 0.610***
TMS 1.179 1.417 0.122 0.622*** 0.841 1.743*** 0.052 0.643***
DEF 0.986 1.455 0.095 0.694*** 1.097 1.795*** 0.139 0.697***
LTR 1.065 1.370 0.090 0.583*** 1.104 1.793*** 0.116 0.659***
INFL 1.090 1.397 0.095 0.589*** 1.001 1.749*** 0.086 0.613***
LDY+TBL 1.117 1.392 0.108 0.582*** 0.989 1.742*** 0.084 0.605***
LDY+TMS 1.162 1.411 0.121 0.600*** 0.986 1.725** 0.076 0.614***
LDY+INFL 1.108 1.392 0.100 0.596*** 0.940 1.764*** 0.074 0.623***
LDY+TBL+LTR 1.095 1.377 0.099 0.592*** 1.050 1.789*** 0.102 0.646***
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PROOFS

In what follows we use I(F (qt) ≤ F (γ)) ≡ I(q̃t ≤ λ) and let wt(λ) = wtI(q̃t ≤ λ) denote the (p+ 1) vector
of regressors whose elements interact on an element by element basis with the indicator vector I(q̃t ≤ λ).

PROOF OF PROPOSITION 1. Both our Sup1T and Ave1T statistics rely on the quantity

C1T (π0, λ)√
T

= 1√
T

T−1∑
t=[Tπ0]

(et+1|t − ēT−[Tπ0])I(q̃t ≤ λ)

= 1√
T

T−1∑
t=[Tπ0]

et+1|tI(q̃t ≤ λ)−

 1√
T

T−1∑
t=[Tπ0]

et+1|t

 1
T − [Tπ0]

T−1∑
t=[Tπ0]

I(q̃t ≤ λ). (25)

where et+1|t = ut+1 −w′t(β̂t − β). For the first component of (25) we have

1√
T

T−1∑
t=[Tπ0]

et+1|tI(q̃t ≤ λ) = 1√
T

T−1∑
t=[Tπ0]

ut+1I(q̃t ≤ λ)− 1√
T

T−1∑
t=[Tπ0]

wt(λ)′(β̂t − β). (26)

Under our assumptions A1 it is a standard result that x[Tr]/
√
T ⇒ Jc(r) with Jc(r) denoting a p-

dimensional Ornstein-Uhlenbeck process (see Phillips (1987)). Letting J̄c = (1 Jc)′ and introducing
the (p+1) dimensional normalisation matrix DT = diag(

√
T , T, . . . , T ) standard FCLT based arguments

combined with the CMT lead to

DT (β̂[Tr] − β) ⇒
(∫ r

0
J̄c(s)J̄c(s)′ds

)−1 ∫ r

0
J̄c(s)dBu ≡ Q∞(r; c) r ∈ [π0, 1]. (27)

From Lemma 1(f) in Gonzalo and Pitarakis (2012) it also follows that

1√
T

T−1∑
t=[Tπ0]

wt(λ)′D−1
T DT (β̂t − β) = λ

1√
T

T−1∑
t=[Tπ0]

w′tD
−1
T DT (β̂t − β) + op(1) (28)

where

1√
T

T−1∑
t=[Tπ0]

D−1
T wt ⇒

∫ 1

π0
J̄c(r)dr (29)

so that

1√
T

T−1∑
t=[Tπ0]

wt(λ)′D−1
T DT (β̂t − β)⇒ λ

∫ 1

π0
J̄c(r)′Q∞(r; c)dr. (30)

For the first term in the right hand side of (26), it follows from Theorem 1 in Caner and Hansen (2001)
that

1√
T

T−1∑
t=[Tπ0]

ut+1I(q̃t ≤ λ) ⇒ B1(1− π0, λ) ≡ σuW1(1− π0, λ) (31)

which for π0 given is also σu
√

1− π0W1(λ) and therefore by the CMT

1√
T

T−1∑
t=[Tπ0]

et+1|tI(q̃t ≤ λ)⇒
√

1− π0σuW1(λ)− λ
∫ 1

π0
J̄ ′cQ∞(r; c)dr. (32)
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For the second term in (25), we have

1√
T

T−1∑
t=[Tπ0]

et+1|t = 1√
T

T−1∑
t=[Tπ0]

ut+1 −
1√
T

T−1∑
t=[Tπ0]

w′t(β̂t − β), (33)

and using similar arguments to above, we obtain

1√
T

T−1∑
t=[Tπ0]

et+1|t ⇒ σe
√

1− π0W1(1)−
∫ 1

π0
J̄c(r)′Q∞(r; c)dr. (34)

By Lemma 1(a) in Gonzalo and Pitarakis (2012), we have

1
T − [Tπ0]

T−1∑
t=[Tπ0]

I(q̃t ≤ λ) p→ λ. (35)

Therefore, by the CMT, combining (32),(34) and (35) gives

C1T (π0, λ)√
T

⇒ σu
√

1− π0[W1(λ)− λW1(1)].

Next, for the denominator of the test statistic, φ̂1, we have

φ̂2
1 = 1

T

T−1∑
T=[Tπ0]

(
et+1|t − ēT−[Tπ0]

)2

= 1
T

T−1∑
t=[Tπ0]

e2
t+1|t −

T − [Tπ0]
T

 1
T − [Tπ0]

T−1∑
t=[Tπ0]

et+1|t

2

. (36)

Recalling that et+1|t = ut+1 −w′t(β̂t − β) it follows from our assumptions A1 that

1
T

T−1∑
t=[Tπ0]

e2
t+1|t = 1

T

T−1∑
t=[Tπ0]

u2
t+1 +Op

( 1
T

)
(37)

and

1
T

T−1∑
t=[Tπ0]

et+1|t = 1
T

T−1∑
t=[Tπ0]

ut+1 +Op

( 1√
T

)
(38)

so that

φ̂2
1

p→ (1− π0)σ2
u (39)

leading to

C1T (π0, λ)
φ̂1
√
T

⇒ W1(λ)− λW1(1) ≡W 0
1 (λ).

Finally, since sup, ave and |.| are continuous transformations, the results in (15)-(16) for i = 1 follow by
successively applying the CMT.
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We next treat the case of the Sup2T and Ave2T statistics that are based on the squared forecast errors.
We write

C2T (π0, λ)√
T

= 1√
T

T−1∑
t=[Tπ0]

(
e2
t+1|t − τ̄

2
T−[Tπ0]

)
I(q̃t ≤ λ)

= 1√
T

T−1∑
t=[Tπ0]

e2
t+1|tI(q̃t ≤ λ)−

 1√
T

T−1∑
t=[Tπ0]

(et+1|t − ēT−[Tπ0])2

 1
T − [Tπ0]

T−1∑
t=[Tπ0]

I(q̃t ≤ λ).(40)

For the first term in (40), we have

1√
T

T−1∑
t=[Tπ0]

e2
t+1|tI(q̃t ≤ λ) = 1√

T

T−1∑
t=[Tπ0]

u2
t+1I(q̃t ≤ λ) + 1√

T

T−1∑
t=[Tπ0]

(β̂t − β)′wt(λ)wt(λ)′(β̂t − β)

− 2 1√
T

T−1∑
t=[Tπ0]

(β̂t − β)′wt(λ)ut+1. (41)

From (27)-(28) and the CMT it is straightforward to observe that the second term in the right hand side
of (41) is Op(1/

√
T ) and thus vanishes asymptotically. Similarly, Theorem 2 in Caner and Hansen (2001)

together with the CMT ensure that

T−1∑
t=[Tπ0]

(DT (β̂t − β))′D−1
T wt(λ)ut+1 ⇒

∫ 1

π0
Q∞(r; c)J̄c(r)dBu(r, λ) (42)

so that the third term in the right hand size of (41) is also Op(1/
√
T ) and vanishes asymptotically. Hence,

we can write (41) as

1√
T

T−1∑
t=[Tπ0]

e2
t+1|tI(q̃t ≤ λ) = 1√

T

T−1∑
t=[Tπ0]

u2
t+1I(q̃t ≤ λ) + op(1) (43)

and therefore

C2T (π0, λ)√
T

= 1√
T

T−1∑
t=[Tπ0]

(u2
t+1 − σ2

u)− λ 1√
T

T∑
t=[Tπ0]

(u2
t+1 − σ2

u) + op(1) (44)

so that from our assumptions A2 we have

C2T (π0, λ)√
T

⇒ φ2(W2(1− π0, λ)− λW2(1− π0, 1)). (45)

For the denominator, φ̂2, we have

φ̂2
2 = 1

T

T−1∑
t=[Tπ0]

(
e2
t+1|t − τ̄

2
T−[Tπ]

)2

= 1
T

T−1∑
t=[Tπ0]

e2
t+1|t −

1
T − [Tπ0]

T−1∑
t=[Tπ0]

e2
t+1|t

2

= T − [Tπ0]
T

 1
T − [Tπ0]

T−1∑
t=[Tπ0]

e4
t+1|t

− T − [Tπ0]
T

 1
T − [Tπ0]

T−1∑
t=[Tπ0]

e2
t+1|t

2

. (46)
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Proceeding as above and invoking suitable Laws of Large Numbers, we have that

1
T − [Tπ0]

T−1∑
t=[Tπ0]

e4
t+1|t →p E(u4

t+1) (47)

and

1
T − [Tπ0]

T−1∑
t=[Tπ0]

e2
t+1|t →p E(u2

t+1). (48)

As T − [Tπ0]/T → 1 − π0 as T → ∞ it follows that φ̂2
2

p→ (1 − π0)[E[u4
t+1] − [E[u2

t+1]2] ≡ (1 − π0)φ2
2.

Combining with (45) it follows that C2T (π0, λ)/φ̂2
√
T ⇒ W2(λ) − λW2(1) ≡ W 0

2 (λ). Finally, since sup,
ave and |.| are continuous transformations, the results in (15)-(16) for i = 2 follow by successively applying
the CMT.

PROOF OF PROPOSITION 2: The results in (17)-(18) are obtained using identical arguments as in the
proof of Proposition 1, replacing π0 with π so that the test statistics are viewed as functionals of both
π ∈ Π and λ ∈ Λ. The CMT then ensures that (17)-(18) hold.

PROOF OF PROPOSITION 3: We provide a proof for the C1T (π0, λ) based statistics as the remaining
cases follow identical lines. The DGP is given by (11) while the fitted model is (1). As Sup1T ≥
|C1T (π0, λ0)/

√
T φ̂i| we only need to establish that |C1T (π0, λ0)/

√
T φ̂i| diverges to infinity as T →∞. We

intially treat the case of intercept shifts only with the DGP given by yt+1 = β′wt + δ0I(qt > γ0) + ut+1.
Under this setting it is straightforward to establish that [(β̂0,[Tr] − β0),

√
T (β̂1,[Tr] − β1)]⇒ [δ0(1− λ0) 0]

which we use within et+1|t = ut+1 + δ0I(q̃t > λ0) − (β̂t − β)′wt and et+1|tI(q̃t ≤ λ0) = ut+1I(q̃t ≤ λ0) −
(β̂t − β)′wt(λ0). From standard FCLT and CMT arguments together with

∑
t=[Tπ0]+1(β̂t − β)′wt/T ⇒ 0

we have
∑
t=[Tπ0]+1 et+1|t/T ⇒ δ0(1− π0)(1− λ0) and

1
T

T−1∑
t=[Tπ0]

et+1|tI(q̃t ≤ λ0) ⇒ 0 (49)

so that
1√
T

∣∣∣∣C1T (π0, λ0)√
T

∣∣∣∣ ⇒ (1− π0)λ0(1− λ0)δ0. (50)

The large sample behaviour of the normalising variance φ̂2
1 also follows using similar steps with

φ̂2
1 ⇒ (1− π0)[σ2

u + δ2
0λ0(1− λ0)]. (51)

Combining (50) and (51) establishes the divergence to infinity of C1T (π0, λ0)/φ̂1
√
T at rate

√
T .

For the slope shift only scenario the DGP is given by yt+1 = β′wt + δ′1xtI(qt > γ0) + ut+1 and the OLS
estimators obtained from (1) now satisfy [(β̂0,[Tr] − β0)/

√
T , (β̂1,[Tr] − β1)]⇒ [0 δ1(1− λ0)]. This in turn

allows us to establish that

1
T
√
T

T−1∑
t=[Tπ0]

et+1|tI(q̃t ≤ λ0) ⇒ 0 (52)
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and

1
T
√
T

T−1∑
t=[Tπ0]

et+1|t ⇒ −λ0(1− λ0)δ′1
∫ 1

π0
Jc(r)dr (53)

so that

1
T

∣∣∣∣C1T (π0, λ0)√
T

∣∣∣∣ ⇒ λ0(1− λ0)
∣∣∣∣δ′1 ∫ 1

π0
Jc(r)dr

∣∣∣∣ . (54)

The large sample behaviour of the normalising variance φ̂2
1 now also follows using similar steps. Here we

have

1
T
φ̂2

1 ⇒ λ0(1− λ0)δ′1
∫ 1

π0
JcJ

′
cδ1 (55)

so that combining (54)-(55) leads again to the result that |C1T (π0, λ0)/φ̂1
√
T | diverges to infinity at rate

√
T .

PROOF OF PROPOSITION 4: (i) Under the local intercept shift only scenario the DGP is given
by yt+1 = β′wt + (δ0/

√
T )I(q̃t > λ0) + ut+1 so that et+1|t = ut+1 + δ0I(q̃t > λ0) − (β̂t − β)′wt and

et+1|tI(q̃t ≤ λ) = ut+1I(q̃t ≤ λ) + δ0I(q̃t > λ0)I(q̃t ≤ λ) − (β̂t − β)′wt(λ). Unless otherwise indicated in
what follows all summations range from t = [Tπ0] to T − 1. Using standard algebra and (16) we have

C1T (π0;λ, λ0)√
T

=
(∑

ut+1I(q̃t ≤ λ)√
T

− λ
∑
ut+1√
T

)
− δ0(1− π0)(λ ∧ λ0 − λλ0)

− 1√
T

∑
(β̂t − β)′(wt(λ)− λwt) + op(1) (56)

where me made use of
∑

I(q̃t ≤ λ)I(q̃t > λ0)/T p→ (1− π0)(λ− λ ∧ λ0). From Lemma A1 in Gonzalo and
Pitarakis (2012) the last term in the right hand side of (56) vanishes asymptotically while the first term
converges weakly to σu

√
1− π0 W

0
1 (λ) from our result in Proposition 1. As under this local framework

we also have φ̂2
1

p→ (1 − π)σ2
u the result in Proposition 4(i) and the corresponding formulation in (19)

follow directly. (ii) Under the local slope shift only scenario the DGP is given by yt+1 = β′wt + δ′1xtI(q̃t >
λ0)/T + ut+1, leading to et+1|t = ut+1 + δ′1xtI(q̃t > λ0)/T − (β̂t − β)′wt and et+1|tI(q̃t ≤ λ) = ut+1I(q̃t ≤
λ) + δ′1xtI(q̃t > λ0)I(q̃t ≤ λ)/T − (β̂t − β)′wt(λ). We now have

C1T (π0;λ, λ0)√
T

=
(∑

ut+1I(q̃t ≤ λ)√
T

− λ
∑
ut+1√
T

)
− (λ ∧ λ0 − λλ0) δ′1

∑
xt

T
√
T

− 1√
T

∑
(β̂t − β)′(wt(λ)− λwt) + op(1) (57)

with the last term in (57) vanishing asymptotically as in (56). It now follows that

C1T (π0;λ, λ0)√
T

⇒ σu
√

1− π0W
0
1 (λ)− (λ ∧ λ0 − λλ0)δ′1

∫ 1

π0
Jc (58)

which when normalised with φ̂1 leads to the desired result in Proposition 4(ii) and the associated formulation
in (20).
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PROOF OF PROPOSITION 5: The line of proof for establishing (i) and (ii) and the associated expressions
in (21)-(21) parallels closely the arguments in the proof of Proposition 4. In what follows we concentrate
on the slope shift scenario in (ii) as the case of an intercept shift follows from identical arguments. Under
the local slope shift only scenario the DGP is given by yt+1 = β′wt + δ′1xtI(q̃t > λ0)/T 3/4 + ut+1 leading
to et+1|t = ut+1 + δ′1xtI(q̃t > λ0)/T 3/4 − (β̂t − β)′wt and et+1|tI(q̃t ≤ λ) = ut+1I(q̃t ≤ λ) + δ′1xtI(q̃t ≤
λ)/T 3/4 − (β̂t − β)′wt(λ). Proceeding as in the proof of Proposition 1, appealing to standard FCLT and
CMT arguments we have T−1/4DT (β̂[Tr] − β)⇒ [0 (1− λ0)δ1]′, leading to∑

e2
t+1|t√
T

=
∑
u2
t+1√
T

+ δ′1
∑
xtx

′
tI(q̃t > λ0)
T 2 δ1

+
∑

( DT

T 1/4 (β̂t − β))′(D−1
T wtw

′
t D

−1
T )( DT

T 1/4 (β̂t − β))

− 2
T

∑
( DT

T 1/4 (β̂t − β))′D−1
T wtx

′
t I(q̃t > λ0)δ1 + op(1), (59)

and ∑
e2
t+1|tI(q̃t ≤ λ)
√
T

=
∑
u2
t+1I(q̃t ≤ λ)√

T
+ δ′1

∑
xtx

′
tI(q̃t > λ0)I(q̃t ≤ λ)

T 2 δ1

+
∑

( DT

T 1/4 (β̂t − β))′(D−1
T wt(λ)wt(λ)′ D−1

T )( DT

T 1/4 (β̂t − β))

− 2
T

∑
( DT

T 1/4 (β̂t − β))′D−1
T wtx

′
t I(q̃t > λ0)I(q̃t ≤ λ)δ1 + op(1). (60)

Proceeding as in the proof of Proposition 1, appealing to CMT arguments we now have∑
(e2
t+1|t − σ

2
u)

√
T

⇒ φ2W2(1− π0) + λ0(1− λ0)δ′1
∫ 1

π0
JcJ

′
cδ1 (61)

and ∑
(e2
t+1|t − σ

2
u)I(q̃t ≤ λ)

√
T

⇒ φ2W2(1− π0, λ)− (λ− λ ∧ λ0)(1− 2λ0)δ′1
∫ 1

π0
JcJ

′
cδ1

+ λ(1− λ0)2δ′1

∫ 1

π0
JcJ

′
cδ1. (62)

Recalling that

C2T (π0;λ, λ0)√
T

=
∑

(e2
t+1|t − σ

2
u)I(q̃t ≤ λ)

√
T

− λ
∑

(e2
t+1|t − σ

2
u)

√
T

+ op(1) (63)

and since within our local slope shift setting we continue to have φ̂2
2

p→ (1−π0)φ2
2, the result in (22) follows

directly using (61)-(62) within (63) and rearranging. As a consequence, our statement in Proposition 5(ii)
also follows.
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PROOF OF PROPOSITION 6: (i) Here we have et+1|t = ut+1 − (β̂t − β)′wt with ut+1 as in (24) so that

C1T (π0;λ, λ0v)√
T

=
∑
ut+1I(q̃t ≤ λ)√

T
− λ

∑
ut+1√
T

+ op(1)

= σ1

(∑
εt+1I(q̃t ≤ λ)√

T
− λ

∑
εt+1√
T

)
+ σ2 − σ1

T θ

(∑
εt+1(I(q̃t ≤ λ)− I(q̃t ≤ λ ∧ λvo))√

T
− λ

∑
εt+1I(q̃t > λv0)√

T

)
⇒ σ1

√
1− π0(W1(λ)− λW1(1)) (64)

which is an immediate consequence of assumption B1. Combining (64) with φ̂2
1

p→ (1− π0)σ2
1 the result in

Proposition 6(i) follows. (ii) With ut+1 specified as in (24) it continues to be the case (as in Proposition 1)
that

C2T (π0;λv0, λ)√
T

=
∑
u2
t+1I(q̃t ≤ λ)√

T
−
(∑ I(q̃t ≤ λ)
T − [Tπ0]

) ∑
u2
t+1√
T

+ op(1) (65)

and upon rearranging using (24) we have∣∣∣∣∣C2T (π0;λv0, λ)√
T φ̂2

∣∣∣∣∣ =
∣∣∣∣∣σ2

1

(∑
(ε2t+1 − 1)I(q̃t ≤ λ)

√
T φ̂2

− λ
∑

(ε2t+1 − 1)
√
T φ̂2

)

+ (σ2 − σ1)2

φ̂2T
2θ− 1

2

(∑
ε2t+1I(q̃t ≤ λ)I(q̃t > λv0)

T
− λ

∑
ε2t+1I(q̃t > λv0)

T

)

+ 2σ1(σ2 − σ1)
φ̂2T

θ− 1
2

(∑
ε2t+1I(q̃t ≤ λ)I(q̃t > λv0)

T
− λ

∑
ε2t+1I(q̃t > λv0)

T

) ∣∣∣∣∣+ op(1).(66)

Using Assumption B2 and standard algebra we also have φ̂2
2

p→ (1− π0)σ4
1E[ε2t+1 − 1]2 so that the first

term in the right hand side converges to W 0
2 (λ) while the remaining two terms trivially determine our

results in Proposition 6(ii) and (iii).
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