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A1l Simulations

In this section, we run a few Monte Carlo simulations to study the behavior in finite samples
of the QPPCA estimators regarding the estimation of the number of factors, the factors
themselves and their loading functions. In most cases, unless otherwise explicitly said, we
suppose that the number of characteristics is D = 5 and that all of them, {z;q,d = 1,...,5},

are drawn independently from the uniform distribution: U[—1,1].

A1l1l.1 Estimating the number of factors

Consider the following DGP:
3
Yit = Z )\irftr + (mfl + x?z + m?g) Usg,
r=1

where fi1 = 1, fi, fis ~ i.i.d N(0,1). Note that the chosen DGP is a location-scale
shift model where the scale is driven by a subset of the five characteristics. This type
of heteroskedasticity implies that the quantile loading functions exhibit variations across
quantiles, unlike a pure location-shift model where the loading functions would be the same
(up to a constant) for different quantiles.
Let g1(z) = sin(2mx), g2(x) = sin(wz) and g3(x) = cos(mx), such that
Al = Z gl(xz‘d), Aig = Z 92(Iz‘d)7 Aig = Z g:;(ilfid)-
d=135 d=1,2 d=3,

As for the idiosyncratic component, u; are i.i.d. draws from three alternative distributions:
(i) the standard normal distribution, N (0, 1), (ii) the Student’s t distribution with 3 degrees
of freedom, ¢(3), and (iii) the standard Cauchy distribution, Cauchy(0,1). In the first-
step, we set k, = n'/3 in the quantile sieve estimation, and make use of the Chebyshev

polynomials of the second kind as the basis functions. Moreover, in order to implement the



rank minimization estimator for the number of factors in Equation (8), the threshold p,, is
chosen as in Equation (9), with d = 1/4.

First, Table A.1 displays the results of the number of factors estimated with the rank
minimization criterion for 7 € {0.25,0.5,0.75}, T' € {5,10} and n € {50, 100,200, 1000}
from 1000 simulation replications. For each combination of 7, n and T, the reported
results represent: [frequency of R < R; frequency of R = R; frequency of R > R]. Next,
for comparison, Table A.2 reports the corresponding results when the number of factors is
estimated using the Ahn and Horenstein (2013)’s eigen-ratio estimator discussed in Remark
7.

There are three main takeaways from these simulation results. First, both selection
criteria accurately estimate the number of factors when 7" is small and n is large, supporting
our previous claim about their consistency even when 7' is fixed. Second, when n is large
(=1000), both estimators perform well, even when the errors follow the standard Cauchy
distribution. Hence, this result also provides support for the claim that our estimator
is consistent in the absence of moment restrictions on the error terms. Third, although
both estimators yield similar results when n = 1000, the rank minimization estimator

outperforms the eigen-ratio estimator when n is not sufficiently large.

A1.2 Estimating the factors
A1.2.1 Comparison of QPPCA with PCA, PPCA and QFA
Following Chen et al. (2021), we consider the following DGP:

Yir = Ainfo + Aiafio + (Niz foa) e,

where fis = |h¢|, fu, fio, bt ~ i.0.d N(0,1). As before, let g1(x) = sin(2rz), go(z) =

sin(mz) but now gz(x) = |cos(mx)|. The factor loading functions and the error terms are

3



also generated as in Subsection Al.1. Note that, in this DGP, there are two location shift
factors, f;1 and fo, that affect the mean of y;; and only one scale shift factor f;3 that affects
the variance of y;;.

First, we focus on the estimation of the two location factors: f;; and f;. Four competing
estimation methods are considered: (i) our the proposed method with 7 = 0.5 (QPPCA);
(ii) the quantile factor analysis estimator (QFA) of Chen et al. (2021) with 7 = 0.5; (iii)
the projection estimator proposed by Fan et al. (2016) (PPCA); and (iv) the standard
estimator of Bai and Ng (2002) for AFM (PCA). For the first two methods, the choices of
k, and the basis functions are again the same as in Subsection Al.1.

Regarding the choices of n and T, two different scenarios are considered:
(i) Fix T'= 10,50 and let n increase from 50 to 500.
(ii) Fix n = 100,200 and let 7" increase from 5 to 200.

For each estimation method, the number of factors (R = 2 at 7 = 0.5) is assumed to be
known, and we report the average Frobenius error as a measure of fit: |F'—FH|/+/T from
1000 replications, where H represents the associated rotation matrix for each estimator.

The results for the first scenario (fixed 7" and increasing n) are plotted in Figure A.1.
As can be inspected, for small T' (T' = 10), the PCA and QFA estimators perform worse
than the PPCA and QPPCA estimators when u;; is either drawn from the N (0, 1) or ¢(3)
distributions. Moreover, when the distribution is a standard Cauchy, the QPPCA estimator
performs much better than its competitors. These findings agree again with our previous
theoretical results showing that this estimator is consistent even when 7T is fixed or the
moments of u;; do not exist.

When T is relatively large (7' = 50) and the distribution of u; has a thin tail, like a

N(0,1) random variable, all the estimators behave similarly, as long as n > 100. However,
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if u; follows the ¢(3) distribution, the PCA estimator is subject to a much larger estima-
tion error than the alternative procedures. In the extreme case of the standard Cauchy
distribution, the two methods based on quantile regressions are the obvious winners, with
the performances of the QFA and QPPCA estimators being very similar insofar n > 200.

The results for the second scenario (fixed n and increasing T') are displayed in Figure A.2.
The main takeaway from this simulation exercise is that the QPPCA estimator provides
the most robust approach against heavy-tailed distributions when 7' is small, while only
the QFA estimator performs slightly better as T" increases.

Next, we proceed to estimate all the three factors jointly, paying particular attention to
the results for the scale factor f;3. Since this last factor is absent when 7 = 0.5, for brevity
we only provide simulations for 7 = 0.25,0.75, and sample sizes where T' € {10,50} and
n € {50,100,200}. In each of these setups, the three estimated factors by the four different
approaches are denoted as Féppc As ﬁéF As 13 PPCA, 13 poa. Subsequently, each of the true
factors is regressed on these estimated factors and the adjusted R?s are computed as a
measure of goodness of fit. The whole procedure is repeated 1000 times and the averages
of the adjusted R?s are reported in Tables A.3 to A.5.

Table A.3 displays the results for the QPPCA estimator. As can be observed, it performs
well in estimating all the three factors. It should be noted, however, that the estimates
of the scale factor fi;3 are not as good as the estimates of the two location factors, fi1, fi2,
when n is small, though the fit improves substantially as n increases. Table A.4, in turn,
presents the results for the QFA estimator, whereas Table A.5 presents the corresponding
results for the PCA and PPCA estimators. The main finding from Table A.4 is that the
QFA estimator performs poorly in estimating the scale factor fi3 when T is small (7" = 10),

while it performs similarly to the QPPCA estimator when T is relatively large (T' = 50).



Finally and not surprisingly, the main conclusion from Table A.5 is that both the PCA and
PPCA estimators fail to capture the scale factor f;3 in all instances since they are designed

for AFM but not for QFM.

A1.2.2 Comparison of QPPCA with SQFA

In the previous subsection the SQFA estimator proposed by Ma et al. (2021) was not
included in the set of comparisons since its performance is close to that of the QFA estimator
whenever the number of characteristics is larger or equal to the number of factors (D > R).
Yet, in this subsection, we study how they differ when the number of characteristics is
smaller than the number of factors (D < R).

To do so, we consider the following location-scale model as the DGP:

Vit = Ninfrn + Niafro + (Nis fis) wr,

where fi3 = |hl, fu, fio, by ~ i.i.d N(0,1). Now, the number of characteristics is 2 and,

as in the previous simulations, all characteristics x;4 (i = 1,...,n and d = 1,2) are inde-
pendently drawn from the uniform distribution: U[—1,1]. Let ¢;(z) = sin(2nz), go(x) =
sin(rx) and g3(x) = [cos(mx)|. Moreover, let iy = ;) 5 91(%ia), A2 = D4y 5 92(Tia) and Az =
> =12 93 (;q). Again, u; are generated from three different distributions discussed in Sub-
section Al.1.

For each estimator, we consider 7 € {0.25,0.5,075}, T' € {10,50}, n € {50, 100, 200, 500}.
Note that, when 7 = 0.5, there are only two location factors because f;3 does not affect
the median of y;;. By contrast, when 7 = 0.25,0.75 there will be two location factors and
one scale factor. Moreover, to simplify the analysis, R is assumed to be known. For each
7, R factors are estimated using QPPCA. Note that the SQFA method chooses the num-

ber of factors as the number of characteristics by default, implying that only two factors



will be estimated. Moreover, the choices of the basis functions and k,, are the same as in
Subsection Al.1.

As before, we proceed to regress each of the true factors on the estimated factors and
compute the adjusted R?s. The whole procedure is repeated 1000 times and the averages of
the adjusted R?s are reported in Tables A.6 and A.7 for the QPPCA and SQFA estimators,
respectively. When it comes to the estimation of the volatility factor, f;3, it is not surprising
to check that the QPPCA estimator outperforms the SQFA estimator since the latter is
restricted to estimating only D = 2 factors. Thus, the main finding here is that the QPPCA
estimator performs better than the SQFA estimator in estimating the location and scale

shift factors whenever the number of factors exceeds the number of characteristics.

A2 Proofs of the Main Results

Proof of Proposition 1:

Proof. For any 6 € ©, define K(0,0y) = E(L,(0)) = E[l(0, yit, z;)]. Under Assumption
1(iv), it can be shown that K(6,6) =< d(0,0y)?. For the finite-dimensional linear sieve
spaces ©,, it can be shown that Condition A.3 of Chen and Shen (1998) is satisfied with
0n = \/kn/n (see Section 3.3 of Chen (2007)). By the definition of d and the properties of
the check function, it is easy to see that,’

sup Var [l(eayitawi)] < sup E [l(97yita33i)]2
0€0,,,d(0,001)<e 0€0,,d(0,00)<e

< sup B (0(x;) — O(:))” < €2
0€®n,d(9,90t)§€

Thus, Condition A.2 of Chen and Shen (1998) is also satisfied. By Assumption 1(iii) we

have supgeg [1(0, i, ;)| S supgee supy |0(x) — Op(x)| < co. Assumption 1(ii) implies that

Note that |p, (u1) — pr(u2)| < 2|uy — ual.



d(m,00t, 00t) = \/]E (7 b0 (i) — QOt(mi))Q = O(k,*). Therefore, it follows from Corollary 1
of Chen and Shen (1998) that

T
P [m?X d(ént, 907&) Z CEnT:| S ZP [d(ént, 907&) Z OénT:| S C1 eXp {02 In T(l — CQ”&%)}
t=1

for any C' > 1. Therefore, the desired result follows from the above inequality since

ne > k. O

Lemma 1. If Assumption 1 and Assumption 2(i) hold, and €, is defined as in Assumption
1, then:
(i) maxi<i<r [|@r — aol| = Op(enr);

(ii) Let V=Y — G(X)F', then (nT)"2||V|| = Op(enr).

Proof. By Assumption 1 and Assumption 2(i),

(B, 600)* = /

X (ém(‘”) - 7Tn(90t(fﬂ))2 dF (@) +O0p(curk,”)

(fur(a) - Hgt(ac)>2 dF, (z) = /

X

= (a; — GOt)/2¢(dt —ao) + Op(enrk, ) > ¢1]|ay — aOtH2 + Op(enrk, )

where ¢; > 0, and the Op(g,rk, ) in the above equation is uniform in ¢. It then follows
from Proposition 1 that max;<;<7 ||a; — ag||* = Op(2).

Next, note that

n T
~ 1 N 2
D)V < — (One(i) = mbon(@i) ) + Op (1)
=1 t=1
1 e 2
= = ; ; ((ar — aor)’ @n, (®:))” + Op(k,*)
T A
< TN - ol v (30) + Op(k, )
t=1
< max fla - anll®  Awes (34) + Op (k)

1<t<T



where 3, = n~! > Or, (i) dp, (x;). Since Assumption 1(iii) implies that supy ||@x, (x;)|] =
Vkn, similar to the proof of Theorem 1 in Newey (1997), one can show that |3, — Xy =
op(1) under Assumption 2, and therefore we have Ayax(24) = Op(1). This completes the

proof. ]

Proof of Theorem 1:
Proof. Write Y = G(X)F’—i—V where V is as defined in Lemma 1. Let Qg be the diagonal

matrix whose elements are the eigenvalues of 3, - F'F'/T. Note that
Y'Y /(nT) = FG(X)G(X)F'/(nT) + V'G(X)F'/(nT)
+ FG(X)V/(nT)+ V'V /(nT). (A2.1)
It then follows from Assumption 2(iv), Assumption 1(i) and Lemma 1 that:

Y'Y /(nT) — FS,F'/T||
< op(1) +2|V|/VaT - |GX)|/v/n- | FIl/VT + | V|?/(nT)

= OP(].) + OP(gnT)-

By the Wielandt-Hoffman inequality, we have || — || = op(1). It then follows from

A

Assumption 2(iii) and 2(iv) that A\yin(€2) > 0 with probability approaching 1.

By the definition of F, Y'Y /(nT)F = FQ, it then follows from (A2.1) that
F=FH+V'GX)FF/n)Q ' +FGX)VF/(nT)Q '+ V'V /(nT)FQ . (A2.2)

Thus, it follows from (A2.2) and Lemma 1 that

HF—FIA{H/\/T <20p(1)- l|/‘7j_7|[ H\fj_‘J . “;;_U : HG\&;” +OP(1)-%- ”:]U = Op(enr).

Then the first part of Theorem 1 follows.



Next, similar to the proof of Proposition 1 in Bai (2003) it can be shown that H— H>
0. Thus, H is invertible with probability approaching 1. Note that G(X ) = YF /T =

G(X)F'F/T+VF/T. Write F = FH '+ F — FH', then
G(X)=G(X)H) "'+ G(X)(F-FH Y“WF/T +VE/T,

and thus

: IGX)| |F—FHY |F]| VI |IF]
I6X) - GO v < 2 IS L

= Op(gnT).

Then the second part of Theorem 1 follows.
Finally, note that B = AF /T = Bo(F'F/T) + (A — Ay)F/T. Tt follows from Propo-

sition 1 that
JA- Al IF] _
VT VT

|B — By(F'F/T)|| < Op(enr). (A2.3)

Thus, for any « € X,

d(z) = ¢, (@) B = ¢y, (x) Bo(F'F/T) + ., () (B - BO(F’F/T)>

— g(@)/ (H ")+ (¢1,(2) By — 9(2) ) (F'F/T) + ¢y, (@) (B — By(F'F/T)) + Op(zur).
Thus, it follows from (A2.3) and Assumption 1 that

sup [9(a) — H'g(@) | < Op (") +sup |1, @) - Op(enr) = Op(Vhueur).

This completes the proof. O

Lemma 2. Let &; = Ooy(x;) —mnb0:(x:) = g(@;) fi—af,dr, () and vy = F (=) —L{uy <

—&u}. If Assumptions 1 to 3 hold, then

s

2

= Op (k;a) + Op (nnT) .

. N
a; —ag —f71(0) - Eqsl n szt(f)kn(wz)
i=1
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Proof. Step 1: For any a € RP* define:

n

mi(a) = 31— V< (@ a0 i, (@) — ] e, (1),

n

mi(a) = - [~ F((a— a0) b, (@) — &) . ().

i=1
Since F (=&;) = 7 —f(=&},) - & where &, is between 0 and &, it follows that

* 1 . *
m;(ao) = - D F(=&) & br (). (A2.4)
i=1
Taylor Expansion of m;(a;) around ag; gives
m; () = my(ao) — M; (@) - (a: — aor) (A2.5)

where a; is between ag; and a, and

_Omj(a

M; (@) = 2L

|a a; — Zf - G'Ot ¢k (mz) gzt) : ¢kn($z)¢kn(wz)/ (A26)

By Assumption 3(ii) one can write
M;(a;) = (0) -2y +n'®(X) D;®(X), (A2.7)

where 35 = n'®(X)'®(X) and D; is a n x n diagonal matrix whose diagonal elements

are bounded by in absolute values by L |(a; — ao;) ¢, (x;) — & Note that by Lemma 1,

121&); | D;|ls S max [(@; — aot)' w, (z:) — il

< max ||a,t —a0t|| Op(\/E )+OP Op \/ 5nT A2 8

1<t<T

Moreover, one can write
m;(a;) = my(a;) — my(ag) + [y (ao) — my(ay)] (A2.9)

where m;(a) = m;(a) — m;(a). It then follows from (A2.5) (A2.7) and (A2.9) that

A

a; —ag — F71(0) - 35" - mu(an) = F7(0) - 3!

{m(ao) — mi(a;) — [mi(ao) — mu(a,)] —n ' ®(X) D;®(X)(a: — ao)} ,

11



where

n

1

Tht(a()t) = ﬁ Z [F (—fz‘t) - 1{uit < —én ¢kn CUz sztd)kn 5132

=1

Since f(0) is bounded below, and )\min(ﬁ](b) is bounded below with probability approaching

1, it suffices to show that

ma |[m; (aor) | = Op ("),
ass [[malao)]| = Op(k/2/n)

1 - o
T Z M (aor) — mt(at)||2 =Op (UELT) J
t=1

max [|n"'®(X)' D; ®(X)(a; — aw)|| = Op(Vkne2r).

1<t<T

Step 2: By (A2.4) and Assumption 1,

mas [[m (o) |

—  max Zf ) - Eit - P, (1)

1<t<T

< max Zf ) - it - @, ()

1<t<T

Define z;; = f (0) - & and z; = (214, .- ., 2n¢)’, then

N

LS00 6w — N B(X) 5

i=1

and

max
1<t<T

n Zf glt ¢kn wz)

= max ||[N~ 1<I> X)z| < ||[NVPe(X

1<t<T

HS 1<t<T

In sum, we have

max [|m;(ao)ll = Op(k,/*™**) + Op(k,*) = Op(k,

1<t<T n

12

+ Op (kY220

),

(A2.10)

(A2.11)

(A2.12)

(A2.13)

- max HN 1/2th = Op(k,").



which gives (A2.10).
Step 3: Similar to the proof of Lemma A4 of Horowitz and Lee (2005) it can be shown
that

mas [[mu(a)]| = Op(kS/2/n),

which gives (A2.11).
Step 4: By (A2.8) and Lemma 1

max ||n"'®(X ) D;®(X)(a — an)||

1<t<T

< [®(X)/Vnlls - max [IDf[ls - max | — aoll = O (VEnenr),

1<t<T

which gives (A2.13).
Step 5: Define:

n

() =+ 3" [ < (@ an) i, () — &) — e < 6] b (1),

=1

n

Oar(r) = % > [F(la—ao)'dn, (@) — &) = F (=&)] br, (22),

i=1

du(@) = du(a) — E[b ()], Ogt(@) = Gyy(@) — E[bay(x)].

Note that E[01;(ax)] = E[dor(ax)] because dqi(ax) = E[d1(ax)|x;]. Then my(a;) — mi(an) =

521%(5%) - Slt<dt)u and

T , 1 T > 1T N
my(a;) — my(ag > 5 1t(ay = 2t( @y .
| (@l < 7 3 [t + 5 3 |Futan (A214)
In what follows, we will show that
1< |-
fZH(su(at (m(k: A1y k;f;/%nTn—l), (A2.15)
t=1
1 o |
TZ o Op (In(k,?er 1) - kie2m ™), (A2.16)
t=1

13



which imply (A2.12) and therefore complete the proof. We will focus on the proof of
(A2.15) since the proof of (A2.16) is similar.

Let ¢jq(x;) be the jdth element of ¢y, (x;) for j=1,...,k,;d=1,..., D, and define
Ap(a,x;) = Huy < (@ — a) b, (x5) — i} — T{ug < =&t}

Then for some C' > 0, with probability approach 1,

RS

1 d=1 ||a aOtH<CEnT

2
2

Vi Z{An @, ®;)¢ja(®:) — ElAi(a, ;) pja(x:)] }

We will show that
2

E sup

la—aot|[<Cepnr

% Z {Au(e, i) gja(xi) — E[Ai(cr, i) dja(®:)]

:O(ln(k; 1/4¢-1/2) . k;“;/?snT> (A2.17)

uniformly in ¢ and j, from which (A2.15) follows.

Define H.,, = {h(a, ;) = Ao, x;)pja(x;) —E[A (o, i) pja(xi)] : [la—ao| < Cepr},

and for any h € H. , define G,h =n"123""  h(a,x;). Write

1
”aﬂlsoltllicgn 7 ; {Ai(e, i) gja(xi) — E[Air(a, i) dja(Ti)]}

then the left-hand side of (A2.17) can be written as E ||Gnh||§_[5 L Let N(He, ., L2(Q), €)

= H(G'nh”?{snTv

be the covering number of H. .., where Ly(Q) is the Ly norm for functions and @) is any
probability measure on X'. Similar to the proof of (A.12) in Kato et al. (2012), it can be
shown that N(H., ., L2(Q),2¢) < (A/e)**™ for some bounded constant ¢; and A > 3./e
that do not depend on ¢ and j. Moreover, it is easy to show that supjey, E[h?(a,x;)] <
c2\/k,e, for some bounded constant c,. Then, applying Proposition B.1 of Kato et al.

(2012), we have

E(Guhll, < e |- In(euk; Vet -k IV 4\ in(erks e ). ’fi/%iﬂ

< esy/In(ky, Ve 1) B2 (A2.18)

14



where c3, ¢y, 5 are bounded constants that do not depend on ¢t and j. Finally, (A2.17)

follows by noting that (see Chapter 6 of Ledoux and Talagrand 1991)
2
E(Guhlly, < (ElGuhlly,, ) +0m™).

This completes the proof. O

Proof of Theorem 2:

Proof. Let ¥ be the n x T matrix of 1;;, then the result of Lemma 2 can be written as
HA ~ Ay — f(0) 2;1¢'(X)\11/nH JNT = Op (k;®) + Op (1) - (A2.19)
From (A2.2) and Lemma 1 we have
|F = FH|/NT < 0p(1) - |[FG(X)'V/(nT)||s + Op(enr). (A2.20)

Define R(X) = ®(X)B, — G(X), then by Assumption 1(ii) [|[R(X)||/v/n = Op(k,*).
Moreover, we can write

A

V = Y-GX)F
= ®(X)A-GX)F
= P(X)A-B(X)A+ P(X)A)— G(X)F'

= ®(X)(A- Ay +R(X)F'
Thus,

FG(X)'V/(nT)

= F(®(X)B) — R(X))[®(X)(A — Ay) + R(X)F']/(nT)

= FB)®(X)®(X)(A - Ag)/(nT) — FR(X)®(X)(A - Ay)/(nT)
+FG(X)R(X)F'/(nT).

15



It then follows from Theorem 1 and Lemma 1 that
IFG(X)V/(nT)|s < | FBy@(X)'®(X)(A — Ao)/(nT)||s + Op(k,").
The above inequality and (A2.20) imply that
|F — FH||/VT < |FB{®(X)®(X)(A — Ay)/(nT)||s + Op(k,*) + Op(c2y). (A2.:21)
By (A2.19) and Assumption 1(ii), we have

IFB®(X)'®(X)(A ~ Ag)/(nT)]s
< f(0)7H B (X) R (X) S @ (X)W (n*T")||s + Op (k™ + 1ar)
= £(0)7"|By® (X)®/(nT"?)s + Op (k" + 1hur)
< f(O) G (X)¥/(nT?)| + |G(X) — 2(X)Bol|/v/n - |¥|/vnT + Op (k* + ur)

= F0) |G (X)W /(0T + Op (ky® +mur)

Note that

2

— 0P<n_1/2)

n

|G (X)® /() = J 73 | o= gt

vn

because it is easy to see that E Hn‘1/2 Yoy g(azi)witHZ < oo for all ¢. It then follows from

(A2.21) that
|F — FH||/VT = Op(n ") + Op(k;*) + Op (1) + Op(ely).

This completes the proof. O

Lemma 3. Under Assumptions 1, 2 and 4, we have
|4~ A - =@ (X)W (X) /|| VT = Op (k%) + Op ().

where Vi (x;) = F (=&ilx;) — H{uy < =&} and W(X) is the n x T matriz of ¥ (x;).
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Proof. The proof is similar to the proof of Lemma 2. Therefore, it is omitted to save

space. ]

Proof of Theorem 3:
Proof. By the proof of Theorem 1, for any € X,
g(x) = (F'F/T)g(x) + (F'F/T) (B, (2) — g(x)) + (B — Bo(F'F/T)) ., ().
Moreover,
B - By(F'F/T)=(A—-A)FH/T + (A— Ay)(F - FH)/T.
Thus, by Lemma 1 and Theorem 1,
g(x) — (F'F/T)g(x) = H'F'(A— Ay) by, (x)/T + Op(k,) + Op(hp/kn).
It then follows from Lemma 3 that
g(z) = (F'F/T)g(x) = HF'V'(X)®(X)S bp,,(@)/(nT) + Op (k> ) + Op(\/ knihur)-
Define dr(x;) = T1 ZtT:l fii(xy), q(x;) = ¢)kn(a:,~)’§]f_¢1qﬁkn (), then we can write
F'¥'(X)®(X)3, o, (x ZdT (xi)q(:).

Note that E[dr(x;)q(x;)] = 0 because E[dr(x;)|x;] = 0, and it is easy to show that

Eld (@) d; ()¢ (2,)] = 7(1 — 7) (F'F/T*)}, ()57, 5,55, b, () + o(1)

=7(1—7)(F'F/T?0; +o(1).

Thus, we have

=P T (g(e) - (FIR/T) g(@)) = =) f Z VTdr(@:)q(x:) /o,

p(kY* ™ + \kanr)VnTo . (A2.22)

17



Finally, it follows from the Lyapunov’s CLT and Assumption 4(iv) that

. vnT

Ok

S (H) (9() — (F'F/TYg(x)) % N0, In).

n

This completes the proof. O

Proof of Theorem 4:
Proof. Define R(X) = ®(X)By — G(X), we can write

Y =®(X)A)+ B(X)(A—-A) = GX)F + R(X)F + ®(X)(A - Ay).

+(G(X)G(X)/n) " (G(X)®(X)/n)(a: — av).

It is easy to see from Theorem 1 and Assumption 1(ii) that the first term on the right-hand
side of the above equation is Op(k, ). Moreover, by Lemma 3, the second term can be

written as

(G(X)G(X)/n)™" - (G(X)®(X)/n) - Z(bk ;)i (i) + Op(k,*) + Op(1nr)-
By Theorem 1 we can show that
I(G(X)YG(X)/n)™" = H'E'H| = Op(enr),

I(G(X)'®(X)/n) — H'Elg(@:)$s, () ]lls = Op(cnr),
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= Op(\/kn/n),

it then follows from Assumption 4(iii) that
(H')"'Vn(fi — H'f,) = £,"'Elg(x:) ., (2,) ]2, (% i ¢kn(33i)¢it(wi)>
+ Op(enrkt’?) 4+ Op(n*?k;%) + Op(n'*nur).
By the Lyapunov’s CLT we can show that

% Z ., () (2:) > N(0,7(1 = 7)5),

then the desired result follows from Assumption 5. ]

Proof of Theorem 5:
Proof. First, note that
1®(X)AA'®(X) — G(X)F'FG(X)|/(nT)
< 2G(X)F'||/VnT - | @(X)A - G(X)F'|/VnT + | ®(X)A — G(X)F'|*/(nT)
= Op(1) - [[V|/VnT + |V|I*/(nT).
It then follows from Lemma 1(ii) that
1®(X)AA'®(X) — G(X)F'FG(X)|/(nT) = Op(cr). (A2.23)

Second, Assumption 2(iii) and (iv) imply that the largest R eigenvalues of G(X)F'FG(X)'/(nT),
which are also the R eigenvalues of (F'F/T) - G(X)'G(X)/n, converge in probabil-
ity to the R eigenvalues of (F'F'/T) - X,. Also, note that the remaining eigenvalues of
G(X)F'FG(X)' /(nT) are all 0, it then follows from (A2.23) and the Wielandt-Hoffman
inequality that p; = Op(e,r) for j = R+1,. .. . R, and p; converges in probability in some
positive constant for j = 1,..., R. The desired result then follows because P[p; > p,] — 1

forj=1,...,Rand P[p; >p,)| = 0for j=R+1,....R. O
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Table A.1: Estimating the number of factors: rank minimization estimator

T n N(0,1) t(3) Cauchy(0,1)
7T=025 5 20 [0.13 0.65 0.23] [0.03 0.41 0.56] [0.01 0.10 0.89]
5 100 [0.10 0.72 0.19] [0.02 0.44 0.54] [0.00 0.03 0.97]
5 200 [0.23 0.77 0.00] [0.12 0.82 0.06] [0.00 0.17 0.83]
5 1000 [0.17 0.83 0.00] [0.16 084 0.00]  [0.06 081 0.13]
10 50 [0.17 0.76 0.07] [0.03 0.50 0.47] [0.02 0.06 0.92]
10 100  [0.08 0.89 0.03] [0.03 0.65 046  [0.00 0.03 0.97]
10 200 [0.07 0.93 0.00] [0.05 0.95 0.00] [0.00 0.24 0.76]
10 1000 [0.03 0.97 0.00] [0.02 0.98 0.00] [0.01 0.98 0.01]
7=05 5 50 [0.19 0.71 0.10] [0.09 0.56 0.35] [0.00 0.15 0.85]
5 100  [0.17 076 0.08]  [0.07 059 0.34  [0.00 0.20 0.80]
200  [023 077 000] [0.19 0.80 0.01  [0.06 0.75 0.19]
1000 [0.18 0.82 0.00] [0.15 0.85 000 [0.13 0.87 0.00]
10 50  [020 078 003 [0.08 0.76 0.5  [0.00 0.3 0.87]
10 100 [0.12 0.87 0.01] [0.05 0.87 0.08] [0.00 0.24 0.76]
10 200  [0.05 095 0.00 [0.05 095 0.00 [0.03 094 0.03]
10 1000 [0.01 0.99 0.00] [0.02 0.98 0.00] [0.02 0.99 0.00]
7=075 5 50  [0.11 068 021] [0.04 041 056] [0.01 009 0.90]
100 [0.10 0.71 0.19]  [0.02 042 056  [0.00 0.04 0.96]
200 [0.22 0.78 0.00] [0.14 0.81 0.05] [0.00 0.15 0.85]
1000 [0.18 0.82 0.00] [0.17 0.83 0.00] [0.04 0.82 0.15]
10 50 [0.15 0.78 0.08] [0.04 0.50 0.46] [0.01 0.05 0.94]
10 100 [0.11 0.86 0.04  [0.03 0.65 0.32] [0.00 0.03 0.97]
10 200 [0.06 0.94 0.00] [0.05 0.94 0.01] [0.01 0.27 0.73]
10 1000 [0.02 0.98 0.00] [0.02 0.98 0.00] [0.02 0.97 0.01]

Note: the DGP is y;; = Zi:l Nir for + (%21 + 22, + :rfg) uit, where fy =1, fia, fis ~ i.i.d N(0,1).
The number of characteristics is 5 and all characteristics x;4 are drawn independently from the
uniform distribution: U[-1,1]. gi(z) = sin(2nx), g2(x) = sin(wz) and g3(r) = cos(wx), and
Al = Zd:1’3,5 91(xq), N2 = Zd:m 92(xiq), Nis = Zd:374 93(2iq). wi are ii.d variables drawn

1/3 and we

from three different distributions. In the first step quantile sieve estimation, k, = n
use the Chebyshev polynomials of the second kind as the basis functions. For the estimator of the
number of factors, the threshold py, is chosen as in Equation (9) with d = 1/4. The reported results

are [frequency of R < R; frequency of R=R; frequency of R> R] from 1000 replications.
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Table A.2: Estimating the number of factors: eigen-ratio estimator

T n N(0,1) t(3) Cauchy(0,1)
7T=025 5 20 [0.57 0.25 0.19] [0.54 0.22 0.25] [0.54 0.17 0.29]
5 100 [0.58 0.33 0.09] [0.58 0.27 0.15] [0.59 0.15 0.26]
5 200  [044 054 0.01]  [0.54 043 004  [0.62 024 0.14]
5 1000 [0.23 077 0.00]  [0.31 0.69 0.00]  [0.56 042 0.02]
10 50 [0.46 0.37 0.17] [0.45 0.18 0.37] [0.47 0.07 0.46]
10 100 [0.37 0.59 0.04] [0.46 0.42 0.11] [0.60 0.09 0.31]
10 200 [0.09 0.91 0.00] [0.19 0.80 0.01] [0.59 0.31 0.11]
10 1000 [0.01 0.99 0.00] [0.03 0.97 0.00] [0.17 0.83 0.00]
7=05 5 50 [0.58 0.28 0.14] [0.57 0.22 0.20] [0.50 0.20 0.30]
5 100 (058 033 009 [0.57 028 0.15  [0.56 021 0.22]
5 200 [0.42 0.57 0.01] [0.46 0.51 0.03] [0.54 0.41 0.06]
1000 [0.21 0.79 0.00] [0.23  0.77 0.00] [0.28 0.72 0.00]
10 50  [041 046 0.13] (046 0.33 021]  [0.42 0.0 0.48]
10 100 [0.30 0.66 0.04] [0.36 0.57 0.07] [0.51 0.24 0.26]
10 200 [0.06 0.94 0.00] [0.11 0.89 0.00] [0.22 0.76 0.02]
10 1000 [0.01 0.99 0.00] [0.02 0.98 0.00] [0.03 0.97 0.00]
7=075 5 50  [0.58 025 0.17] [054 022 024 [0.55 0.17 0.28]
100 [0.57 0.32 0.10] [0.59 0.24 0.17] [0.56 0.20 0.24]
200 [043 055 002 [0.52 043 0.04]  [0.65 021 0.14]
1000 [024 0.76 0.00] [0.33 0.67 0.00] [0.55 0.44 0.01]
10 50  [046 036 0.18]  [0.44 020 0.37]  [047 0.05 0.48]
10 100 [0.36  0.59 0.06] [0.46  0.40 0.14] [0.63 0.09 0.28]
10 200 [0.11 0.89 0.00] [0.19 0.80 0.01] [0.58 0.31 0.11]
10 1000 [0.01 0.99 0.00] [0.03 0.97 0.00] [0.16 0.83 0.01]

Note: the DGP is y;; = Zi:l Nir for + (%21 + 22, + :rfg) uit, where fy =1, fia, fis ~ i.i.d N(0,1).

The number of characteristics is 5 and all characteristics x;4 are drawn independently from the

uniform distribution: U[-1,1]. gi(z) = sin(2nx), g2(x) = sin(wz) and g3(r) = cos(wx), and

Al = Zd:1’3,5 91(xq), N2 = Zd:m 92(xiq), Nis = Zd:374 93(2iq). wi are ii.d variables drawn

from three different distributions.

In the first step quantile sieve estimation, k, =

nl/3

and

we use the Chebyshev polynomials of the second kind as the basis functions. The estimator for

the number of factors is the integer that maximizes the eigen-ratios. The reported results are

[frequency of R < R; frequency of R=R; frequency of R> R] from 1000 replications.
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Table A.3: Factor estimation using QPPCA

N(0,1) t(3) Cauchy(0,1)
T n fie for VED fue for fat fie for VED
7=025 10 50 0.859 0.879 0.574 0.738 0.745 0.630 0.386  0.370 0.609
10 100 0.971 0.956 0.857 0.938 0.890 0.835 0.670 0.566 0.767
10 200 0.989 0.983 0.924 0.978 0.959 00911 0.862 0.767 0.867
10 500 0.997 0.995 0.979 0.994 0.990 0.972 0.968 0.940 0.950
50 50 0.893 0.909 0.417 0.751 0.796 0.499 0.086 0.069 0.375
50 100 0.976 0.968 0.824 0.957 0.940 0.797 0.623 0.407 0.654
50 200 0.990 0.986 0.901 0.982 0.977 0.892 0.919 0.838 0.821
50 500 0.997 0.995 0.973 0.995 0.992 0.967 0.984 0.975 0.941
T=075 10 50 0.861 0.876 0.581 0.749 0.749 0.623 0.383 0.362 0.605
10 100 0.971 0.955 0.858 0.933 0.894 0.834 0.682 0.573 0.768
10 200 0.989 0.983 0.921 0.979 0.960 0.905 0.867 0.777 0.867
10 500 0.997 0.995 0.979 0.994 0.990 0.974 0.973 0.937 0.950
50 50 0.893 0.911 0.420 0.749 0.794 0.493 0.081 0.066 0.380
50 100 0.977 0.967 0.824 0.958 0.938 0.794 0.617 0.400 0.656
50 200 0.990 0.986 0.901 0.982 0.976 0.894 0.915 0.832 0.818
50 500 0.997 0.995 0.972 0.995 0.992 0.967 0.984 0974 0.938

Note: the DGP is Y;t == Ailftl + )\ithQ + ()\igftg)uit, where ft3 = ‘ht|)ft17ft2a ht ~ i.1.d N(O, ].) The

number of characteristics is 5 and all characteristics ;4 are independently drawn from the uniform

distribution: U[—1,1]. gi(x) = sin(27x), g2(x) = sin(mz) and g3(z) = |cos(mx)|.

The factor loading

functions are generated as \j; = Zd:17375 91(ziq), Ao = Zd:m 92(xiq) and N3 = Zd:374 93(wiq). {wi}
are i.i.d draws from three different distributions. 3 factors are estimated at each 7 using the proposed

method in this paper, and the reported results are the averages of the adjusted R? of regressing the true

factors on the estimated factors from 1000 replications.
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Table A.4: Factor estimation using QFA

N(0,1) t(3) Cauchy(0,1)
T n Jit Jot e Jit Jot Jat Jit Jot fat
7=025 10 50 0.887 0.821 0.561 0.808 0.706 0.528 0.516 0.418 0.449
10 100 0.898 0.833 0.586 0.822 0.727 0.574 0.525 0.427 0.501
10 200 0.904 0.841 0.624 0.834 0.735 0.584 0.525 0.443 0.504
10 500 0.908 0.840 0.643 0.841 0.740 0.608 0.513 0.420 0.512
50 50 0.964 0.948 0.786 0.935 0.902 0.725 0.724 0.537 0.473
50 100 0.983 0.976 0.884 0.972 0.956 0.848 0.871 0.767 0.669
50 200 0.992 0.988 0.936 0.986 0.977 00911 0.935 0.853 0.802
50 500 0.996 0.994 0.965 0.994 0.989 0.951 0.963 0.906 0.880
T=075 10 50 0.875 0.835 0.551 0.808 0.719 0.523 0.510 0.414 0.447
10 100 0.898 0.938 0.595 0.820 0.730 0.583 0.523 0.420 0.506
10 200 0.904 0.846 0.616 0.828 0.736 0.600 0.520 0.429 0.497
10 500 0.899 0.838 0.625 0.843 0.742 0.616 0.528 0.433 0.489
50 50 0.964 0.947 0.785 0.935 0.901 0.722 0.722 0.551 0.486
50 100 0.983 0.975 0.884 0.972 0.956 0.846 0.874 0.760 0.672
50 200 0.992 0.988 0.935 0.986 0.978 0911 0.931 0.852 0.799
50 500 0.996 0.994 0.964 0.994 0.989 0.949 0.964 0.903 0.878

Note: the DGP is Y;t == Ailftl + )\ithQ + ()\igftg)uit, where ft3 = ‘ht|)ft17ft2a ht ~ i.1.d N(O, ].) The

number of characteristics is 5 and all characteristics ;4 are independently drawn from the uniform

distribution: U[—1,1]. gi(x) = sin(27x), g2(x) = sin(mz) and g3(z) = |cos(mx)|.

The factor loading

functions are generated as A\it = 3 ;1 3591(Tia), Aiz = D_4_1292(wia) and Nig = 32,3, 93(wid)-
{uit} are i.i.d draws from three different distributions. 3 factors are estimated at each 7 using the QFA

proposed by Chen et al. (2021), and the reported results are the averages of the adjusted R? of regressing

the true factors on the estimated factors from 1000 replications.
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Table A.5: Factor estimation using PCA and PPCA

N(0,1) t(3) Cauchy(0,1)
T n Jit Jot 3t Jit Jot Jat Jit Jot Jat
PCA 10 50 0.955 0.921 0.420 0.847 0.723 0.455 0.271  0.250 0.392
10 100 0.964 0.929 0.450 0.858 0.757 0.514 0.286 0.289 0.410
10 200 0.970 0.944 0.478 0.871 0.751 0.530 0.289 0.285 0.422
10 500 0.975 0.944 0.493 0.879 0.767 0.568 0.292 0.303 0.433
50 50 0.973 0.957 0.084 0.894 0.781 0.079 0.003 -0.001 0.032
50 100 0.986 0.977 0.131 0.937 0.862 0.116 0.032 0.031 0.066
50 200 0.993 0.988 0.149 0.961 0.901 0.141 0.044 0.048 0.075
50 500 0.997 0.994 0.166 0.977 0.933 0.161 0.055 0.054 0.091
PPCA 10 50 0.949 0.962 0.382 0.843 0.866 0.379 0.277 0.282 0.387
10 100 0.989 0984 0.374 0.960 0.930 0.379 0.321 0.314 0.406
10 200 0.995 0.993 0.382 0.983 0.969 0.383 0.318 0.309 0.409
10 500 0.998 0.997 0.400 0.994 0.989 0.402 0.321 0.317 0.417
50 50 0.953 0.963 0.060 0.858 0.882 0.054 0.003 0.001 0.029
50 100 0.987 0.982 0.095 0.962 0.947 0.085 0.036 0.031 0.062
50 200 0.994 0.992 0.110 0.982 0.974 0.100 0.048 0.049 0.072
50 500 0.998 0.997 0.130 0.994 0.990 0.114 0.058 0.056 0.090

Note: the DGP is Y;'t = )\ilftl + )\i2ft2 + ()\igftg)uit, Where ftg = |ht|, ftla ftg, ht ~ lld N(O, 1) The

number of characteristics is 5 and all characteristics x;4 are independently drawn from the uniform

distribution: U[—1,1]. g1(z) = sin(27x), go(x) = sin(mz) and gs(x) = |cos(mx)|. The factor loading
functions are generated as \;; = Zd:17375 91(iq), N2 = Zd:m g2(wiq) and Az = Zd:374 93(iq).
{uit} are i.i.d draws from three different distributions. 3 factors are estimated using PCA and PPCA

respectively, and the reported results are the averages of the adjusted R? of regressing the true factors

on the estimated factors from 1000 replications.
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Table A.6: Factor estimation using QPPCA: R=3,D =2

N(0,1) t(3) Cauchy(0,1)
T n Jit Jot 3t Jit Jot e Jit Jot Jat
7=025 10 50 0.731 0.880 0.606 0.588 0.806 0.617 0.348 0.481 0.602
10 100 0.932 0.948 0.830 0.877 0.902 0.799 0.655 0.668 0.731
10 200 0.969 0.978 0.916 0.947 0.960 0.901 0.778 0.837 0.847
10 500 0.990 0.993 0.974 0.983 0.989 0.968 0.929 0.941 0.942
50 50 0.665 0.875 0.485 0.488 0.782 0.473 0.100 0.202 0.390
50 100 0.934 0.957 0.811 0.892 0.921 0.766 0.473 0.531 0.602
50 200 0.969 0.982 0.906 0.949 0.970 0.889 0.785 0.839 0.796
50 500 0.990 0.993 0.968 0.984 0.989 0.961 0.952 0.963 0.931
7=05 10 50 0.643 0.889 0.152 0.524 0.837 0.165 0.364 0.664 0.201
10 100 0.927 0.949 0.127 0.907 0.935 0.136 0.807 0.845 0.171
10 200 0.968 0.981 0.128 0.955 0.974 0.136 0.917 0.940 0.158
10 500 0.990 0.994 0.135 0.987 0.991 0.126 0.979 0.986 0.142
50 50 0.697 0.913 -0.013 0.581 0.870 -0.011 0.279 0.682 0.005
50 100 0.945 0.968 0.004 0.929 0.956 0.003 0.857 0.899 0.004
50 200 0.973 0.984 0.011 0.967 0.980 0.012 0.945 0.968 0.014
50 500 0.991 0.994 0.018 0.989 0.993 0.017 0.984 0.989 0.018
7=0.75 10 50 0.718 0.878 0.603 0.609 0.804 0.629 0.356  0.473 0.596
10 100 0.932 0.948 0.834 0.874 0.900 0.791 0.636 0.664 0.737
10 200 0.970 0.980 0.922 0.943 0.962 0.907 0.796 0.833 0.848
10 500 0.991 0.993 0.975 0.984 0.987 0.968 0.933 0.941 0.943
50 50 0.663 0.872 0.498 0.485 0.779 0.476 0.102 0.203 0.392
50 100 0.935 0.956 0.813 0.889 0.920 0.762 0.450 0.510 0.608
50 200 0.969 0.981 0.906 0.951 0.970 0.890 0.792 0.845 0.800
50 500 0.990 0.993 0.969 0.984 0.989 0.962 0.951 0.964 0.931

Note: the DGP is Yi; = A\i1 fur+Nia frio+(Nis fi3)uie, where fi3 = |hye|, fi1, fr2, he ~ i.i.d N(0,1). The number
of characteristics is 2 and all characteristics x;4 are independently drawn from the uniform distribution:
Ul-1,1]. gi(z) = sin(2rz), g2(z) = sin(rz) and g3(z) = |cos(mz)|. A = D 41001(@id), Xz =
> d=1292(Tia) and Niz = 341 5 93(zia). {ui} are ii.d draws from three different distributions. 3 factors
are estimated at each 7 using the method proposed in this paper, and the reported results are the averages

of the adjusted R? of regressing the true factors on the estimated factors from 1000 replications.
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Table A.7: Factor estimation using SQFA: R=3,D =2

N(0,1) t(3) Cauchy(0,1)
T n fie for VED fue for VED fie for 3t
7=025 10 50 0.406 0.826 0.205 0.364 0.793 0.218 0.295 0.649 0.277
10 100 0.595 0.698 0.195 0.578 0.690 0.208 0.556 0.656 0.231
10 200 0.623 0.706 0.223 0.604 0.680 0.238 0.573 0.676 0.277
10 500 0.630 0.682 0.233 0.614 0.687 0.239 0.596 0.686 0.301
50 50 0.311 0.845 0.040 0.267 0.804 0.058 0.191 0.662 0.101
50 100 0.516 0.680 0.036 0.503 0.660 0.043 0.471 0.627 0.063
50 200 0.523 0.691 0.058 0.518 0.676 0.067 0.487 0.649 0.095
50 500 0.578 0.656 0.061 0.553 0.651 0.068 0.543 0.626 0.102
7=05 10 50 0.383 0.849 0.133 0.351 0.819 0.132 0.314 0.749 0.142
10 100 0.584 0.695 0.150 0.573 0.688 0.143 0.531 0.674 0.154
10 200 0.584 0.713 0.156 0.559 0.716 0.157 0.539 0.678 0.158
10 500 0.615 0.689 0.157 0.600 0.663 0.157 0.598 0.649 0.152
50 50 0.277 0.865 -0.014 0.236 0.843 -0.013 0.185 0.773 -0.014
50 100 0.509 0.679 0.007 0.471 0.669 0.007 0.439 0.625 0.005
50 200 0.514 0.688 0.015 0.493 0.680 0.016 0.452 0.669 0.016
50 500 0.557 0.639 0.022 0.544 0.636 0.023 0.503 0.623 0.022
7=0.75 10 50 0.402 0.816 0.200 0.374 0.804 0.213 0.316 0.630 0.268
10 100 0.606 0.688 0.191 0.564 0.900 0.195 0.556 0.666 0.226
10 200 0.590 0.691 0.221 0.584 0.962 0.215 0.582 0.672 0.281
10 500 0.638 0.691 0.231 0.622 0.987 0.259 0.620 0.675 0.285
50 50 0.318 0.837 0.039 0.268 0.779 0.049 0.191 0.658 0.099
50 100 0.525 0.671 0.039 0.499 0.920 0.044 0.465 0.624 0.067
50 200 0.528 0.688 0.057 0.510 0.970 0.064 0.481 0.654 0.101
50 500 0.574 0.652 0.063 0.564 0.989 0.067 0.543 0.627 0.096

Note: the DGP is Yiy = Ai1 fer +Aia fro+ (Nis fes)wir, where fiz = |he|, fa1, feo, he ~ 1.i.d N(0,1). The number
of characteristics is 2 and all characteristics x;4 are independently drawn from the uniform distribution:
Ul-1,1]. gi(z) = sin(2nz), go(x) = sin(rz) and gs(x) = |cos(mx)]. Xit = 341 291(Tia), N2 =
Y d=1292(Tia) and N3 = >4 5 93(%ia). {uit} are iid draws from three different distributions. 2 factors
are estimated at each 7 using the method proposed by Ma et al. (2021), and the reported results are the

averages of the adjusted R? of regressing the true factors on the estimated factors from 1000 replications.
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Figure A.1: Estimation of factors: fixed T and increasing n.
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Note: the DGP is Yy = A1 fir + Aiofie + ()\Z'gftg)uit, where fi3 = |ht|, fii, fro, hy ~ 1.0.d N(O, 1).
The number of characteristics is 5 and all characteristics ;4 (i = 1,..N and d = 1,2,3,4,5)
are independently drawn from the uniform distribution: U[—1,1]. gi(x) = sin(2nz), ga2(x) =
sin(mz) and g3(x) = |cos(wz)|. The factor loading functions are generated as A\;; =
Zd:1,3,5 91(ziq), A2 = Zd:1,2 g2(ziq) and N3 = Zd:374 93(2iq). {uwit} are i.i.d draws from three
different distributions. The mean factors (fi; and fi2) are estimated by four methods: PCA,
PPCA, QFA and QPPCA at 7 = 0.5. The reported results are the average Frobenius errors:
|F' — FH| /T from 1000 repetitions, where H is the associated rotation matrix for each esti-

mator.
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Figure A.2: Estimation of factors: fixed n and increasing 7.
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Note: the DGP is Yy = A1 fir + Aiofie + ()\Z'gftg)uit, where fi3 = |ht|, fii, fro, hy ~ 1.0.d N(O, 1).
The number of characteristics is 5 and all characteristics ;4 (i = 1,..N and d = 1,2,3,4,5)
are independently drawn from the uniform distribution: U[—1,1]. gi(x) = sin(2nz), ga2(x) =
sin(mz) and g3(x) = |cos(wz)|. The factor loading functions are generated as A\;; =
Zd:1,3,5 91(ziq), A2 = Zd:1,2 g2(ziq) and N3 = Zd:374 93(2iq). {uwit} are i.i.d draws from three
different distributions. The mean factors (fi1 and fi2) are estimated by four methods: PCA,
PPCA, QFA and QPPCA at 7 = 0.5. The reported results are the average Frobenius errors:
|F' — FH| /T from 1000 repetitions, where H is the associated rotation matrix for each esti-

mator.
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Figure A.3: Loading function of the first characteristic when error term is N(0, 1)

Standard Normal Errors
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Note: the DGP is: yir = N1 fa1 + (Niafi2)uit, where fio = |g¢| and fu,g¢ ~ i.i.d N(0,1). n =
500,7 = 10. The number of characteristics is 2 and all characteristics z;4 (i = 1,...N and d =
1,2) are independently drawn from uniform distribution: U[—1,1]. g11(z) = sin(27z), go1(z) =
0, 912(%) = sin(wx), gaa(x) = cos?(mx), and \it = g11 (i) + g12(wi2), Aiz = go1(wi1) + goo(wia). it
are drawn independently from the standard normal distribution. The left panel are the estimation
results for ¢11 () = sin(27x) and the right panel are the estimation results for go; -(z) = 0 with
7 € {0.25,0.75}. For each graph, the blue line is the true function, the red line and the green line

are the 95% and 5% empirical quantiles from 1000 replications.
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Figure A.4: Loading function of the second characteristic when error term is N(0,1)

Standard Normal Errors
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Note: the DGP is: yir = A1if1t + (M2ifor)uit, where for = |g¢| and fiz,g¢ ~ i.i.d N(0,1). n =
500,7 = 10. The number of characteristics is 2 and all characteristics z;4 (i = 1,...N and d =
1,2) are independently drawn from uniform distribution: U[—1,1]. g11(z) = sin(27z), go1(z) =
0, 912(%) = sin(wx), gaa(x) = cos?(mx), and Ai; = g11(z1:) + g12(w2:), A2i = g21(x1) + go2(2:). it
are drawn independently from the standard normal distribution. The left panel are the estimation
results for gia,(x) = sin(mx) and the right panel are the estimation results for goo -(z) with
7 € {0.25,0.75}. For each graph, the blue line is the true function, the red line and the green line

are the 95% and 5% empirical quantiles from 1000 replications.
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Figure A.5: Loading function of first characteristic when error term is ¢(3)
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Note: the DGP is: yir = N1 fa1 + (Niafi2)uit, where fio = |g¢| and fu,g¢ ~ i.i.d N(0,1). n =
500,7 = 10. The number of characteristics is 2 and all characteristics z;4 (i = 1,...N and d =
1,2) are independently drawn from uniform distribution: U[—1,1]. g11(z) = sin(27z), go1(z) =
0,912(%) = sin(rx), goa(x) = cos®(wz), and N1 = gi1(wa1) + g12(wa2), iz = go1(wi1) + gaz(wa2).-
uj: are drawn independently from the student’s t distribution with 3 degrees of freedom. The left
panel are the estimation results for g1 -(z) = sin(27x) and the right panel are the estimation
results for go; -(x) = 0 with 7 € {0.25,0.75}. For each graph, the blue line is the true function,

the red line and the green line are the 95% and 5% empirical quantiles from 1000 replications.
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Figure A.6: Loading function of second characteristic when error term is #(3)

Student(3) Errors
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Note: the DGP is: yir = N1 fa1 + (Niafi2)uit, where fio = |g¢| and fu,g¢ ~ i.i.d N(0,1). n =
500,7 = 10. The number of characteristics is 2 and all characteristics z;4 (i = 1,...N and d =
1,2) are independently drawn from uniform distribution: U[—1,1]. g11(z) = sin(27z), go1(z) =
0,912(%) = sin(rx), goa(x) = cos®(wz), and N1 = gi1(wa1) + g12(wa2), iz = go1(wi1) + gaz(wa2).-
uj: are drawn independently from the student’s t distribution with 3 degrees of freedom. The
left panel are the estimation results for gi2 -(2) = sin(wz) and the right panel are the estimation
results for goo -(z) with 7 € {0.25,0.75}. For each graph, the blue line is the true function, the

red line and the green line are the 95% and 5% empirical quantiles from 1000 replications.
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