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A1 Simulations

In this section, we run a few Monte Carlo simulations to study the behavior in finite samples

of the QPPCA estimators regarding the estimation of the number of factors, the factors

themselves and their loading functions. In most cases, unless otherwise explicitly said, we

suppose that the number of characteristics isD = 5 and that all of them, {xid, d = 1, . . . , 5},

are drawn independently from the uniform distribution: U [−1, 1].

A1.1 Estimating the number of factors

Consider the following DGP:

yit =
3∑

r=1

λirftr +
(
x2i1 + x2i2 + x2i3

)
uit,

where ft1 = 1, ft2, ft3 ∼ i.i.d N(0, 1). Note that the chosen DGP is a location-scale

shift model where the scale is driven by a subset of the five characteristics. This type

of heteroskedasticity implies that the quantile loading functions exhibit variations across

quantiles, unlike a pure location-shift model where the loading functions would be the same

(up to a constant) for different quantiles.

Let g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = cos(πx), such that

λi1 =
∑

d=1,3,5

g1(xid), λi2 =
∑
d=1,2

g2(xid), λi3 =
∑
d=3,4

g3(xid).

As for the idiosyncratic component, uit are i.i.d. draws from three alternative distributions:

(i) the standard normal distribution, N(0, 1), (ii) the Student’s t distribution with 3 degrees

of freedom, t(3), and (iii) the standard Cauchy distribution, Cauchy(0,1). In the first-

step, we set kn = n1/3 in the quantile sieve estimation, and make use of the Chebyshev

polynomials of the second kind as the basis functions. Moreover, in order to implement the
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rank minimization estimator for the number of factors in Equation (8), the threshold pn is

chosen as in Equation (9), with d = 1/4.

First, Table A.1 displays the results of the number of factors estimated with the rank

minimization criterion for τ ∈ {0.25, 0.5, 0.75}, T ∈ {5, 10} and n ∈ {50, 100, 200, 1000}

from 1000 simulation replications. For each combination of τ , n and T , the reported

results represent: [frequency of R̂ < R; frequency of R̂ = R; frequency of R̂ > R]. Next,

for comparison, Table A.2 reports the corresponding results when the number of factors is

estimated using the Ahn and Horenstein (2013)’s eigen-ratio estimator discussed in Remark

7.

There are three main takeaways from these simulation results. First, both selection

criteria accurately estimate the number of factors when T is small and n is large, supporting

our previous claim about their consistency even when T is fixed. Second, when n is large

(=1000), both estimators perform well, even when the errors follow the standard Cauchy

distribution. Hence, this result also provides support for the claim that our estimator

is consistent in the absence of moment restrictions on the error terms. Third, although

both estimators yield similar results when n = 1000, the rank minimization estimator

outperforms the eigen-ratio estimator when n is not sufficiently large.

A1.2 Estimating the factors

A1.2.1 Comparison of QPPCA with PCA, PPCA and QFA

Following Chen et al. (2021), we consider the following DGP:

yit = λi1ft1 + λi2ft2 + (λi3ft3)uit,

where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). As before, let g1(x) = sin(2πx), g2(x) =

sin(πx) but now g3(x) = |cos(πx)|. The factor loading functions and the error terms are
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also generated as in Subsection A1.1. Note that, in this DGP, there are two location shift

factors, ft1 and ft2, that affect the mean of yit and only one scale shift factor ft3 that affects

the variance of yit.

First, we focus on the estimation of the two location factors: ft1 and ft2. Four competing

estimation methods are considered: (i) our the proposed method with τ = 0.5 (QPPCA);

(ii) the quantile factor analysis estimator (QFA) of Chen et al. (2021) with τ = 0.5; (iii)

the projection estimator proposed by Fan et al. (2016) (PPCA); and (iv) the standard

estimator of Bai and Ng (2002) for AFM (PCA). For the first two methods, the choices of

kn and the basis functions are again the same as in Subsection A1.1.

Regarding the choices of n and T , two different scenarios are considered:

(i) Fix T = 10, 50 and let n increase from 50 to 500.

(ii) Fix n = 100, 200 and let T increase from 5 to 200.

For each estimation method, the number of factors (R = 2 at τ = 0.5) is assumed to be

known, and we report the average Frobenius error as a measure of fit: ∥F̂ −FĤ∥/
√
T from

1000 replications, where Ĥ represents the associated rotation matrix for each estimator.

The results for the first scenario (fixed T and increasing n) are plotted in Figure A.1.

As can be inspected, for small T (T = 10), the PCA and QFA estimators perform worse

than the PPCA and QPPCA estimators when uit is either drawn from the N(0, 1) or t(3)

distributions. Moreover, when the distribution is a standard Cauchy, the QPPCA estimator

performs much better than its competitors. These findings agree again with our previous

theoretical results showing that this estimator is consistent even when T is fixed or the

moments of uit do not exist.

When T is relatively large (T = 50) and the distribution of uit has a thin tail, like a

N(0, 1) random variable, all the estimators behave similarly, as long as n ≥ 100. However,
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if uit follows the t(3) distribution, the PCA estimator is subject to a much larger estima-

tion error than the alternative procedures. In the extreme case of the standard Cauchy

distribution, the two methods based on quantile regressions are the obvious winners, with

the performances of the QFA and QPPCA estimators being very similar insofar n ≥ 200.

The results for the second scenario (fixed n and increasing T ) are displayed in Figure A.2.

The main takeaway from this simulation exercise is that the QPPCA estimator provides

the most robust approach against heavy-tailed distributions when T is small, while only

the QFA estimator performs slightly better as T increases.

Next, we proceed to estimate all the three factors jointly, paying particular attention to

the results for the scale factor ft3. Since this last factor is absent when τ = 0.5, for brevity

we only provide simulations for τ = 0.25, 0.75, and sample sizes where T ∈ {10, 50} and

n ∈ {50, 100, 200}. In each of these setups, the three estimated factors by the four different

approaches are denoted as F̂ τ
QPPCA, F̂

τ
QFA, F̂PPCA, F̂PCA. Subsequently, each of the true

factors is regressed on these estimated factors and the adjusted R2s are computed as a

measure of goodness of fit. The whole procedure is repeated 1000 times and the averages

of the adjusted R2s are reported in Tables A.3 to A.5.

Table A.3 displays the results for the QPPCA estimator. As can be observed, it performs

well in estimating all the three factors. It should be noted, however, that the estimates

of the scale factor ft3 are not as good as the estimates of the two location factors, ft1, ft2,

when n is small, though the fit improves substantially as n increases. Table A.4, in turn,

presents the results for the QFA estimator, whereas Table A.5 presents the corresponding

results for the PCA and PPCA estimators. The main finding from Table A.4 is that the

QFA estimator performs poorly in estimating the scale factor ft3 when T is small (T = 10),

while it performs similarly to the QPPCA estimator when T is relatively large (T = 50).
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Finally and not surprisingly, the main conclusion from Table A.5 is that both the PCA and

PPCA estimators fail to capture the scale factor ft3 in all instances since they are designed

for AFM but not for QFM.

A1.2.2 Comparison of QPPCA with SQFA

In the previous subsection the SQFA estimator proposed by Ma et al. (2021) was not

included in the set of comparisons since its performance is close to that of the QFA estimator

whenever the number of characteristics is larger or equal to the number of factors (D ≥ R).

Yet, in this subsection, we study how they differ when the number of characteristics is

smaller than the number of factors (D < R).

To do so, we consider the following location-scale model as the DGP:

yit = λi1ft1 + λi2ft2 + (λi3ft3)uit,

where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). Now, the number of characteristics is 2 and,

as in the previous simulations, all characteristics xid (i = 1, ..., n and d = 1, 2) are inde-

pendently drawn from the uniform distribution: U [−1, 1]. Let g1(x) = sin(2πx), g2(x) =

sin(πx) and g3(x) = |cos(πx)|. Moreover, let λi1 =
∑

d=1,2 g1(xid), λi2 =
∑

d=1,2 g2(xid) and λi3 =∑
d=1,2 g3(xid). Again, uit are generated from three different distributions discussed in Sub-

section A1.1.

For each estimator, we consider τ ∈ {0.25, 0.5, 075}, T ∈ {10, 50}, n ∈ {50, 100, 200, 500}.

Note that, when τ = 0.5, there are only two location factors because ft3 does not affect

the median of yit. By contrast, when τ = 0.25, 0.75 there will be two location factors and

one scale factor. Moreover, to simplify the analysis, R is assumed to be known. For each

τ , R factors are estimated using QPPCA. Note that the SQFA method chooses the num-

ber of factors as the number of characteristics by default, implying that only two factors
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will be estimated. Moreover, the choices of the basis functions and kn are the same as in

Subsection A1.1.

As before, we proceed to regress each of the true factors on the estimated factors and

compute the adjusted R2s. The whole procedure is repeated 1000 times and the averages of

the adjusted R2s are reported in Tables A.6 and A.7 for the QPPCA and SQFA estimators,

respectively. When it comes to the estimation of the volatility factor, ft3, it is not surprising

to check that the QPPCA estimator outperforms the SQFA estimator since the latter is

restricted to estimating onlyD = 2 factors. Thus, the main finding here is that the QPPCA

estimator performs better than the SQFA estimator in estimating the location and scale

shift factors whenever the number of factors exceeds the number of characteristics.

A2 Proofs of the Main Results

Proof of Proposition 1:

Proof. For any θ ∈ Θ, define K(θ, θ0t) = E(Ln(θ)) = E[l(θ, yit,xi)]. Under Assumption

1(iv), it can be shown that K(θ, θ0t) ≍ d(θ, θ0t)
2. For the finite-dimensional linear sieve

spaces Θn, it can be shown that Condition A.3 of Chen and Shen (1998) is satisfied with

δn =
√
kn/n (see Section 3.3 of Chen (2007)). By the definition of d and the properties of

the check function, it is easy to see that,1

sup
θ∈Θn,d(θ,θ0t)≤ε

Var [l(θ, yit,xi)] ≤ sup
θ∈Θn,d(θ,θ0t)≤ε

E [l(θ, yit,xi)]
2

≲ sup
θ∈Θn,d(θ,θ0t)≤ε

E (θ(xi)− θ0t(xi))
2 ≤ ε2.

Thus, Condition A.2 of Chen and Shen (1998) is also satisfied. By Assumption 1(iii) we

have supθ∈Θ |l(θ, yit,xi)| ≲ supθ∈Θ supX |θ(x)− θ0t(x)| <∞. Assumption 1(ii) implies that

1Note that |ρτ (u1)− ρτ (u2)| ≤ 2|u1 − u2|.
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d(πnθ0t, θ0t) =
√
E (πnθ0t(xi)− θ0t(xi))

2 = O(k−α
n ). Therefore, it follows from Corollary 1

of Chen and Shen (1998) that

P
[
max

t
d(θ̂nt, θ0t) ≥ CεnT

]
≤

T∑
t=1

P
[
d(θ̂nt, θ0t) ≥ CεnT

]
≤ c1 exp

{
C2 lnT (1− c2nε

2
n)
}

for any C ≥ 1. Therefore, the desired result follows from the above inequality since

nε2n ≥ kn.

Lemma 1. If Assumption 1 and Assumption 2(i) hold, and εn is defined as in Assumption

1, then:

(i) max1≤t≤T ∥ât − a0t∥ = OP (εnT );

(ii) Let V̂ ≡ Ŷ −G(X)F ′, then (nT )−1/2∥V̂ ∥ = OP (εnT ).

Proof. By Assumption 1 and Assumption 2(i),

d(θ̂nt, θ0t)
2 =

∫
X

(
θ̂nt(x)− θ0t(x)

)2
dFx(x) =

∫
X

(
θ̂nt(x)− πnθ0t(x)

)2
dFx(x)+OP (εnTk

−α
n )

= (ât − a0t)
′Σϕ(ât − a0t) +OP (εnTk

−α
n ) ≥ c1∥ât − a0t∥2 +OP (εnTk

−α
n )

where c1 > 0, and the OP (εnTk
−α
n ) in the above equation is uniform in t. It then follows

from Proposition 1 that max1≤t≤T ∥ât − a0t∥2 = OP (ε
2
nT ).

Next, note that

(nT )−1∥V̂ ∥2 ≤ 1

nT

n∑
i=1

T∑
t=1

(
θ̂nt(xi)− πnθ0t(xi)

)2
+OP (k

−2α
n )

=
1

nT

n∑
i=1

T∑
t=1

(
(ât − a0t)

′ ϕkn(xi)
)2

+OP (k
−2α
n )

≤ T−1

T∑
t=1

∥ât − a0t∥2 · λmax

(
Σ̂ϕ

)
+OP (k

−2α
n )

≤ max
1≤t≤T

∥ât − a0t∥2 · λmax

(
Σ̂ϕ

)
+OP (k

−2α
n )
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where Σ̂ϕ ≡ n−1
∑n

i=1ϕkn(xi)ϕkn(xi)
′. Since Assumption 1(iii) implies that supX ∥ϕkn(xi)∥ =

√
kn, similar to the proof of Theorem 1 in Newey (1997), one can show that ∥Σ̂ϕ −Σϕ∥ =

oP (1) under Assumption 2, and therefore we have λmax(Σ̂ϕ) = OP (1). This completes the

proof.

Proof of Theorem 1:

Proof. Write Ŷ = G(X)F ′+V̂ where V̂ is as defined in Lemma 1. Let ΩR be the diagonal

matrix whose elements are the eigenvalues of Σg · F ′F /T . Note that

Ŷ ′Ŷ /(nT ) = FG(X)′G(X)F ′/(nT ) + V̂ ′G(X)F ′/(nT )

+ FG(X)′V̂ /(nT ) + V̂ ′V̂ /(nT ). (A2.1)

It then follows from Assumption 2(iv), Assumption 1(i) and Lemma 1 that:

∥Ŷ ′Ŷ /(nT )− FΣgF
′/T∥

≤ oP (1) + 2∥V̂ ∥/
√
nT · ∥G(X)∥/

√
n · ∥F ∥/

√
T + ∥V̂ ∥2/(nT )

= oP (1) +OP (εnT ).

By the Wielandt-Hoffman inequality, we have ∥Ω̂ − Ω∥ = oP (1). It then follows from

Assumption 2(iii) and 2(iv) that λmin(Ω̂) > 0 with probability approaching 1.

By the definition of F̂ , Ŷ ′Ŷ /(nT )F̂ = F̂ Ω̂, it then follows from (A2.1) that

F̂ = FĤ + V̂ ′G(X)F ′F̂ /(nT )Ω̂−1+FG(X)′V̂ F̂ /(nT )Ω̂−1+ V̂ ′V̂ /(nT )F̂ Ω̂−1. (A2.2)

Thus, it follows from (A2.2) and Lemma 1 that

∥F̂ −FĤ∥/
√
T ≤ 2OP (1) ·

∥V̂ ∥√
nT

· ∥F ∥√
T

· ∥F̂ ∥√
T

· ∥G(X)∥√
n

+OP (1) ·
∥F̂ ∥√
T

· ∥V̂ ∥2

nT
= OP (εnT ).

Then the first part of Theorem 1 follows.
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Next, similar to the proof of Proposition 1 in Bai (2003) it can be shown that Ĥ → H >

0. Thus, Ĥ is invertible with probability approaching 1. Note that Ĝ(X) = Ŷ F̂ /T =

G(X)F ′F̂ /T + V̂ F̂ /T . Write F = F̂ Ĥ−1 + F − F̂ Ĥ−1, then

Ĝ(X) = G(X)(Ĥ ′)−1 +G(X)(F − F̂ Ĥ−1)′F̂ /T + V̂ F̂ /T,

and thus

∥Ĝ(X)−G(X)(Ĥ ′)−1∥
√
n ≤ ∥G(X)∥√

n
· ∥F − F̂ Ĥ−1∥√

T
· ∥F̂ ∥√

T
+

∥V̂ ∥√
nT

· ∥F̂ ∥√
T

= OP (εnT ).

Then the second part of Theorem 1 follows.

Finally, note that B̂ = ÂF̂ /T = B0(F
′F̂ /T ) + (Â−A0)F̂ /T . It follows from Propo-

sition 1 that

∥B̂ −B0(F
′F̂ /T )∥ ≤ ∥Â−A0∥√

T
· ∥F̂ ∥√

T
= OP (εnT ). (A2.3)

Thus, for any x ∈ X ,

ĝ(x)′ = ϕkn(x)
′B̂ = ϕkn(x)

′B0(F
′F̂ /T ) + ϕkn(x)

′
(
B̂ −B0(F

′F̂ /T )
)

= g(x)′(Ĥ−1)′+(ϕkn(x)
′B0−g(x)′)(F ′F̂ /T )+ϕkn(x)

′
(
B̂ −B0(F

′F̂ /T )
)
+OP (εnT ).

Thus, it follows from (A2.3) and Assumption 1 that

sup
X

∥∥∥ĝ(x)− Ĥ−1g(x)
∥∥∥ ≤ OP (k

−α
n ) + sup

X
∥ϕkn(x)∥ ·OP (εnT ) = OP (

√
knεnT ).

This completes the proof.

Lemma 2. Let ξit = θ0t(xi)−πnθ0t(xi) = g(xi)
′ft−a′

0tϕkn(xi) and ψit = F (−ξit)−1{uit ≤

−ξit}. If Assumptions 1 to 3 hold, then√√√√ 1

T

T∑
t=1

∥∥∥∥∥ât − a0t − f−1(0) · Σ̂−1
ϕ · 1

n

n∑
i=1

ψitϕkn(xi)

∥∥∥∥∥
2

= OP

(
k−α
n

)
+OP (ηnT ) .
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Proof. Step 1: For any a ∈ RDkn define:

mt(a) =
1

n

n∑
i=1

[τ − 1{uit ≤ (a− a0t)
′ϕkn(xi)− ξit}]ϕkn(xi),

m∗
t (a) =

1

n

n∑
i=1

[τ − F ((a− a0t)
′ϕkn(xi)− ξit)]ϕkn(xi).

Since F (−ξit) = τ − f (−ξ∗it) · ξit where ξ∗it is between 0 and ξit, it follows that

m∗
t (a0t) =

1

n

n∑
i=1

f (−ξ∗it) · ξit · ϕkn(xi). (A2.4)

Taylor Expansion of m∗
t (ât) around a0t gives

m∗
t (ât) = m∗

t (a0t)−M ∗
t (ãt) · (ât − a0t) (A2.5)

where ãt is between a0t and ât and

M ∗
t (ãt) = −∂m

∗
t (a)

∂a′ |a=ãt =
1

n

n∑
i=1

f ((ãt − a0t)
′ϕkn(xi)− ξit) · ϕkn(xi)ϕkn(xi)

′. (A2.6)

By Assumption 3(ii) one can write

M ∗
t (ãt) = f(0) · Σ̂ϕ + n−1Φ(X)′D∗

tΦ(X), (A2.7)

where Σ̂ϕ = n−1Φ(X)′Φ(X) and D∗
t is a n× n diagonal matrix whose diagonal elements

are bounded by in absolute values by L |(ãt − a0t)
′ϕkn(xi)− ξit|. Note that by Lemma 1,

max
1≤t≤T

∥D∗
t ∥S ≲ max

i,t
|(ãt − a0t)

′ϕkn(xi)− ξit|

≤ max
1≤t≤T

∥ât − a0t∥ ·OP (
√
kn) +OP (k

−α
n ) = OP (

√
knεnT ). (A2.8)

Moreover, one can write

m∗
t (ât) = mt(ât)− m̃t(a0t) + [m̃t(a0t)− m̃t(ât)] (A2.9)

where m̃t(a) = mt(a)−m∗
t (a). It then follows from (A2.5) (A2.7) and (A2.9) that

ât − a0t − f−1(0) · Σ̂−1
ϕ · m̃t(a0t) = f−1(0) · Σ̂−1

ϕ{
m∗

t (a0t)−mt(ât)− [m̃t(a0t)− m̃t(ât)]− n−1Φ(X)′D∗
tΦ(X)(ât − a0t)

}
,
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where

m̃t(a0t) =
1

n

n∑
i=1

[F (−ξit)− 1{uit ≤ −ξit}]ϕkn(xi) =
1

n

n∑
i=1

ψitϕkn(xi).

Since f(0) is bounded below, and λmin(Σ̂ϕ) is bounded below with probability approaching

1, it suffices to show that

max
1≤t≤T

∥m∗
t (a0t)∥ = OP (k

−α
n ), (A2.10)

max
1≤t≤T

∥mt(ât)∥ = OP (k
3/2
n /n), (A2.11)

1

T

T∑
t=1

∥m̃t(a0t)− m̃t(ât)∥2 = OP

(
η2nT
)
, (A2.12)

max
1≤t≤T

∥∥n−1Φ(X)′D∗
tΦ(X)(ât − a0t)

∥∥ = OP (
√
knε

2
nT ). (A2.13)

Step 2: By (A2.4) and Assumption 1,

max
1≤t≤T

∥m∗
t (a0t)∥

= max
1≤t≤T

∥∥∥∥∥ 1n
N∑
i=1

f (−ξ∗it) · ξit · ϕkn(xi)

∥∥∥∥∥
≤ max

1≤t≤T

∥∥∥∥∥ 1n
N∑
i=1

f (0) · ξit · ϕkn(xi)

∥∥∥∥∥+OP

(
k1/2−2α
n

)
.

Define zit = f (0) · ξit and zt = (z1t, . . . , zNt)
′, then

1

n

N∑
i=1

f (0) · ξit · ϕkn(xi) = N−1Φ(X)′zt

and

max
1≤t≤T

∥∥∥∥∥ 1n
N∑
i=1

f (0) · ξit · ϕkn(xi)

∥∥∥∥∥
= max

1≤t≤T

∥∥N−1Φ(X)′zt

∥∥ ≤
∥∥N−1/2Φ(X)

∥∥
S
· max
1≤t≤T

∥∥N−1/2zt

∥∥ = OP (k
−α
n ).

In sum, we have

max
1≤t≤T

∥m∗
t (a0t)∥ = OP (k

1/2−2α
n ) +OP (k

−α
n ) = OP (k

−α
n ),
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which gives (A2.10).

Step 3: Similar to the proof of Lemma A4 of Horowitz and Lee (2005) it can be shown

that

max
1≤t≤T

∥mt(ât)∥ = OP (k
3/2
n /n),

which gives (A2.11).

Step 4: By (A2.8) and Lemma 1

max
1≤t≤T

∥∥n−1Φ(X)′D∗
tΦ(X)(ât − a0t)

∥∥
≤ ∥Φ(X)/

√
n∥2S · max

1≤t≤T
∥D∗

t ∥S · max
1≤t≤T

∥ât − a0t∥ = OP (
√
knε

2
nT ),

which gives (A2.13).

Step 5: Define:

δ1t(α) =
1

n

n∑
i=1

[1{uit ≤ (a− a0t)
′ϕkn(xi)− ξit} − 1{uit ≤ −ξit}]ϕkn(xi),

δ2t(α) =
1

n

n∑
i=1

[F ((a− a0t)
′ϕkn(xi)− ξit)− F (−ξit)]ϕkn(xi),

δ̃1t(α) = δ1t(α)− E[δ1t(α)], δ̃2t(α) = δ2t(α)− E[δ2t(α)].

Note that E[δ1t(α)] = E[δ2t(α)] because δ2t(α) = E[δ1t(α)|xi]. Then m̃t(ât)− m̃t(a0t) =

δ̃2t(ât)− δ̃1t(ât), and

1

T

T∑
t=1

∥m̃t(ât)− m̃t(a0t)∥2 ≤
1

T

T∑
t=1

∥∥∥δ̃1t(ât)
∥∥∥2 + 1

T

T∑
t=1

∥∥∥δ̃2t(ât)
∥∥∥2 . (A2.14)

In what follows, we will show that

1

T

T∑
t=1

∥∥∥δ̃1t(ât)
∥∥∥2 = OP

(
ln(k−1/4

n ε
−1/2
nT ) · k5/2n εnTn

−1
)
, (A2.15)

1

T

T∑
t=1

∥∥∥δ̃2t(ât)
∥∥∥2 = OP

(
ln(k−1/2

n ε−1
nT ) · k

3
nε

2
nTn

−1
)
, (A2.16)
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which imply (A2.12) and therefore complete the proof. We will focus on the proof of

(A2.15) since the proof of (A2.16) is similar.

Let ϕjd(xi) be the jdth element of ϕkn(xi) for j = 1, . . . , kn; d = 1, . . . , D, and define

∆it(α,xi) = 1{uit ≤ (a− a0t)
′ϕkn(xi)− ξit} − 1{uit ≤ −ξit}.

Then for some C > 0, with probability approach 1,

1

T

T∑
t=1

∥∥∥δ̃1t(ât)
∥∥∥2 ≤ 1

n
· 1
T

T∑
t=1

kn∑
j=1

D∑
d=1

sup
∥a−a0t∥≤CεnT

∣∣∣∣∣ 1√
n

n∑
i=1

{∆it(α,xi)ϕjd(xi)− E[∆it(α,xi)ϕjd(xi)]}

∣∣∣∣∣
2

We will show that

E

 sup
∥a−a0t∥≤CεnT

∣∣∣∣∣ 1√
n

n∑
i=1

{∆it(α,xi)ϕjd(xi)− E[∆it(α,xi)ϕjd(xi)]}

∣∣∣∣∣
2


= O
(
ln(k−1/4

n ε
−1/2
nT ) · k3/2n εnT

)
(A2.17)

uniformly in t and j, from which (A2.15) follows.

DefineHεnT
= {h(a,xi) ≡ ∆it(α,xi)ϕjd(xi)−E[∆it(α,xi)ϕjd(xi)] : ∥a−a0t∥ ≤ CεnT},

and for any h ∈ HεnT
define Gnh = n−1/2

∑n
i=1 h(a,xi). Write

sup
∥a−a0t∥≤Cεn

∣∣∣∣∣ 1√
n

n∑
i=1

{∆it(α,xi)ϕjd(xi)− E[∆it(α,xi)ϕjd(xi)]}

∣∣∣∣∣ = ∥Gnh∥HεnT
,

then the left-hand side of (A2.17) can be written as E ∥Gnh∥2HεnT
. Let N(HεnT

, L2(Q), ϵ)

be the covering number of HεnT
, where L2(Q) is the L2 norm for functions and Q is any

probability measure on X . Similar to the proof of (A.12) in Kato et al. (2012), it can be

shown that N(HεnT
, L2(Q), 2ϵ) ≤ (A/ϵ)c1kn for some bounded constant c1 and A ≥ 3

√
e

that do not depend on t and j. Moreover, it is easy to show that suph∈HεnT
E[h2(a,xi)] ≤

c22
√
knεn for some bounded constant c2. Then, applying Proposition B.1 of Kato et al.

(2012), we have

E ∥Gnh∥HεnT
≤ c3

[
· ln(c4k−1/4

n ε
−1/2
nT ) · kn/

√
n+

√
ln(c4k

−1/4
n ε

−1/2
nT ) · k3/4n ε

1/2
nT

]
≤ c5

√
ln(k

−1/4
n ε

−1/2
nT ) · k3/4n ε

1/2
nT , (A2.18)
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where c3, c4, c5 are bounded constants that do not depend on t and j. Finally, (A2.17)

follows by noting that (see Chapter 6 of Ledoux and Talagrand 1991)

E ∥Gnh∥2HεnT
≤
(
E ∥Gnh∥HεnT

)2
+O(n−1).

This completes the proof.

Proof of Theorem 2:

Proof. Let Ψ be the n× T matrix of ψit, then the result of Lemma 2 can be written as

∥∥∥Â−A0 − f(0)−1 · Σ̂−1
ϕ Φ′(X)Ψ/n

∥∥∥ /√T = OP

(
k−α
n

)
+OP (ηnT ) . (A2.19)

From (A2.2) and Lemma 1 we have

∥F̂ − FĤ∥/
√
T ≤ OP (1) · ∥FG(X)′V̂ /(nT )∥S +OP (ε

2
nT ). (A2.20)

Define R(X) = Φ(X)B0 − G(X), then by Assumption 1(ii) ∥R(X)∥/
√
n = OP (k

−α
n ).

Moreover, we can write

V̂ = Ŷ −G(X)F ′

= Φ(X)Â−G(X)F ′

= Φ(X)Â−Φ(X)A0 +Φ(X)A0 −G(X)F ′

= Φ(X)(Â−A0) +R(X)F ′.

Thus,

FG(X)′V̂ /(nT )

= F (Φ(X)B0 −R(X))′[Φ(X)(Â−A0) +R(X)F ′]/(nT )

= FB′
0Φ(X)′Φ(X)(Â−A0)/(nT )− FR(X)′Φ(X)(Â−A0)/(nT )

+FG(X)′R(X)F ′/(nT ).
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It then follows from Theorem 1 and Lemma 1 that

∥FG(X)′V̂ /(nT )∥S ≤ ∥FB′
0Φ(X)′Φ(X)(Â−A0)/(nT )∥S +OP (k

−α
n ).

The above inequality and (A2.20) imply that

∥F̂ − FĤ∥/
√
T ≤ ∥FB′

0Φ(X)′Φ(X)(Â−A0)/(nT )∥S +OP (k
−α
n ) +OP (ε

2
nT ). (A2.21)

By (A2.19) and Assumption 1(ii), we have

∥FB′
0Φ(X)′Φ(X)(Â−A0)/(nT )∥S

≤ f(0)−1∥B′
0Φ(X)′Φ(X)Σ̂−1

ϕ Φ′(X)Ψ/(n2T 1/2)∥S +OP

(
k−α
n + ηnT

)
= f(0)−1∥B′

0Φ
′(X)Ψ/(nT 1/2)∥S +OP

(
k−α
n + ηnT

)
≤ f(0)−1∥G′(X)Ψ/(nT 1/2)∥+ ∥G(X)−Φ(X)B0∥/

√
n · ∥Ψ∥/

√
nT +OP

(
k−α
n + ηnT

)
= f(0)−1∥G′(X)Ψ/(nT 1/2)∥+OP

(
k−α
n + ηnT

)
.

Note that

∥G′(X)Ψ/(nT 1/2)∥ =
1√
n
·

√√√√ 1

T

T∑
t=1

∥∥∥∥∥ 1√
n

n∑
i=1

g(xi)ψit

∥∥∥∥∥
2

= OP (n
−1/2)

because it is easy to see that E
∥∥n−1/2

∑n
i=1 g(xi)ψit

∥∥2 < ∞ for all t. It then follows from

(A2.21) that

∥F̂ − FĤ∥/
√
T = OP (n

−1/2) +OP (k
−α
n ) +OP (ηnT ) +OP (ε

2
nT ).

This completes the proof.

Lemma 3. Under Assumptions 1, 2 and 4, we have

∥∥∥Â−A0 −Σ−1
fϕ Φ

′(X)Ψ(X)/n
∥∥∥ /√T = OP

(
k−α
n

)
+OP (ηnT ) .

where ψit(xi) = F (−ξit|xi)− 1{uit ≤ −ξit} and Ψ(X) is the n× T matrix of ψit(xi).
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Proof. The proof is similar to the proof of Lemma 2. Therefore, it is omitted to save

space.

Proof of Theorem 3:

Proof. By the proof of Theorem 1, for any x ∈ X ,

ĝ(x) = (F ′F̂ /T )′g(x) + (F ′F̂ /T )′(B′
0ϕkn(x)− g(x)) + (B̂ −B0(F

′F̂ /T ))′ϕkn(x).

Moreover,

B̂ −B0(F
′F̂ /T ) = (Â−A0)FĤ/T + (Â−A0)(F̂ − FĤ)/T.

Thus, by Lemma 1 and Theorem 1,

ĝ(x)− (F ′F̂ /T )′g(x) = Ĥ ′F ′(Â−A0)
′ϕkn(x)/T +OP (k

−α
n ) +OP (ε

2
nT

√
kn).

It then follows from Lemma 3 that

ĝ(x)− (F ′F̂ /T )′g(x) = Ĥ ′F ′Ψ′(X)Φ(X)Σ−1
fϕ ϕkn(x)/(nT ) +OP (k

1/2−α
n ) +OP (

√
knηnT ).

Define dT (xi) = T−1
∑T

t=1 ftψit(xi), q(xi) = ϕkn(xi)
′Σ−1

fϕ ϕkn(x), then we can write

F ′Ψ′(X)Φ(X)Σ−1
fϕ ϕkn(x)/(nT ) =

1

n

n∑
i=1

dT (xi)q(xi).

Note that E[dT (xi)q(xi)] = 0 because E[dT (xi)|xi] = 0, and it is easy to show that

E[dT (xi)dT (xi)
′q2(xi)] = τ(1− τ)(F ′F /T 2)ϕ′

kn(x)Σ
−1
fϕ ΣϕΣ

−1
fϕ ϕkn(x) + o(1)

= τ(1− τ)(F ′F /T 2)σ2
kn + o(1).

Thus, we have

Σ
−1/2
T,τ (Ĥ ′)−1 ·

√
nT

σkn

(
ĝ(x)− (F ′F̂ /T )′g(x)

)
= Σ

−1/2
T,τ · 1√

n

n∑
i=1

√
TdT (xi)q(xi)/σkn

+OP (k
1/2−α
n +

√
knηnT )

√
nTσ−1

kn
. (A2.22)

17



Finally, it follows from the Lyapunov’s CLT and Assumption 4(iv) that

Σ
−1/2
T,τ (Ĥ ′)−1 ·

√
nT

σkn

(
ĝ(x)− (F ′F̂ /T )′g(x)

)
d→ N(0, IR).

This completes the proof.

Proof of Theorem 4:

Proof. Define R(X) = Φ(X)B0 −G(X), we can write

Ŷ = Φ(X)A0 +Φ(X)(Â−A0) = G(X)F ′ +R(X)F ′ +Φ(X)(Â−A0).

Thus,

F̃ = Ŷ ′Ĝ(X) · (Ĝ(X)′Ĝ(X))−1 = F (G(X)′Ĝ(X)/n)(Ĝ(X)′Ĝ(X)/n)−1

+F (R(X)′Ĝ(X)/n)(Ĝ(X)′Ĝ(X)/n)−1+(Â−A0)
′(Φ(X)′Ĝ(X)/n)(Ĝ(X)′Ĝ(X)/n)−1,

and

f̃t − H̃ ′ft = (Ĝ(X)′Ĝ(X)/n)−1(Ĝ(X)′R(X)/n)ft

+ (Ĝ(X)′Ĝ(X)/n)−1(Ĝ(X)′Φ(X)/n)(ât − a0t).

It is easy to see from Theorem 1 and Assumption 1(ii) that the first term on the right-hand

side of the above equation is OP (k
−α
n ). Moreover, by Lemma 3, the second term can be

written as

(Ĝ(X)′Ĝ(X)/n)−1 · (Ĝ(X)′Φ(X)/n) ·Σ−1
fϕ · 1

n

n∑
i=1

ϕkn(xi)ψit(xi) +OP (k
−α
n ) +OP (ηnT ).

By Theorem 1 we can show that

∥(Ĝ(X)′Ĝ(X)/n)−1 − Ĥ ′Σ−1
g Ĥ∥ = OP (εnT ),

∥(Ĝ(X)′Φ(X)/n)− Ĥ−1E[g(xi)ϕkn(xi)
′]∥S = OP (εnT ),
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∥∥∥∥∥ 1n
n∑

i=1

ϕkn(xi)ψit(xi)

∥∥∥∥∥ = OP (
√
kn/n),

it then follows from Assumption 4(iii) that

(Ĥ ′)−1
√
n(f̃t − H̃ ′ft) = Σ−1

g E[g(xi)ϕkn(xi)
′]Σ−1

fϕ

(
1√
n

n∑
i=1

ϕkn(xi)ψit(xi)

)

+OP (εnTk
1/2
n ) +OP (n

1/2k−α
n ) +OP (n

1/2ηnT ).

By the Lyapunov’s CLT we can show that

1√
n

n∑
i=1

ϕkn(xi)ψit(xi)
d→ N(0, τ(1− τ)Σϕ),

then the desired result follows from Assumption 5.

Proof of Theorem 5:

Proof. First, note that

∥Φ(X)ÂÂ′Φ(X)′ −G(X)F ′FG(X)′∥/(nT )

≤ 2∥G(X)F ′∥/
√
nT · ∥Φ(X)Â−G(X)F ′∥/

√
nT + ∥Φ(X)Â−G(X)F ′∥2/(nT )

= OP (1) · ∥V̂ ∥/
√
nT + ∥V̂ ∥2/(nT ).

It then follows from Lemma 1(ii) that

∥Φ(X)ÂÂ′Φ(X)′ −G(X)F ′FG(X)′∥/(nT ) = OP (εnT ). (A2.23)

Second, Assumption 2(iii) and (iv) imply that the largestR eigenvalues ofG(X)F ′FG(X)′/(nT ),

which are also the R eigenvalues of (F ′F /T ) · G(X)′G(X)/n, converge in probabil-

ity to the R eigenvalues of (F ′F /T ) · Σg. Also, note that the remaining eigenvalues of

G(X)F ′FG(X)′/(nT ) are all 0, it then follows from (A2.23) and the Wielandt-Hoffman

inequality that ρ̂j = OP (εnT ) for j = R+1, . . . , R̄, and ρ̂j converges in probability in some

positive constant for j = 1, . . . , R. The desired result then follows because P [ρ̂j > pn] → 1

for j = 1, . . . , R and P [ρ̂j > pn] → 0 for j = R + 1, . . . , R̄.
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Table A.1: Estimating the number of factors: rank minimization estimator

T n N(0, 1) t(3) Cauchy(0,1)

τ = 0.25 5 50 [0.13 0.65 0.23] [0.03 0.41 0.56] [0.01 0.10 0.89]

5 100 [0.10 0.72 0.19] [0.02 0.44 0.54] [0.00 0.03 0.97]

5 200 [0.23 0.77 0.00] [0.12 0.82 0.06] [0.00 0.17 0.83]

5 1000 [0.17 0.83 0.00] [0.16 0.84 0.00] [0.06 0.81 0.13]

10 50 [0.17 0.76 0.07] [0.03 0.50 0.47] [0.02 0.06 0.92]

10 100 [0.08 0.89 0.03] [0.03 0.65 0.46] [0.00 0.03 0.97]

10 200 [0.07 0.93 0.00] [0.05 0.95 0.00] [0.00 0.24 0.76]

10 1000 [0.03 0.97 0.00] [0.02 0.98 0.00] [0.01 0.98 0.01]

τ = 0.5 5 50 [0.19 0.71 0.10] [0.09 0.56 0.35] [0.00 0.15 0.85]

5 100 [0.17 0.76 0.08] [0.07 0.59 0.34] [0.00 0.20 0.80]

5 200 [0.23 0.77 0.00] [0.19 0.80 0.01] [0.06 0.75 0.19]

5 1000 [0.18 0.82 0.00] [0.15 0.85 0.00] [0.13 0.87 0.00]

10 50 [0.20 0.78 0.03] [0.08 0.76 0.15] [0.00 0.13 0.87]

10 100 [0.12 0.87 0.01] [0.05 0.87 0.08] [0.00 0.24 0.76]

10 200 [0.05 0.95 0.00] [0.05 0.95 0.00] [0.03 0.94 0.03]

10 1000 [0.01 0.99 0.00] [0.02 0.98 0.00] [0.02 0.99 0.00]

τ = 0.75 5 50 [0.11 0.68 0.21] [0.04 0.41 0.56] [0.01 0.09 0.90]

5 100 [0.10 0.71 0.19] [0.02 0.42 0.56] [0.00 0.04 0.96]

5 200 [0.22 0.78 0.00] [0.14 0.81 0.05] [0.00 0.15 0.85]

5 1000 [0.18 0.82 0.00] [0.17 0.83 0.00] [0.04 0.82 0.15]

10 50 [0.15 0.78 0.08] [0.04 0.50 0.46] [0.01 0.05 0.94]

10 100 [0.11 0.86 0.04] [0.03 0.65 0.32] [0.00 0.03 0.97]

10 200 [0.06 0.94 0.00] [0.05 0.94 0.01] [0.01 0.27 0.73]

10 1000 [0.02 0.98 0.00] [0.02 0.98 0.00] [0.02 0.97 0.01]

Note: the DGP is yit =
∑3

r=1 λirftr +
(
x2i1 + x2i2 + x2i3

)
uit, where ft1 = 1, ft2, ft3 ∼ i.i.d N(0, 1).

The number of characteristics is 5 and all characteristics xid are drawn independently from the

uniform distribution: U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = cos(πx), and

λi1 =
∑

d=1,3,5 g1(xid), λi2 =
∑

d=1,2 g2(xid), λi3 =
∑

d=3,4 g3(xid). uit are i.i.d variables drawn

from three different distributions. In the first step quantile sieve estimation, kn = n1/3 and we

use the Chebyshev polynomials of the second kind as the basis functions. For the estimator of the

number of factors, the threshold pn is chosen as in Equation (9) with d = 1/4. The reported results

are [frequency of R̂ < R; frequency of R̂ = R; frequency of R̂ > R] from 1000 replications.
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Table A.2: Estimating the number of factors: eigen-ratio estimator

T n N(0, 1) t(3) Cauchy(0,1)

τ = 0.25 5 50 [0.57 0.25 0.19] [0.54 0.22 0.25] [0.54 0.17 0.29]

5 100 [0.58 0.33 0.09] [0.58 0.27 0.15] [0.59 0.15 0.26]

5 200 [0.44 0.54 0.01] [0.54 0.43 0.04] [0.62 0.24 0.14]

5 1000 [0.23 0.77 0.00] [0.31 0.69 0.00] [0.56 0.42 0.02]

10 50 [0.46 0.37 0.17] [0.45 0.18 0.37] [0.47 0.07 0.46]

10 100 [0.37 0.59 0.04] [0.46 0.42 0.11] [0.60 0.09 0.31]

10 200 [0.09 0.91 0.00] [0.19 0.80 0.01] [0.59 0.31 0.11]

10 1000 [0.01 0.99 0.00] [0.03 0.97 0.00] [0.17 0.83 0.00]

τ = 0.5 5 50 [0.58 0.28 0.14] [0.57 0.22 0.20] [0.50 0.20 0.30]

5 100 [0.58 0.33 0.09] [0.57 0.28 0.15] [0.56 0.21 0.22]

5 200 [0.42 0.57 0.01] [0.46 0.51 0.03] [0.54 0.41 0.06]

5 1000 [0.21 0.79 0.00] [0.23 0.77 0.00] [0.28 0.72 0.00]

10 50 [0.41 0.46 0.13] [0.46 0.33 0.21] [0.42 0.10 0.48]

10 100 [0.30 0.66 0.04] [0.36 0.57 0.07] [0.51 0.24 0.26]

10 200 [0.06 0.94 0.00] [0.11 0.89 0.00] [0.22 0.76 0.02]

10 1000 [0.01 0.99 0.00] [0.02 0.98 0.00] [0.03 0.97 0.00]

τ = 0.75 5 50 [0.58 0.25 0.17] [0.54 0.22 0.24] [0.55 0.17 0.28]

5 100 [0.57 0.32 0.10] [0.59 0.24 0.17] [0.56 0.20 0.24]

5 200 [0.43 0.55 0.02] [0.52 0.43 0.04] [0.65 0.21 0.14]

5 1000 [0.24 0.76 0.00] [0.33 0.67 0.00] [0.55 0.44 0.01]

10 50 [0.46 0.36 0.18] [0.44 0.20 0.37] [0.47 0.05 0.48]

10 100 [0.36 0.59 0.06] [0.46 0.40 0.14] [0.63 0.09 0.28]

10 200 [0.11 0.89 0.00] [0.19 0.80 0.01] [0.58 0.31 0.11]

10 1000 [0.01 0.99 0.00] [0.03 0.97 0.00] [0.16 0.83 0.01]

Note: the DGP is yit =
∑3

r=1 λirftr +
(
x2i1 + x2i2 + x2i3

)
uit, where ft1 = 1, ft2, ft3 ∼ i.i.d N(0, 1).

The number of characteristics is 5 and all characteristics xid are drawn independently from the

uniform distribution: U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = cos(πx), and

λi1 =
∑

d=1,3,5 g1(xid), λi2 =
∑

d=1,2 g2(xid), λi3 =
∑

d=3,4 g3(xid). uit are i.i.d variables drawn

from three different distributions. In the first step quantile sieve estimation, kn = n1/3 and

we use the Chebyshev polynomials of the second kind as the basis functions. The estimator for

the number of factors is the integer that maximizes the eigen-ratios. The reported results are

[frequency of R̂ < R; frequency of R̂ = R; frequency of R̂ > R] from 1000 replications.
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Table A.3: Factor estimation using QPPCA

N(0, 1) t(3) Cauchy(0,1)

T n f1t f2t f3t f1t f2t f3t f1t f2t f3t

τ = 0.25 10 50 0.859 0.879 0.574 0.738 0.745 0.630 0.386 0.370 0.609

10 100 0.971 0.956 0.857 0.938 0.890 0.835 0.670 0.566 0.767

10 200 0.989 0.983 0.924 0.978 0.959 0.911 0.862 0.767 0.867

10 500 0.997 0.995 0.979 0.994 0.990 0.972 0.968 0.940 0.950

50 50 0.893 0.909 0.417 0.751 0.796 0.499 0.086 0.069 0.375

50 100 0.976 0.968 0.824 0.957 0.940 0.797 0.623 0.407 0.654

50 200 0.990 0.986 0.901 0.982 0.977 0.892 0.919 0.838 0.821

50 500 0.997 0.995 0.973 0.995 0.992 0.967 0.984 0.975 0.941

τ = 0.75 10 50 0.861 0.876 0.581 0.749 0.749 0.623 0.383 0.362 0.605

10 100 0.971 0.955 0.858 0.933 0.894 0.834 0.682 0.573 0.768

10 200 0.989 0.983 0.921 0.979 0.960 0.905 0.867 0.777 0.867

10 500 0.997 0.995 0.979 0.994 0.990 0.974 0.973 0.937 0.950

50 50 0.893 0.911 0.420 0.749 0.794 0.493 0.081 0.066 0.380

50 100 0.977 0.967 0.824 0.958 0.938 0.794 0.617 0.400 0.656

50 200 0.990 0.986 0.901 0.982 0.976 0.894 0.915 0.832 0.818

50 500 0.997 0.995 0.972 0.995 0.992 0.967 0.984 0.974 0.938

Note: the DGP is Yit = λi1ft1 + λi2ft2 + (λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). The

number of characteristics is 5 and all characteristics xid are independently drawn from the uniform

distribution: U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = |cos(πx)|. The factor loading

functions are generated as λi1 =
∑

d=1,3,5 g1(xid), λi2 =
∑

d=1,2 g2(xid) and λi3 =
∑

d=3,4 g3(xid). {uit}
are i.i.d draws from three different distributions. 3 factors are estimated at each τ using the proposed

method in this paper, and the reported results are the averages of the adjusted R2 of regressing the true

factors on the estimated factors from 1000 replications.
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Table A.4: Factor estimation using QFA

N(0, 1) t(3) Cauchy(0,1)

T n f1t f2t f3t f1t f2t f3t f1t f2t f3t

τ = 0.25 10 50 0.887 0.821 0.561 0.808 0.706 0.528 0.516 0.418 0.449

10 100 0.898 0.833 0.586 0.822 0.727 0.574 0.525 0.427 0.501

10 200 0.904 0.841 0.624 0.834 0.735 0.584 0.525 0.443 0.504

10 500 0.908 0.840 0.643 0.841 0.740 0.608 0.513 0.420 0.512

50 50 0.964 0.948 0.786 0.935 0.902 0.725 0.724 0.537 0.473

50 100 0.983 0.976 0.884 0.972 0.956 0.848 0.871 0.767 0.669

50 200 0.992 0.988 0.936 0.986 0.977 0.911 0.935 0.853 0.802

50 500 0.996 0.994 0.965 0.994 0.989 0.951 0.963 0.906 0.880

τ = 0.75 10 50 0.875 0.835 0.551 0.808 0.719 0.523 0.510 0.414 0.447

10 100 0.898 0.938 0.595 0.820 0.730 0.583 0.523 0.420 0.506

10 200 0.904 0.846 0.616 0.828 0.736 0.600 0.520 0.429 0.497

10 500 0.899 0.838 0.625 0.843 0.742 0.616 0.528 0.433 0.489

50 50 0.964 0.947 0.785 0.935 0.901 0.722 0.722 0.551 0.486

50 100 0.983 0.975 0.884 0.972 0.956 0.846 0.874 0.760 0.672

50 200 0.992 0.988 0.935 0.986 0.978 0.911 0.931 0.852 0.799

50 500 0.996 0.994 0.964 0.994 0.989 0.949 0.964 0.903 0.878

Note: the DGP is Yit = λi1ft1 + λi2ft2 + (λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). The

number of characteristics is 5 and all characteristics xid are independently drawn from the uniform

distribution: U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = |cos(πx)|. The factor loading

functions are generated as λi1 =
∑

d=1,3,5 g1(xid), λi2 =
∑

d=1,2 g2(xid) and λi3 =
∑

d=3,4 g3(xid).

{uit} are i.i.d draws from three different distributions. 3 factors are estimated at each τ using the QFA

proposed by Chen et al. (2021), and the reported results are the averages of the adjusted R2 of regressing

the true factors on the estimated factors from 1000 replications.

23



Table A.5: Factor estimation using PCA and PPCA

N(0, 1) t(3) Cauchy(0,1)

T n f1t f2t f3t f1t f2t f3t f1t f2t f3t

PCA 10 50 0.955 0.921 0.420 0.847 0.723 0.455 0.271 0.250 0.392

10 100 0.964 0.929 0.450 0.858 0.757 0.514 0.286 0.289 0.410

10 200 0.970 0.944 0.478 0.871 0.751 0.530 0.289 0.285 0.422

10 500 0.975 0.944 0.493 0.879 0.767 0.568 0.292 0.303 0.433

50 50 0.973 0.957 0.084 0.894 0.781 0.079 0.003 -0.001 0.032

50 100 0.986 0.977 0.131 0.937 0.862 0.116 0.032 0.031 0.066

50 200 0.993 0.988 0.149 0.961 0.901 0.141 0.044 0.048 0.075

50 500 0.997 0.994 0.166 0.977 0.933 0.161 0.055 0.054 0.091

PPCA 10 50 0.949 0.962 0.382 0.843 0.866 0.379 0.277 0.282 0.387

10 100 0.989 0.984 0.374 0.960 0.930 0.379 0.321 0.314 0.406

10 200 0.995 0.993 0.382 0.983 0.969 0.383 0.318 0.309 0.409

10 500 0.998 0.997 0.400 0.994 0.989 0.402 0.321 0.317 0.417

50 50 0.953 0.963 0.060 0.858 0.882 0.054 0.003 0.001 0.029

50 100 0.987 0.982 0.095 0.962 0.947 0.085 0.036 0.031 0.062

50 200 0.994 0.992 0.110 0.982 0.974 0.100 0.048 0.049 0.072

50 500 0.998 0.997 0.130 0.994 0.990 0.114 0.058 0.056 0.090

Note: the DGP is Yit = λi1ft1 + λi2ft2 + (λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). The

number of characteristics is 5 and all characteristics xid are independently drawn from the uniform

distribution: U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = |cos(πx)|. The factor loading

functions are generated as λi1 =
∑

d=1,3,5 g1(xid), λi2 =
∑

d=1,2 g2(xid) and λi3 =
∑

d=3,4 g3(xid).

{uit} are i.i.d draws from three different distributions. 3 factors are estimated using PCA and PPCA

respectively, and the reported results are the averages of the adjusted R2 of regressing the true factors

on the estimated factors from 1000 replications.
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Table A.6: Factor estimation using QPPCA: R = 3, D = 2

N(0, 1) t(3) Cauchy(0,1)

T n f1t f2t f3t f1t f2t f3t f1t f2t f3t

τ = 0.25 10 50 0.731 0.880 0.606 0.588 0.806 0.617 0.348 0.481 0.602

10 100 0.932 0.948 0.830 0.877 0.902 0.799 0.655 0.668 0.731

10 200 0.969 0.978 0.916 0.947 0.960 0.901 0.778 0.837 0.847

10 500 0.990 0.993 0.974 0.983 0.989 0.968 0.929 0.941 0.942

50 50 0.665 0.875 0.485 0.488 0.782 0.473 0.100 0.202 0.390

50 100 0.934 0.957 0.811 0.892 0.921 0.766 0.473 0.531 0.602

50 200 0.969 0.982 0.906 0.949 0.970 0.889 0.785 0.839 0.796

50 500 0.990 0.993 0.968 0.984 0.989 0.961 0.952 0.963 0.931

τ = 0.5 10 50 0.643 0.889 0.152 0.524 0.837 0.165 0.364 0.664 0.201

10 100 0.927 0.949 0.127 0.907 0.935 0.136 0.807 0.845 0.171

10 200 0.968 0.981 0.128 0.955 0.974 0.136 0.917 0.940 0.158

10 500 0.990 0.994 0.135 0.987 0.991 0.126 0.979 0.986 0.142

50 50 0.697 0.913 -0.013 0.581 0.870 -0.011 0.279 0.682 0.005

50 100 0.945 0.968 0.004 0.929 0.956 0.003 0.857 0.899 0.004

50 200 0.973 0.984 0.011 0.967 0.980 0.012 0.945 0.968 0.014

50 500 0.991 0.994 0.018 0.989 0.993 0.017 0.984 0.989 0.018

τ = 0.75 10 50 0.718 0.878 0.603 0.609 0.804 0.629 0.356 0.473 0.596

10 100 0.932 0.948 0.834 0.874 0.900 0.791 0.636 0.664 0.737

10 200 0.970 0.980 0.922 0.943 0.962 0.907 0.796 0.833 0.848

10 500 0.991 0.993 0.975 0.984 0.987 0.968 0.933 0.941 0.943

50 50 0.663 0.872 0.498 0.485 0.779 0.476 0.102 0.203 0.392

50 100 0.935 0.956 0.813 0.889 0.920 0.762 0.450 0.510 0.608

50 200 0.969 0.981 0.906 0.951 0.970 0.890 0.792 0.845 0.800

50 500 0.990 0.993 0.969 0.984 0.989 0.962 0.951 0.964 0.931

Note: the DGP is Yit = λi1ft1+λi2ft2+(λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). The number

of characteristics is 2 and all characteristics xid are independently drawn from the uniform distribution:

U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = |cos(πx)|. λi1 =
∑

d=1,2 g1(xid), λi2 =∑
d=1,2 g2(xid) and λi3 =

∑
d=1,2 g3(xid). {uit} are i.i.d draws from three different distributions. 3 factors

are estimated at each τ using the method proposed in this paper, and the reported results are the averages

of the adjusted R2 of regressing the true factors on the estimated factors from 1000 replications.
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Table A.7: Factor estimation using SQFA: R = 3, D = 2

N(0, 1) t(3) Cauchy(0,1)

T n f1t f2t f3t f1t f2t f3t f1t f2t f3t

τ = 0.25 10 50 0.406 0.826 0.205 0.364 0.793 0.218 0.295 0.649 0.277

10 100 0.595 0.698 0.195 0.578 0.690 0.208 0.556 0.656 0.231

10 200 0.623 0.706 0.223 0.604 0.680 0.238 0.573 0.676 0.277

10 500 0.630 0.682 0.233 0.614 0.687 0.239 0.596 0.686 0.301

50 50 0.311 0.845 0.040 0.267 0.804 0.058 0.191 0.662 0.101

50 100 0.516 0.680 0.036 0.503 0.660 0.043 0.471 0.627 0.063

50 200 0.523 0.691 0.058 0.518 0.676 0.067 0.487 0.649 0.095

50 500 0.578 0.656 0.061 0.553 0.651 0.068 0.543 0.626 0.102

τ = 0.5 10 50 0.383 0.849 0.133 0.351 0.819 0.132 0.314 0.749 0.142

10 100 0.584 0.695 0.150 0.573 0.688 0.143 0.531 0.674 0.154

10 200 0.584 0.713 0.156 0.559 0.716 0.157 0.539 0.678 0.158

10 500 0.615 0.689 0.157 0.600 0.663 0.157 0.598 0.649 0.152

50 50 0.277 0.865 -0.014 0.236 0.843 -0.013 0.185 0.773 -0.014

50 100 0.509 0.679 0.007 0.471 0.669 0.007 0.439 0.625 0.005

50 200 0.514 0.688 0.015 0.493 0.680 0.016 0.452 0.669 0.016

50 500 0.557 0.639 0.022 0.544 0.636 0.023 0.503 0.623 0.022

τ = 0.75 10 50 0.402 0.816 0.200 0.374 0.804 0.213 0.316 0.630 0.268

10 100 0.606 0.688 0.191 0.564 0.900 0.195 0.556 0.666 0.226

10 200 0.590 0.691 0.221 0.584 0.962 0.215 0.582 0.672 0.281

10 500 0.638 0.691 0.231 0.622 0.987 0.259 0.620 0.675 0.285

50 50 0.318 0.837 0.039 0.268 0.779 0.049 0.191 0.658 0.099

50 100 0.525 0.671 0.039 0.499 0.920 0.044 0.465 0.624 0.067

50 200 0.528 0.688 0.057 0.510 0.970 0.064 0.481 0.654 0.101

50 500 0.574 0.652 0.063 0.564 0.989 0.067 0.543 0.627 0.096

Note: the DGP is Yit = λi1ft1+λi2ft2+(λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). The number

of characteristics is 2 and all characteristics xid are independently drawn from the uniform distribution:

U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = |cos(πx)|. λi1 =
∑

d=1,2 g1(xid), λi2 =∑
d=1,2 g2(xid) and λi3 =

∑
d=1,2 g3(xid). {uit} are i.i.d draws from three different distributions. 2 factors

are estimated at each τ using the method proposed by Ma et al. (2021), and the reported results are the

averages of the adjusted R2 of regressing the true factors on the estimated factors from 1000 replications.
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Figure A.1: Estimation of factors: fixed T and increasing n.
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Note: the DGP is Yit = λi1ft1 + λi2ft2 + (λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1).

The number of characteristics is 5 and all characteristics xid (i = 1, ...N and d = 1, 2, 3, 4, 5)

are independently drawn from the uniform distribution: U [−1, 1]. g1(x) = sin(2πx), g2(x) =

sin(πx) and g3(x) = |cos(πx)|. The factor loading functions are generated as λi1 =∑
d=1,3,5 g1(xid), λi2 =

∑
d=1,2 g2(xid) and λi3 =

∑
d=3,4 g3(xid). {uit} are i.i.d draws from three

different distributions. The mean factors (ft1 and ft2) are estimated by four methods: PCA,

PPCA, QFA and QPPCA at τ = 0.5. The reported results are the average Frobenius errors:

∥F̂ − FĤ∥/
√
T from 1000 repetitions, where Ĥ is the associated rotation matrix for each esti-

mator.
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Figure A.2: Estimation of factors: fixed n and increasing T .
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Note: the DGP is Yit = λi1ft1 + λi2ft2 + (λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1).

The number of characteristics is 5 and all characteristics xid (i = 1, ...N and d = 1, 2, 3, 4, 5)

are independently drawn from the uniform distribution: U [−1, 1]. g1(x) = sin(2πx), g2(x) =

sin(πx) and g3(x) = |cos(πx)|. The factor loading functions are generated as λi1 =∑
d=1,3,5 g1(xid), λi2 =

∑
d=1,2 g2(xid) and λi3 =

∑
d=3,4 g3(xid). {uit} are i.i.d draws from three

different distributions. The mean factors (ft1 and ft2) are estimated by four methods: PCA,

PPCA, QFA and QPPCA at τ = 0.5. The reported results are the average Frobenius errors:

∥F̂ − FĤ∥/
√
T from 1000 repetitions, where Ĥ is the associated rotation matrix for each esti-

mator.
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Figure A.3: Loading function of the first characteristic when error term is N(0, 1)

Note: the DGP is: yit = λi1ft1 + (λi2ft2)uit, where ft2 = |gt| and ft1, gt ∼ i.i.d N(0, 1). n =

500, T = 10. The number of characteristics is 2 and all characteristics xid (i = 1, ...N and d =

1, 2) are independently drawn from uniform distribution: U [−1, 1]. g11(x) = sin(2πx), g21(x) =

0, g12(x) = sin(πx), g22(x) = cos2(πx), and λi1 = g11(xi1)+ g12(xi2), λi2 = g21(xi1)+ g22(xi2). uit

are drawn independently from the standard normal distribution. The left panel are the estimation

results for g11,τ (x) = sin(2πx) and the right panel are the estimation results for g21,τ (x) = 0 with

τ ∈ {0.25, 0.75}. For each graph, the blue line is the true function, the red line and the green line

are the 95% and 5% empirical quantiles from 1000 replications.
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Figure A.4: Loading function of the second characteristic when error term is N(0,1)

Note: the DGP is: yit = λ1if1t + (λ2if2t)uit, where f2t = |gt| and f1t, gt ∼ i.i.d N(0, 1). n =

500, T = 10. The number of characteristics is 2 and all characteristics xid (i = 1, ...N and d =

1, 2) are independently drawn from uniform distribution: U [−1, 1]. g11(x) = sin(2πx), g21(x) =

0, g12(x) = sin(πx), g22(x) = cos2(πx), and λ1i = g11(x1i)+ g12(x2i), λ2i = g21(x1i)+ g22(x2i). uit

are drawn independently from the standard normal distribution. The left panel are the estimation

results for g12,τ (x) = sin(πx) and the right panel are the estimation results for g22,τ (x) with

τ ∈ {0.25, 0.75}. For each graph, the blue line is the true function, the red line and the green line

are the 95% and 5% empirical quantiles from 1000 replications.

30



Figure A.5: Loading function of first characteristic when error term is t(3)

Note: the DGP is: yit = λi1ft1 + (λi2ft2)uit, where ft2 = |gt| and ft1, gt ∼ i.i.d N(0, 1). n =

500, T = 10. The number of characteristics is 2 and all characteristics xid (i = 1, ...N and d =

1, 2) are independently drawn from uniform distribution: U [−1, 1]. g11(x) = sin(2πx), g21(x) =

0, g12(x) = sin(πx), g22(x) = cos2(πx), and λi1 = g11(xi1) + g12(xi2), λi2 = g21(xi1) + g22(xi2).

uit are drawn independently from the student’s t distribution with 3 degrees of freedom. The left

panel are the estimation results for g11,τ (x) = sin(2πx) and the right panel are the estimation

results for g21,τ (x) = 0 with τ ∈ {0.25, 0.75}. For each graph, the blue line is the true function,

the red line and the green line are the 95% and 5% empirical quantiles from 1000 replications.
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Figure A.6: Loading function of second characteristic when error term is t(3)

Note: the DGP is: yit = λi1ft1 + (λi2ft2)uit, where ft2 = |gt| and ft1, gt ∼ i.i.d N(0, 1). n =

500, T = 10. The number of characteristics is 2 and all characteristics xid (i = 1, ...N and d =

1, 2) are independently drawn from uniform distribution: U [−1, 1]. g11(x) = sin(2πx), g21(x) =

0, g12(x) = sin(πx), g22(x) = cos2(πx), and λi1 = g11(xi1) + g12(xi2), λi2 = g21(xi1) + g22(xi2).

uit are drawn independently from the student’s t distribution with 3 degrees of freedom. The

left panel are the estimation results for g12,τ (x) = sin(πx) and the right panel are the estimation

results for g22,τ (x) with τ ∈ {0.25, 0.75}. For each graph, the blue line is the true function, the

red line and the green line are the 95% and 5% empirical quantiles from 1000 replications.
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