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Abstract

Determining whether Global Average Temperature (GAT) is an integrated process of

order 1, I(1), or a stationary process around a trend function is crucial for detection, at-

tribution, impact, and forecasting studies of climate change. In this paper, we investigate

the nature of trends in GAT building on the analysis of individual temperature grids. Our

micro-founded evidence suggests that GAT is stationary around a non-linear deterministic

trend in the form of a linear function with one structural break. This break can be attributed

to a combination of breaks on individual grids and the standard aggregation method under

acceleration in global warming.

Keywords: Trends, Unit roots, Structural breaks, Temperature, Aggregation

JEL codes: C22, Q54

1 Introduction

Global Average Temperature (GAT) observed since the late 1800s exhibits an upward trend

widely interpreted as evidence of global warming (GW) (Mann et al., 1998; Gadea and Gonzalo,

2020; AR6-IPCC, 2021). The specific nature of the trend is an open question in the empirical

literature with a non-trivial answer. Neither theoretical climate nor economic models with

climatic variables help to identify a particular trend specification.

From the quantitative climate perspective, two dominant strands of literature debate. A

first group of authors assume stochastic trends. Gordon (1991) and Yan and Wu (2010) use a

random walk model to show that the trend in GAT can be attributed to random fluctuations

rather than to specific physical drivers. Similarly, Woodward and Gray (1995) concludes that
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GAT has a unit root instead of a deterministic trend and suggests that temperature forecasts

will not predict the observed trend to continue. The literature using cointegration analysis

(Kaufmann et al., 2006, 2010; Dergiades et al., 2016; Bruns et al., 2020; Chang et al., 2020;

Pretis, 2020) also assumes stochastic trends, but in contrast, their attribution argument is that

the I(1) nature of GAT is inherited from its association with the anthropogenic forcing from CO2

and other greenhouse gases.1 Other recent references using I(1) models for GAT and climate

drivers include Turasie and Coelho (2016), Reid (2017), and Cummins et al. (2022). A second

group of authors like Seidel and Lanzante (2004), Mudelsee (2019), Gay-Garcia et al. (2009),

or Estrada and Perron (2017), focus more on the statistical properties of the GAT series and

conclude that the process follows a clear deterministic trend with possible structural breaks. The

assumption of deterministic trends is also implicit in the statistical procedures implemented by

the Intergovernmental Panel on Climate Change (IPCC) on its Sixth Assessment (AR6-IPCC,

2021) and previous reports. A mixture of both models for GAT is proposed in McKitrick et al.

(2023) who conclude that if there is an I(1) component it must be very small.

Determining whether GAT is an I(1) process or a stationary process around a non-linear

trend is crucial for detection, attribution, and impact studies of climate change (see McKitrick

et al. 2023). If GAT is assumed to be I(1), attribution of GW using cointegration models in-

volves demonstrating that the stochastic trends in temperature and the radiative forcing from

CO2 and other greenhouse gases are common. However, the I(1) assumption also implies that

exogenous temporary shocks like solar flares or volcanic eruptions generate long-lasting effects on

temperature, which does not seem to be the case in the observed record. If trends are detected

to be deterministic, detection of GW is possible through traditional trend-tests. But this as-

sumption poses challenges for attribution and impact studies due to the problem of ’unbalanced’

relations. In attribution studies, the mismatch in the order of integration between GAT and

anthropogenic forcing hinders the estimation of the climate sensitivity (for a review, see Rohling

et al. (2018)) using regression analysis. This is also the case for the impact studies that rely on

dynamic growth equations linking the growth rate of per-capita output with temperatures (see

Dell et al. (2012) and references therein). Beyond this literature, understanding the nature of

the trends is helpful for producing more accurate long-term forecasts as stressed by Kaufmann

et al. (2010).

The existing evidence regarding the nature of trends in GAT relies on the analysis of ag-

gregated series. This paper contributes to the debate by offering a micro-founded explanation

for the observed trends based on the study of the trend dynamics of individual units used in

computing those averages. Consistent with the hypothesis of Seidel and Lanzante (2004) and

Gay-Garcia et al. (2009), our findings suggest that GAT is trend-stationary with a structural

1Bennedsen et al. (2023) studies the statistical properties of radiative forcing from different components (in-
cluding CO2) and find that the series follows an I(1), close to an I(2) process. Stochastic trends in radiative
forcing are imparted by economic activity and atmospheric lifetimes.
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break in the trend function. Unit root tests implemented on individual units provide evidence in

the same direction. We also discuss the effects of the aggregation method on generating spurious

structural breaks or accentuating the existing breaks in the data. Concretely, our main hypoth-

esis is that the break in GAT can be attributed to a combination of individual grid breaks and

the standard aggregation method under warming acceleration. Depending on the strength of

the break’s signal, these situations may bias standard unit root tests towards the non-rejection

zone. We illustrate this hypothesis through a set of Monte-Carlo simulations assuming linear

and broken-trend individual processes and emulating the standard aggregation methods used to

compute the GAT.

The rest of the paper is organized as follows. Section 2 provides empirical evidence of

the nature of trends in aggregated and individual temperature series. Section 3 presents the

simulation exercises. Finally, Section 4 concludes.

2 Empirical Evidence

2.1 Data

Temperature data is obtained from the latest version of the HadCRUT5 dataset2 jointly devel-

oped by the Climatic Research Unit (CRU) at the University of East Anglia and the Hadley

Centre at the UK Met Office. For a more detailed information about the dataset, see Morice

et al. (2021). In our empirical analysis we use the series of gridded temperature anomalies from

the period 1961-1990 at a resolution of 5◦ × 5◦.3 A feature of the dataset is that the number of

grids with non-missing data is relatively low during the early part of the record and gradually

increases over time. Panel (a) of Figure 1 presents the number of grids that are continuously

observed from the given year onwards, while Panel (b) plots the proportion of non-missing grids

(out of 2,592) each year.

2.2 Computing Average Temperature

Two alternative methods to compute average temperatures are considered. Method A aggregates

all grids with non-missing data each year. For each t, the average T̄A
t is obtained as:

T̄A
t =

1

Nt

N∑
i=1

Iit × Tit, t = 1, ..., T, (1)

2Accessible at https://crudata.uea.ac.uk/cru/data/temperature/.
3Similar results are obtained if we use raw-stations data.
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(a) Number of grids observed continuously (b) Proportion of non-missing grids

Figure 1: Observation process for gridded temperatures

where Tit is the temperature in grid i at year t, Iit is an indicator for Tit non-missing, and

Nt =
∑N

i=1 Iit. Due to the non-uniform observation process for grids, Nt grows with t. Method

A closely resembles the standard aggregation procedure adopted by CRU.

Method B, on the other hand, uses the set of grids with non-missing data throughout the

entire sample period, ensuring a stable number of grids on the computation. For each t, T̄B
t is

obtained as:

T̄B
t =

1

|S|
∑
i∈S

Tit, t = 1, ..., T, (2)

where S = {i : Iit = 1, ∀t} and |S| is the cardinality of S. Method B is the approach adopted

by Gadea and Gonzalo (2020) to estimate the mean and any other distributional characteristic

of temperature.

Separate averages are calculated for the Northern (NH) and Southern Hemisphere (SH)

using data from 1880 to 2022.4 Global temperature is obtained as a weighted average of both

hemispheres, with the weights accounting for the difference in land areas. The estimated series

under each method are presented in Figure 2.

2.3 Trends in Average Temperature

The nature of the trends in average temperatures is studied. The test-statistics of the Augmented

Dickey Fuller (ADF) tests (Dickey and Fuller, 1981) reported in Table 1 indicate that unit roots

cannot be rejected for the global and NH averages obtained under method A.5 For method B

4Only 155 grids are observed over the full sample period, with the majority of them located in the NH.
5This is the main evidence for Kaufmann et al. (2010) and related literature to suggest stochastic trends in

temperature.
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(a) Method A (b) Method B

Figure 2: Temperature averages (1880-2022)

series, the unit root is rejected in all cases. A similar result is obtained if, instead, the more

efficient Elliott et al. (1996) (ERS) test is implemented. In addition, we implement the Kim

and Perron (2009) (KP) test allowing for a break in the trend function under both the null

and alternative hypothesis. In this case, the unit root is rejected in all series including the

method A global and NH averages.6 The Perron and Yabu (2009) (PY) procedure to estimate

deterministic trends with either integrated or stationary noise components detect structural

breaks in all aggregated series.7 The breaks in the trend occurs around 1964-65 and is consistent

with the ”onset of a sustained global warming” also described in Estrada et al. (2013), a period

characterized by a large increase in the rate of growth of temperatures and radiative forcing as

a consequence of the post-World-War-II economic expansion and the consequent acceleration in

the emissions of greenhouse gases.8

Our aggregated evidence aligns with the literature defending deterministic trends in tem-

perature. Accounting for structural breaks, specially in method A aggregates, is crucial for the

conclusions about unit roots. In method B aggregates, the signal of the break is not strong

enough to drive the ADF test towards the non-rejection area.

6Following the suggestion of a Referee, we implemented the unit root test in Otto (2021) allowing for a general
slowly-varying deterministic trend component. The results for the aggregated series align with the KP tests.

7This result is robust even when we allow for polynomial trends. For instance, the Vogelsang (1997) test
assuming linear and quadratic trends suggests a structural break that occurs in the linear term for both method
A and method B aggregates.

8We study the possibility of a second break in the aggregated series following the sequential procedure of
Kejriwal and Perron (2010). No evidence of a second break in either of the aggregated series is obtained.
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Table 1: Test-statistics of the unit root tests and structural break detection analysis in average
temperatures (1880-2022)

Temperature series ADF test KP test PY-SB

Aggregation Method A

Global -1.619 -5.514*** YES
Northern Hemisphere -0.863 -4.323*** YES
Southern Hemisphere -6.972*** -9.189*** YES

Aggregation Method B

Global -4.336*** -7.569*** YES
Northern Hemisphere -4.413*** -7.680*** YES
Southern Hemisphere -8.5615*** -9.739*** YES

Notes: The table contains the test-statistics of the ADF and KP unit root tests
implemented on each average temperature series. ADF-test equation includes an
intercept and a linear trend. Number of lags selected based on the BIC. The KP
tests allows for one break in the intercept and the linear slope under both the null
and alternative hypotheses. Critical values at the 1% of significance are -4.028 for
the ADF-test and -3.445 for the KP-test. ***, **, and * denotes rejection of the null
hypothesis at 1, 5 and 10% level of significance respectively. Column PY-SB reports
the conclusion about the existence of structural breaks in the Perron and Yabu (2009)
(PY) procedure.

2.4 Trends in Individual Grids

Unit root tests implemented on individual grids strongly reject the presence of unit roots. Results

reported in Table 2 indicate that the proportion of rejections in the ADF test is high across the

three sample periods considered. This proportion increases further when implementing the KP

test.9

Assuming that individual trends are deterministic, we first model each individual grid through

a linear-trend model:

Tit = β0i + β1it+ eit, i = 1, ...., N, t = 1, ...., T, (3)

where eit = ρieit−1+ vit, |ρi| < 1, and vit are uncorrelated. For each sample period, we estimate

Equation 3 and generate density plots of β̂1. Panel (a) in Figure 3 shows that the density shifts

to the right in more recent samples, reflecting the well-known acceleration in the GW process

(Mann et al., 1998; AR6-IPCC, 2021; Hansen et al., 2023). Focusing solely on the estimated

slopes for the sample period 1960-2022, the mean of the coefficient is higher for the set of grids

that appear later in the record.

9The null of unit root is rejected in 100% of the cases with the Otto (2021) test.
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Table 2: Proportion of rejections in the unit root tests and structural break detection analysis
on individual grids

Sample ADF test KP test PY-SB

1880-2022 92.90% 97.42% 81.94%
1920-2022 88.15% 98.84% 67.05%
1960-2022 90.87% 97.01% 25.98%

Notes: The table reports the proportion of units for which the null
of unit root is rejected in the ADF and KP tests. The number of
grids are 155, 346, and 635 for the sample periods 1880-2022, 1920-
2022, and 1960-2022, respectively. ADF-test equation includes an
intercept and a linear trend. Number of lags selected based on
the BIC. The KP tests allows for one break in the intercept and
the linear slope under both the null and alternative hypotheses.
Tests at 1% of significance. Column PY-SB reports the proportion
of grids with structural breaks detected by the Perron and Yabu
(2009) (PY) procedure.

Acceleration in GW, combined with the standard aggregation method A, can trivially gen-

erate the breaks in aggregated series even when the individual units follow a linear model.

Consider the following extreme case. During the initial part of the record, a set of N1 units with

an average trend-slope β̄1 are observed. Assume that at a certain period, T ∗, a different set of

N2 units start to be observed with average slope β̄2, with β̄2 > β̄1. The slope of the average

series is β̄1 before T ∗, and (N1β̄1 + N2β̄2)/(N1 + N2) after. For the average computed using

Method B the slope is β̄1 the full period. Depending on the weights, the ADF test can be biased

towards non-rejection.

Alternatively, we explore trend-breaks within individual grids:

Tit = α0i + α1iDui + γ1it+ γ2iDti + eit, i = 1, ...., N, t = 1, ...., T, (4)

where Dui = 1{t > TBi}, Dti = 1{t > TBi} × (t − TBi), TBi is the period in which the

structural break occurs for unit i, and eit follows the same structure as before. This corresponds

to model A3 in Kim and Perron (2009) where γ1i is the trend-slope before the break date, and

γ1i + γ2i is the trend-slope after the break. According to the PY results in Table 2, out of the

155 grids observed continuously from 1880 to 2022, approximately 82% contain a break in the

linear trend, with this break occurring around 1965 as in the aggregated series. The densities

of γ̂1 and γ̂1 + γ̂2 plotted in Panel (b) of Figure 3 provide micro-level evidence of the warming

acceleration phenomenon.

Aggregating individual grids with broken trends using either method A or B results in

average series with structural breaks, as those in Figure 2. Moreover, the aggregation method

A under acceleration in GW can deepen the break signal. Imagine that N1 grids are observed

all periods, with average parameters γ̄11 and γ̄12 as defined in Equation 4, with TBi = T ∗ being

the period of the individual break. Assume that at T ∗ a different set of N2 units start to be
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observed with average parameters γ̄21 and γ̄22 , with γ̄21 + γ̄22 > γ̄11 + γ̄12 to allow for warming

acceleration. Similar to the linear case, the slope of the method A average series is γ̄11 before

T ∗, and [N1(γ̄
1
1 + γ̄12) +N2(γ̄

2
1 + γ̄22)]/(N1 +N2) after. This slope is higher than the method B

average, which is γ̄11 + γ̄12 after T ∗.

In summary, our individual evidence rejects the existence of unit roots in individual grids.

Structural breaks in aggregated series are originated from individual breaks. The aggregation

method A under acceleration in GW can deepen the magnitude of such breaks. Due to the

small number of grids involved in the computation of method B averages, the signal of the break

is not strong enough to wrongly drive the ADF test towards the conclusion of unit roots. For

method A averages, the non-rejection of the ADF test can be attributed to both a higher signal,

stemming from the utilization of more information each period, and the deepening of the break

due to the acceleration in GW that implies the inclusion of more grids in periods of higher trend.

These hypotheses are further explored with simulations in the next section.

(a) Density of the slopes in the linear trend model (b) Density of the slopes in the broken-trend model

Figure 3: Density of individual estimates

3 Simulations

The proposed ’micro-founded’ explanations for the nature of the trends in aggregate tempera-

tures are validated heuristically using simulations. We consider two alternatives to simulate the

non-missing indicator, Iit:

• Alternative 1: A fixed number of units are non-missing during the whole sample. A second

group of series are missing during the first T ∗ periods, and non-missing from T ∗ on. T ∗ is

set to 100 in the simulations.

• Alternative 2: Iit follows a Markov Switching (MS) process with two states (missing and

non-missing) and transition-probability matrix P.
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First, we analyze the case where individual units follow a linear-trend model. Two groups

of series are simulated:

Group 1: T 1
it = β1

0i + β1
1it+ e1it, i = 1, ...., N1, t = 1, ...., T, (5)

Group 2: T 2
it = β2

0i + β2
1it+ e2it, i = 1, ...., N2, t = 1, ...., T, (6)

where β̄2
1 > β̄1

1 and ejit = ρjie
j
it−1 + vjit, j = 1, 2. Observation alternatives 1 and 2 assume

that stations entering later in the average computation are chosen randomly from groups 1 or

2. To account for warming acceleration, we define observation alternatives 1* and 2* assuming

that the series of group 2 (i.e. those with higher trend-slopes) appear as non-missing later in

the record.

The simulation parameters are set based on empirical evidence, aiming to match simulated

and observed trends in the aggregated series. Specifically, we construct the empirical distribution

of the estimates of a linear model fitted to the individual gridded data over two different samples:

1880-2021 for group 1 and 1960-2021 for group 2. Individual series are simulated using the

following calibration: β1
0i ∼ N (−0.7234, 0.42662), β1

1i ∼ N (0.0108, 0.00432), β2
0i = −2.36, β2

1i ∼
N (0.0271, 0.01452). β2

0i is a fixed parameter defined to avoid abrupt changes in the level of the

aggregated series. The value of −2.36 is determined by equating the average level of the group

1 and group 2 series after T ∗ = 100 simulation periods, when the second group of series begins

to be observed under alternatives 1 and 1*.

Autocorrelation is accounted for by defining ρ1i ∼ N (0.264, 0.11762), ρ2i ∼ N (0.155, 0.17472),

and vjit ∼ N (0, 2.90462), j = 1, 2. These autocorrelation parameters are obtained from the em-

pirical distribution of the estimates of an AR(1) model fitted on the residuals of each individual

regression. The value of 2.9046 for the standard deviation of the error term is calibrated to

match the residual variance of the observed aggregated series with that of the simulated series.

Specifically, the standard deviation of the residuals after fitting a broken linear-trend model

to the method B average is 0.2333. For an aggregated series calculated with 155 grids, this

corresponds to an individual standard deviation of 2.9046.

To specify the transition probability matrix P, the number of transitions between missing

and non-missing states in the data were counted and the empirical conditional probabilities were

computed. We obtained an initial matrix:

P0 =

[
0.9950 0.0050

0.0087 0.9913

]
, (7)

where the entrance (i, j) corresponds to the transition probability from state i to state j, and

state 1 represents a missing value. We impose that after the first non-missing value, the series
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remain non-missing for the rest of the record. Therefore, the second row of P is replaced by

[0, 1], and the used P becomes:

P =

[
0.9950 0.0050

0 1

]
. (8)

Sample size is T = 150. For observation alternatives 1 and 1*, the number of series in each

group are set at N1 = 150 and N2 = 850; for observation alternatives 2 and 2*, we impose

that 15% of units are observed from the initial period. In both cases, we aim to approximately

reproduce the proportion of continuously observed units from the initial period, that is close to

15% in the North Hemisphere from 1880 onwards. Simulations are replicated R = 1, 000 times.

Table 3 presents the proportion of non-rejections of the ADF and KP tests for each obser-

vation alternative and aggregation method. Additionally, it presents the proportion of times in

which the aggregated series contain a structural break according to the PY procedure. Consis-

tent with our hypothesis, even though the series are generated without a unit root, the ADF

test fails to reject the null hypothesis in 70.60% and 59.90% of cases for observation alternatives

1* and 2*, respectively, using aggregation method A. The KP test, which allows for structural

breaks under the null and the alternative hypothesis, detects far fewer unit roots. The generated

breaks detected by the PY procedure are entirely attributed to the aggregation process. For

aggregation method B, the unit root is rejected in almost all cases using both the ADF and

the KP tests. The proportion of series with breaks is small and can be attributed to sample

variability.

The analysis of the linear model without breaks serves to demonstrate that under extreme

conditions, where individual variables do not exhibit breaks or unit roots, the aggregation process

itself can introduce spurious breaks that bias the ADF unit root tests if such breaks are not

adequately accounted for.

Table 3: Proportion of non-rejections in the unit root tests and structural break detection
analysis on simulated averages (linear-trend model)

Alternative
Aggregation Method A Aggregation Method B

ADF-test KP-test PY-SB ADF-test KP-test PY-SB

1 2.20% 0.20% 21.90% 0.10% 0.10% 3.60%
1* 70.60% 3.80% 99.90% 0.00% 0.00% 3.70%
2 1.30% 0.00% 11.30% 0.00% 0.00% 4.60%
2* 59.90% 5.40% 99.90% 0.00% 0.00% 4.20%

Notes: The table reports the proportion of times that the null of unit root is non-rejected for the ADF and KP
tests. Tests at 1% of significance. The PY-SB column reports the proportion of times in which the aggregated
series contain structural breaks according to the Perron and Yabu (2009) procedure. For alternatives 1 and 1*, we
set N1 = 150 and N2 = 850. For alternatives 2 and 2*, the proportion of units observed from the initial period is
set to 15%.

Next, lets consider the case where individual units contain one break in the trend function.
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Similar to the previous case, we simulate two groups of series of the form:

Group 1: T 1
it = α1

0i + α1
1iD

1
ui + γ11it+ γ12iD

1
ti + e1it, i = 1, ...., N1, t = 1, ...., T, (9)

Group 2: T 2
it = α2

0i + α2
1iD

1
ui + γ21it+ γ22iD

2
ti + e2it, i = 1, ...., N2, t = 1, ...., T, (10)

where the variables and parameters are defined in Equation 4, ejit = ρjie
j
it−1 + vjit, j = 1, 2, and

we impose γ̄22 > γ̄12 to the capture warming acceleration. As in the previous case, alternatives

1* and 2* assume that the series in group 2 start to count later for the average computation.

Individual series are simulated using the following calibration: α1
0i, α

2
0i ∼ N (−0.6061, 0.56422),

α1
1i, α

2
1i ∼ N (−0.5524, 0.68992), γ11i, γ

2
1i ∼ N (0.0110, 0.01742), γ12i,∼ N (0.0182, 0.02332), γ22i,∼

N (0.0271, 0.01452), ρji ∼ N (0.1101, 0.08992), and vjit ∼ N (0, 2.90462), j = 1, 2. These values

are based on the estimates of fitting a model to the individual grids allowing for a break in the

trend. Other simulation parameters remain as before.

Table 4 presents the proportion of non-rejections of the ADF and KP tests, as well as the

proportion of times in which the aggregated series contain structural breaks according to the PY

procedure. Consistent with our hypothesis, when averages are computed using method A, the

unit root using the ADF test is non-rejected in more than 90% of the cases under all observation

alternatives. For alternatives 1 and 2, the breaks in aggregated series detected using the PY

procedure are completely attributed to individual breaks, while for alternatives 1* and 2*, those

breaks can be generated by a combination of both individual grid breaks and the aggregation

process under warming acceleration.

For method B, even though the original series contain a break and it is inherited by the

aggregated series (see PY-SB column), the signal of the break is not always strong enough to

drive the ADF test towards the non-rejection zone. For alternatives 1* and 2*, that replicates

closely the real observation process, the ADF test detects unit roots only 18.30% and 20.00% of

the cases, respectively. If the number of N1 units or the proportion of units that are observed

from the beginning of the record is increased, the signal of the break eventually becomes stronger

and the ADF test concludes the presence of unit roots more frequently. Notice that for both

aggregation methods, the KP-test rejects unit roots in almost all replications, showcasing the

importance of accounting for structural breaks under the null and the alternative hypothesis in

the unit roots testing procedure.

Once the existence of a break in the trend is established, disentangling its source within the

data is difficult, if not impossible, due to the inherent identification problem. In the simulations,

an approach is to compare the trends in the method A aggregates before and after the break,

between alternatives 1 and 1* (or 2 versus 2*).10 However, in the data, we observe method A

10Any break in alternative 1 aggregates is due to individual breaks, while breaks in alternative 1* are attributed
to a combination of both individual breaks and the aggregation procedure.
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Table 4: Proportion of non-rejections in the unit root tests and structural break detection
analysis on simulated averages (model with broken-trend)

Alternative
Aggregation Method A Aggregation Method B

ADF-test KP-test PY-SB ADF-test KP-test PY-SB

1 95.30% 4.40% 99.70% 55.30% 2.40% 100%
1* 93.50% 5.90% 100% 18.30% 0.70% 99.60%
2 99.10% 1.00% 99.90% 52.60% 1.60% 100%
2* 98.30% 1.00% 100% 20.00% 0.60% 99.80%

Notes: The table reports the proportion of times that the null of unit root is non-rejected for the ADF and KP
tests. Tests at 1% of significance. The PY-SB column reports the proportion of times in which the aggregated
series contain structural breaks according to the Perron and Yabu (2009) procedure. For alternatives 1 and 1*, we
set N1 = 150 and N2 = 850. For alternatives 2 and 2*, the proportion of units observed from the initial period is
set to 15%.

and method B averages under the true non-missing process. If we consider that the non-missing

process is well represented by alternative 1* (or 2*), it is required for identification to assume

that the observed method B average is a valid counterfactual for the unobserved method A

under alternative 1 (or 2), for a meaningful comparison of trends. However, this assumption is

very unlikely to hold in the data because both series are observed under the same observational

regime. Moreover, the true observational regime can be more complex than alternative 1* (or

2*), with units entering and going out of the record at any period. In this sense, the purpose of

the simulations is to emulate what is actually done in practice and to heuristically demonstrate

the potential mechanisms causing breaks in the aggregated series.

4 Conclusions

Aggregate and micro-founded evidence do not support the hypothesis of stochastic trends in tem-

perature. Our evidence suggests that temperatures averages are stationary around a non-linear

trend, with the non-linearity being modelled as a one-time break in a linear trend function. The

break can be attributed to a combination of individual grid breaks and the standard aggregation

method under warming acceleration. The aggregation method is relevant to bias ADF-tests to-

wards the non-rejection zone by amplifying the signal of the break. Our findings carry important

empirical implications for studies on the detection, attribution, impact, and forecasting of GW.

Radiative forcing from anthropogenic greenhouse gases (such as CO2, methane, and nitrous

oxide) is modelled as an I(1), or even I(2) process. It introduces a problem of ’unbalanced’

regressions if the aim is to establish human influence on GW using cointegration methods. A

similar issue is present on impact studies relating economic growth and temperature data. Al-

ternatives to study the relationship between temperature and greenhouse gases include the use

of co-trending methods robust to either type of trends such as Chen et al. (2022), or to ade-

quately transform the forcing series to achieve balanced regressions. Bennedsen et al. (2023),

12



for instance, obtain that the CO2 concentrations series in the first differences can be modeled

as a trend stationary process, therefore, a regression of temperature and ∆CO2 concentrations

is a valid balanced regression for attribution.
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