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This supplementary appendix contains two sections. Section A provides the technical

proofs of the Propositions stated in the main text. Section B provides additional simulations

that further illustrate the finite sample properties of our test and key player estimator.

Emphasis is placed on various robustness considerations and a broader range of DGP

parameterisations.

A PROOFS

LEMMA A1: Let

Nn(m0) =
√
n− k0

1

2

(∑k0+m0−1
t=k0

ηt+1

m0

+

∑n−1
t=k0+m0

ηt+1

n− k0 −m0

)
−
∑n−1

t=k0
ηt+1

n− k0

 (A.1)

with ηt = (u2t −E[u2t ]) and m0 = [(n− k0)µ0]. The long run variance of Nn(m0) is given by

ω2 =
(1− 2µ0)

2

4µ0(1− µ0)
φ2 (A.2)
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where φ2 =
∑∞

s=−∞ γη(s).

PROOF OF LEMMA A1. First, let us rewrite (A.1) as

Nn(m0) =
√
n− k0

1

2

n− k0
m0

∑k0+m0−1
t=k0

ηt+1

n− k0
+

n− k0
n− k0 −m0

∑n−1
t=k0+m0

ηt+1

n− k0

− ∑n−1
t=k0

ηt+1

n− k0


(A.3)

Using m0 = [(n− k0)µ0] we have

Nn(µ0) =
√
n− k0

1

2

 1

µ0

∑k0+m0−1
t=k0

ηt+1

n− k0
+

1

1− µ0

∑n−1
t=k0+m0

ηt+1

n− k0

− ∑n−1
t=k0

ηt+1

n− k0

+ o(1). (A.4)

Next, let I1t ≡ I(k0 ≤ t < k0 +m0) and I2t ≡ I(k0 +m0 ≤ t < n) and define

Zt = ηt+1

(
1

2µ0

I1t +
1

2(1− µ0)
I2t − 1

)
≡ ηt+1gt (A.5)

so that (A.4) can be reformulated as

Nn(µ0) =
√
n− k0 Zn + o(1) (A.6)

where Zn =
∑n−1

t=k0
Zt/(n− k0). Standard algebra now leads to

V

n−1∑
t=k0

Zt

 =
n−1∑
t=k0

V [Zt] +
∑
t6=s

Cov[Zt, Zs]

= (n− k0)γZ(0) + 2
∑
s=1

(n− k0 − s)γZ(s) (A.7)

where γZ(0) = E[η2t+1g
2
t ] and γZ(s) = E[ηt+1ηt+1−sgtgt−s]. Recalling the expression of the

deterministic term gt from (A.5) it now suffices to note that E[η2t+1g
2
t ] = E[g2t ]E[η2t+1] and

E[ηt+1ηt+1−sgtgt−s] = E[g2t ]E[ηt+1ηt+1−s] with

E[g2t ] =
(1− 2µ0)

2

4µ0(1− µ0)
(A.8)

from which it immediately follows that as n→∞

V [Nn(µ0)]→
(1− 2µ0)

2

4µ0(1− µ0)
φ2 (A.9)
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for φ2 =
∑∞

s=−∞ γη(s). �

PROOF OF PROPOSITION 1. Under the null hypothesis Assumption 1(iii) implies that

for given µ0 we can write Dn(m0) as

Dn(m0) =

√
n− k0
ω̂n

1

2

∑k0+m0−1
t=k0

(u2t+1 − σ2
u)

m0
+

∑n−1
t=k0+m0

(u2t+1 − σ2
u)

n− k0 −m0

− ∑n−1
t=k0

(u2t+1 − σ2
u)

n− k0


+ op(1). (A.10)

It now follows directly from Assumptions 1(i)-(ii) and the continuous mapping theorem

that as n→∞

Dn(µ0)
d→ 1

ω

(
φ

2

(
W (µ0)

µ0

+
W (1)−W (µ0)

1− µ0

)
− φW (1)

)
. (A.11)

As we operate under a given µ0 it is now straightforward to observe that the variance

of the expression between brackets in (A.11) is given by φ2(1 − 2µ0)
2/(4µ0(1 − µ0)). As

ω̂
p→ ω = φ(1−2µ0)/

√
4µ0(1− µ0) it follows from Slutsky’s theorem thatDn(µ0)

d→ N(0, 1)

as stated. �

Before proceeding with the proofs of Propositions 2A, 2B and 2C we introduce a series

of intermediate results and further notation that will be used throughout. As we operate

under the hypothesis of at least one active predictor the true specifications under our three

scenarios A, B and C are understood to be given by

yt+1 =
∑
i∈I∗

(β∗i /n
1/4) xit + ut+1 (A.12)

yt+1 =
∑
i∈I∗

(β∗i /n
(1+2α)/4) xit + ut+1 (A.13)

and

yt+1 =
∑
i∈I∗1

(β∗i /n
1/4) xit +

∑
i∈I∗2

(β∗i /n
(1+2α)/4) xit + ut+1 (A.14)
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respectively. We also recall that the fitted specification involving one predictor at a time

is here given by

yt+1 = βjxjt + ut+1 j = 1, . . . , p (A.15)

so that using (A.12) and (A.13) we can write the recursively estimated slope parameters

as

β̂jt =

∑
i∈I∗ β

∗
i (
∑t

s=1 xisxjs)

nγ
∑t

s=1 x
2
js

+

∑t
s=1 xjsus+1∑t
s=1 x

2
js

(A.16)

where γ = 1/4 under scenario A and γ = (1 + 2α)/4 under scenario B. For the mixed

predictor scenario C and using (A.14) we have instead

β̂jt =

∑
i∈I∗1

β∗i (
∑t

s=1 xisxjs)

nγ1
∑t

s=1 x
2
js

+

∑
i∈I∗2

β∗i (
∑t

s=1 xisxjs)

nγ2
∑t

s=1 x
2
js

+

∑t
s=1 xjsus+1∑t
s=1 x

2
js

. (A.17)

The specifications in (A.12)-(A.14) are the DGPs under the local alternatives of interest

and the β̂jt’s in (A.16)-(A.17) are the slope parameters estimated via recursive least squares

when fitting (A.15). As for notational convenience we have abstracted from the inclusion of

an intercept in the above specifications it is naturally understood that the forecasts under

the null model will be taken as ŷ0,t+1|t = 0 instead of
∑t

j=1 yj/t. This has no bearing on any

of the asymptotic results presented in Propositions 2A-2C. We can now write the forecast

errors as

ê0,t+1|t = yt+1 − 0

êj,t+1|t = yt+1 − β̂jtxjt (A.18)

with yt+1 given by either (A.12), (A.13) or (A.14).

LEMMA A2. Under Assumption 2A, β̂jt as in (A.16) and ∀j ∈ {1, . . . , p} we have as

n→∞
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(i) supr∈[π0,1]

∣∣∣∣∣n1/4β̂j,[nr] −
1

E[x2jt]

∑
i∈I∗ β

∗
iE[xitxjt]

∣∣∣∣∣ = op(1)

(ii) supk0≤t≤n

∣∣∣∣∣
∑t

`=k0
β̂j`xj`u`+1√
n− k0

∣∣∣∣∣ = op(1)

(iii) supk0≤t≤n

∣∣∣∣∣
∑t

`=k0
β̂2
j`x

2
j`√

n− k0
−
√

1− π0
E[x2jt]

(∑
i∈I∗ β

∗
iE[xitxjt]

)2∣∣∣∣∣ = op(1)

(iv) supk0≤t≤n

∣∣∣∣∣ β∗in1/4

∑t
`=k0

β̂j`xi`xj`√
n− k0

−
√

1− π0 β∗i
E[xitxjt]

E[x2jt]
(
∑

i∈I∗ β
∗
iE[xitxjt])

∣∣∣∣∣ = op(1)

PROOF OF LEMMA A2. (i) From (A.16) we have

n1/4β̂jt =

∑
i∈I∗ β

∗
i (
∑t

s=1 xisxjs)∑t
s=1 x

2
js

+ n1/4

∑t
s=1 xjsus+1∑t
s=1 x

2
js

(A.19)

and

n1/4 sup
t
|β̂jt| ≤ sup

t

∣∣∣∣∣
∑

i∈I∗ β
∗
i (
∑t

s=1 xisxjs)∑t
s=1 x

2
js

∣∣∣∣∣+ n1/4 sup
t

∣∣∣∣∣
∑t

s=1 xjsus+1∑t
s=1 x

2
js

∣∣∣∣∣ . (A.20)

We can now note that

n1/4 sup
t

∣∣∣∣∣
∑t

s=1 xjsus+1∑t
s=1 x

2
js

∣∣∣∣∣ ≤ sup
t

∣∣∣∣∣ t∑t
s=1 x

2
js

∣∣∣∣∣ n1/4

t
sup
t

∣∣∣∣∣∣
t∑

s=1

xjsus+1

∣∣∣∣∣∣ p→ 0 (A.21)

which follows directly from Assumption 2A(iii). This latter assumption now also leads to

sup
t

∣∣∣∣∣∣
∑

i∈I∗ β
∗
i (
∑t

s=1 xisxjs)∑t
s=1 x

2
js

−
∑
i∈I∗

β∗i
E[xitxjt]

E[x2jt]

∣∣∣∣∣∣ = op(1) (A.22)

as required. (ii) We write

sup
k0≤t≤n

∣∣∣∣∣
∑t

`=k0
β̂j`xj`u`+1√
n− k0

∣∣∣∣∣ =
1√

1− π0
1

n1/4
sup

r∈[π0,1]

∣∣∣∣∣∣
∑[nr]

l=k0
(n1/4β̂jt)xj`u`+1√

n

∣∣∣∣∣∣+ op(1). (A.23)

The result in part (i) combined with Assumption 2A(iii) allows us to appeal to Theorem

3.3 in Hansen (1993) from which the statement in (ii) follows. For part (iii) it is sufficient

to focus on

1√
n− k0

n−1∑
`=k0

β̂2
j`x

2
j` =

1√
1− π0

1

n

n∑
`=k0

(
√
nβ̂2

j`)x
2
j` + o(1) (A.24)
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for which part (i) combined with Assumptions 2A(iii) ensures that

1√
n− k0

n−1∑
`=k0

β̂2
j`x

2
j`

p→
√

1− π0

∑
i∈I∗

β∗i
E[xitxjt]√
E[x2jt]


2

. (A.25)

Part (iv) follows identical lines to part (iii) and its details are therefore omitted. �

PROOF OF PROPOSITION 2A. Using yt+1 as in (A.12) in ê20,t+1|t = y2t+1 from (A.18), we

have

∑k0+m0−1
t=k0

ê20,t+1|t√
n− k0

=

∑k0+m0−1
t=k0

u2t+1√
n− k0

+

∑k0+m0−1
t=k0

(
∑

i∈I∗ β
∗
i xit)

2

√
n
√
n− k0

+
2

n1/4

∑
i∈I∗

β∗i

(∑k0+m0−1
t=k0

xitut+1√
n− k0

)

=

∑k0+m0−1
t=k0

u2t+1√
n− k0

+

∑k0+m0−1
t=k0

(
∑

i∈I∗ β
∗
i xit)

2

√
n
√
n− k0

+ op(1)

=

∑k0+m0−1
t=k0

u2t+1√
n− k0

+ µ0

√
1− π0 E

∑
i∈I∗

β∗i xit

2

+ op(1) (A.26)

where we made repeated use of Assumption 2A(iii). Proceeding as above it also follows

that∑n−1
t=k0+m0

ê20,t+1|t√
n− k0

=

∑n−1
t=k0+m0

u2t+1√
n− k0

+ (1− µ0)
√

1− π0 E

∑
i∈I∗

β∗i xit

2

+ op(1). (A.27)

Next, we focus on ê2j,t+1|t given by (A.18) with yt+1 as in (A.12). We have

∑n−1
t=k0

ê2j,t+1|t√
n− k0

=

∑n−1
t=k0

u2t+1√
n− k0

+
1√

n(n− k0)

n−1∑
t=k0

(
∑
i∈I∗

β∗i xit)
2

+
2

n1/4
√
n− k0

∑
i∈I∗

β∗i (
n−1∑
t=k0

xitut+1) +
1√

n− k0

n−1∑
t=k0

β̂2
jtx

2
jt

− 2

n1/4
√
n− k0

∑
i∈I∗

β∗i (
n−1∑
t=k0

β̂jtxjtxit)

− 2√
n− k0

n−1∑
t=k0

β̂jtxjtut+1. (A.28)
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Appealing to Assumption 2A(iii) and using Lemma A2(ii)-(iii) in (A.28) also allows us to

write ∑n−1
t=k0

ê2j,t+1|t√
n− k0

=

∑n−1
t=k0

u2t+1√
n− k0

+
√

1− π0 E

∑
i∈I∗

β∗i xit

2

−
√

1− π0
E[x2jt]

∑
i∈I∗

β∗iE[xitxjt]

2

+ op(1). (A.29)

Next, using (A.26)-(A.29) in Dn(m0, j) now gives

Dn(m0, j) =
1

ω(µ0)

1

2

(
n− k0
m0

∑k0+m0−1
t=k0

u2t+1√
n− k0

+
n− k0

n− k0 −m0

∑n−1
t=k0+m0

u2t+1√
n− k0

)
−
∑n−1

t=k0
u2t+1√

n− k0


+
√

1− π0
1

ω(µ0)

∑
i∈I∗

β∗i
E[xitxjt]√
E[x2jt]


2

+ op(1) (A.30)

leading to the desired result. �

LEMMA B1. Under Assumption 2B, β̂jt as in (A.16) and ∀j ∈ {1, . . . , p} we have as

n→∞

(i) supr∈[π0,1]

∣∣∣∣∣∣n(1+2α)/4β̂j,[nr] −
∑

i∈I∗ β
∗
i

σvivj
σ2
vj

(
2cj

ci + cj

)∣∣∣∣∣∣ = op(1)

(ii) supk0≤t≤n

∣∣∣∣∣
∑t

`=k0
β̂j`xj`u`+1√
n− k0

∣∣∣∣∣ = op(1)

(iii) supk0≤t≤n

∣∣∣∣∣∣∣∣
∑t

`=k0
β̂2
j`x

2
j`√

n− k0
−
√

1− π0

∑i∈I∗ β
∗
i

σvivj√
σ2
vj

√
2cj

ci + cj


2
∣∣∣∣∣∣∣∣ = op(1),

(iv) supk0≤t≤n

∣∣∣∣∣∣ β∗i
n(1+2α)/4

∑t
`=k0

β̂j`xi`xj`√
n− k0

−
√

1− π0
2cjσvivj

(ci + cj)σ2
vj

(∑
i∈I∗ β

∗
i

σvivj
ci + cj

)∣∣∣∣∣∣ = op(1)

PROOF OF LEMMA B1. For all four cases the results follow in an identical manner to

Lemma A2(i)-(iv) with the use of Assumption 2A(iii) replaced with Assumption 2B(iii)
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and n1/4 replaced with n(1+2α)/4. �

PROOF OF PROPOSITION 2B. Using yt+1 as in (A.13) in ê0,t+1|t = y2t+1 from (A.18) we

have ∑k0+m0−1
t=k0

ê20,t+1|t√
n− k0

=

∑k0+m0−1
t=k0

u2t+1√
n− k0

+

∑k0+m0−1
t=k0

(
∑

i∈I∗ β
∗
i xit)

2

n(1+2α)/2
√
n− k0

+
2

n(1+2α)/4

∑
i∈I∗

β∗i

(∑k0+m0−1
t=k0

xitut+1√
n− k0

)

=

∑k0+m0−1
t=k0

u2t+1√
n− k0

+

∑k0+m0−1
t=k0

(
∑

i∈I∗ β
∗
i xit)

2

n(1+2α)/2
√
n− k0

+ op(1) (A.31)

and ∑n−1
t=k0+m0

ê20,t+1|t√
n− k0

=

∑n−1
t=k0+m0

u2t+1√
n− k0

+

∑n−1
t=k0+m0

(
∑

i∈I∗ β
∗
i xit)

2

n(1+2α)/2
√
n− k0

+
2

n(1+2α)/4

∑
i∈I∗

β∗i

(∑n−1
t=k0+m0

xitut+1√
n− k0

)

=

∑n−1
t=k0+m0

u2t+1√
n− k0

+

∑n−1
t=k0+m0

(
∑

i∈I∗ β
∗
i xit)

2

n(1+2α)/2
√
n− k0

+ op(1). (A.32)

Next, for ê2j,t+1|t we have∑n−1
t=k0

ê2j,t+1|t√
n− k0

=

∑n−1
t=k0

u2t+1√
n− k0

+
1

n(1+2α)/2
√

(n− k0)

n−1∑
t=k0

(
∑
i∈I∗

β∗i xit)
2

−
√

1− π0
2cj
σ2
vj

∑
i∈I∗

β∗i
σvivj
ci + cj

2

+ op(1). (A.33)

Using (A.31)-(A.33) in Dn(m0, j) and rearranging gives

Dn(m0, j) =
1

ω(µ0)

1

2

(
n− k0
m0

∑k0+m0−1
t=k0

u2t+1√
n− k0

+
n− k0

n− k0 −m0

∑n−1
t=k0+m0

u2t+1√
n− k0

)
−
∑n−1

t=k0
u2t+1√

n− k0


+
√

1− π0
1

ω(µ0)

∑
i∈I∗

β∗i
σvivj√
σ2
vj

√
2cj

(ci + cj)2


2

+ op(1) (A.34)

leading to the result in Proposition 2B. �
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LEMMA C1. Under Assumption 2C, β̂jt as in (A.17) and ∀j ∈ {1, . . . , p} we have as

n→∞

(i) supr∈[π0,1]

∣∣∣∣∣n1/4β̂j,[nr] −
1

E[x2jt]

∑
i∈I∗1

β∗iE[xitxjt]

∣∣∣∣∣ = op(1) for j ∈ I∗1

(ii) supr∈[π0,1]

∣∣∣∣∣∣n(1+2α)/4β̂j,[nr] −
∑

i∈I∗2
β∗i

σvivj
σ2
vj

(
2cj

ci + cj

)∣∣∣∣∣∣ = op(1) for j ∈ I∗2 .

PROOF OF LEMMA C1. (i) and (ii) are obtained following the same derivations as

Lemma A2(i) and LemmaA B1(i) and details are therefore omitted. It is here useful to

note the distinct behaviour of the slope estimates obtained from the one predictor at a time

regressions depending on whether the fitted predictor belongs to I∗1 or I∗2 . This result is

driven by the well known phenomenon of asymptotic independence between persistent and

stationary predictors. �

PROOF OF PROPOSITION 2C. The result in (21) is obtained following identical deriva-

tions to (14) and (18) and details are therefore omitted. �

PROOF OF PROPOSITION 3. The result in part (i) is a direct consequence of Assump-

tion 1(iii) which under the null hypothesis holds for both ` = 0 and ` ∈ {1, . . . , p}. The

result in part (ii) follows exact same steps as in the proofs of Propositions 2A-2C. �

PROOF OF PROPOSITION 4. For part (i) of Proposition 4 we focus solely on the case

of a single stationary active predictor in the DGP as the remaining scenarios follow iden-

tical lines. It is useful to first note that the argmax of Dn(m0, j) will be equivalent to

arg minj Sn(j) where

Sn(j) =

∑n−1
t=k0

(ê2j,t+1|t − u2t+1)√
n− k0

j = 1, . . . , p. (A.35)

9



The main result now follows by establishing that Sn(j) converges to a deterministic limit

that is uniquely minimized at j = j0. We continue to operate under the DGP given by

(A.12) with |I∗| = 1 (i.e. there is a single active predictor) and with no loss of generality

we set that predictor to be x1t. Recalling that êj,t+1|t = yt+1− β̂jtxjt and using Lemma A2

it immediately follows that for j = j0 = 1 we have Sn(j = 1)
p→ 0 while for j 6= j0 = 1 and

using Lemma A2 we have

Sn(j)
p→ (β∗1)2

√
1− π0E[x21t](1− ρ21j) ∀j 6= j0 (A.36)

which is strictly positive for any predictor different from x1t, thus leading to the required

result. (ii) For part (ii) of Proposition 4 we consider the DGP given by (A.14) and that

consists of predictors with mixed persistence properties. We operate with a pool of p1 sta-

tionary predictors and p− p1 ≡ p2 persistent predictors and with no loss of generality take

j = 1, . . . , p1 to index the stationary predictors and j = p1 + 1, . . . , p the persistent pre-

dictors. We assume two active predictors given by xat = x1t and xbt = xp1+1,t respectively.

Using the results in Lemmas A1, B1 and C1 and standard algebra gives

Sn(j = 1)
p→
√

1− π0(β∗p1+1)
2
σ2
vp1+1

2cp1+1

(A.37)

Sn(j ∈ {2, . . . , p1})
p→
√

1− π0(β∗p1+1)
2
σ2
vp1+1

2cp1+1

+
√

1− π0(β∗1)2E[x21t](1− ρ21j) (A.38)

Sn(j = p1 + 1)
p→
√

1− π0(β∗1)2E[x21t] (A.39)

Sn(j ∈ {p1 + 2, . . . , p}) p→
√

1− π0(β∗1)2E[x21t] +
√

1− π0(β∗p1+1)
2
σ2
vp1+1

2cp1+1

×

(
1− (σp1+1,j/(cp1+1 + cj))

2

(σ2
p1+1/2cp1+1)(σ2

j/2cj)

)
(A.40)

Comparing (A.37) with (A.38) and (A.39) with (A.40) implies that ĵn will asymptotically

point to either j = 1 or j = p1 + 1 (i.e. one of the two true predictors) as stated. �
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B Further Experimental Properties

This section provides additional simulation based results extending the size/power based

outcomes presented in Section 7 of the main paper.

B.1 Empirical Size

The supplementary size based simulations use the same DGP as in Section 7 (Table 1) and

aim to illustrate the influence of alternative variance normalisers on size (i.e., using the

formulation of ω̂2,a
n in (26) that is based on residuals under the null hypothesis instead of

ω̂2,b
n in (27) that was used in Table 1 of the main paper).

To highlight the role played by the size-neutral power enhancing transformation intro-

duced in Section 5 we also present corresponding empirical size outcomes based on the

unadjusted Dn(µ0) statistic. For notational purposes we refer to the power enhanced/size-

neutral test statistic evaluated using the variance normalisers ω̂2,a
n and ω̂2,b

n,j as Dd,an (µ0) and

Dd,bn (µ0) respectively. Their non-enhanced versions are denoted Dan(µ0) and Dbn(µ0). All

our simulations in the main text have been obtained using Dd,bn (µ0) so that in what follows

we compare outcomes with Dd,an (µ0) (adjusted, null residuals), Dan(µ0) (unadjusted, null

residuals) and Dbn(µ0) (unadjusted, residuals under alternative).

Table B1 presents empirical size outcomes based on the power enhanced statistic as in

the main text but using a variance normaliser based on the null residuals (i.e., ω̂2
n = ω̂2,a

n )

and can be compared with Table 1 in the main text which was based on ω̂2
n = ω̂2,b

n,j. We

note virtually identical outcomes across all DGP scenarios suggesting that when it comes

to the size of our proposed test statistic the use of either ω̂2,a
n or ω̂2,b

n,j makes little practical

difference. All empirical size outcomes match their nominal counterparts very closely and

often nearly perfectly regardless of which variance normaliser is used.

Tables B2 and B3 have repeated the same exercise using tha “raw” (unadjusted) version

11



of our test statistic. Although here we continue to note very little difference in outcomes

based on either ω̂2,a
n or ω̂2,b

n,j the main message that comes across these two tables is the

importance and effectiveness of our proposed adjustment. The size properties of the un-

adjusted statistics clearly deteriorates as µ0 → 0.5 (i.e., the variance degeneracy bound)

despite remaining unaffected by the number of predictors under consideration. Under

p = 500 for instance empirical size is in the vicinity of 8% for µ0 = 0.35 but drops to about

3% for µ0 = 0.45. Our adjusted statistic is not subject to such distortions and shows a

remarkably effective ability to align itself with its nominal counterparts regardless of DGP

parameterisations. Although our proposed adjustment is solely designed to enhance power

it is also clear that it helps maintain good finite sample size, a feature motivated in Remark

4 in the main text.

Table B1: Empirical Size of Dd,an (µ0) (10% Nominal)

µ0 p=10 p=50 p=500 p=10 p=50 p=500 p=10 p=50 p=500

A(i) A(ii) A(iii)

0.35 0.106 0.103 0.103 0.107 0.104 0.104 0.106 0.105 0.104

0.40 0.108 0.104 0.104 0.109 0.106 0.106 0.107 0.106 0.106

0.45 0.110 0.093 0.100 0.115 0.094 0.101 0.115 0.094 0.101

B(i) B(ii) B(iii)

0.35 0.106 0.104 0.103 0.107 0.103 0.104 0.109 0.104 0.104

0.40 0.115 0.106 0.105 0.115 0.105 0.105 0.115 0.105 0.105

0.45 0.116 0.099 0.102 0.119 0.100 0.104 0.122 0.100 0.104

C(i) C(ii) C(iii)

0.35 0.107 0.104 0.103 0.106 0.103 0.103 0.107 0.103 0.103

0.40 0.111 0.105 0.104 0.110 0.107 0.104 0.110 0.107 0.104

0.45 0.116 0.093 0.101 0.118 0.098 0.102 0.119 0.099 0.102
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Table B2: Empirical Size of Dan(µ0) (10% Nominal)

A(i) A(ii) A(iii)

µ0 p=10 p=50 p=500 p=10 p=50 p=500 p=10 p=50 p=500

0.35 0.080 0.078 0.076 0.080 0.078 0.076 0.080 0.078 0.076

0.40 0.069 0.063 0.065 0.067 0.062 0.065 0.068 0.062 0.065

0.45 0.035 0.031 0.031 0.036 0.032 0.031 0.036 0.032 0.031

B(i) B(ii) B(iii)

0.35 0.074 0.073 0.069 0.074 0.073 0.070 0.073 0.073 0.070

0.40 0.061 0.054 0.059 0.059 0.054 0.059 0.060 0.053 0.059

0.45 0.026 0.023 0.024 0.030 0.024 0.024 0.030 0.024 0.024

C(i) C(ii) C(iii)

0.35 0.078 0.075 0.073 0.077 0.076 0.073 0.077 0.076 0.073

0.40 0.063 0.058 0.061 0.065 0.059 0.061 0.065 0.059 0.061

0.45 0.030 0.027 0.027 0.032 0.027 0.026 0.031 0.027 0.026

B.2 Empirical Power

Our supplementary power based simulations follow the same logical flow as above. They aim

to illustrate the role of using an alternative variance normaliser, namely ω̂2,a
n instead of ω̂2,b

n .

As the former is based on the use of residuals under the null we expect potentially important

finite sample differences in power performance between Dd,bn (µ0) used in the main text and

Dd,an (µ0) considered here. The simulations that follow also illustrate the important role

played by our power-enhancing adjustment by repeating all experiments across adjusted

and unadjusted versions of our test statistic. Although the outcomes presented below

are based on the same DGPs as in the main text (numbered as (i), (ii-a) and (ii-b)) we

also include an additional scenario (referred to as (iii) in what follows) that mixes both

stationary and persistent predictors within (30). For this purpose we let β∗a ∈ {(2, 3, 4, 5)},

β∗b ∈ {(5, 6, 7, 8)}, β∗c ∈ {(2, 3, 4, 5)}, β∗d ∈ {(5, 6, 7, 8)} so that the DGP as defined in (30)
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Table B3: Empirical Size of Dbn(µ0) (10% Nominal)

µ0 p=10 p=50 p=500 p=10 p=50 p=500 p=10 p=50 p=500

A(i) A(ii) A(iii)

0.35 0.080 0.077 0.075 0.080 0.078 0.076 0.079 0.078 0.076

0.40 0.069 0.062 0.064 0.067 0.062 0.065 0.068 0.062 0.065

0.45 0.035 0.031 0.031 0.036 0.032 0.031 0.037 0.032 0.031

B(i) B(ii) B(iii)

0.35 0.074 0.072 0.068 0.074 0.072 0.069 0.073 0.072 0.069

0.40 0.060 0.054 0.058 0.059 0.054 0.059 0.059 0.053 0.059

0.45 0.026 0.023 0.024 0.030 0.024 0.025 0.030 0.024 0.024

C(i) C(ii) C(iii)

0.35 0.077 0.075 0.071 0.076 0.076 0.072 0.076 0.076 0.072

0.40 0.062 0.057 0.061 0.065 0.059 0.061 0.065 0.058 0.061

0.45 0.030 0.027 0.027 0.032 0.027 0.026 0.031 0.027 0.026

includes a total of four predictors, two of which are purely stationary and the remaining

two persistent.

Comparing Tables B4-B5 with Table 2 in the main text highlights the unfavourable

influence on power of using a variance normaliser based on the null residuals. Take for

instance the case of DGP (i) with µ0 = 0.40 for which we have an empirical power estimate

of 69.4% in Table B4 based on Dd,an (µ0). This can be compared with the estimate of 97.7%

obtained using Dd,bn (µ0) (Table 2 of main text). The fact that power is much superior when

using ω̂2,b
nj as the variance normaliser and the DGP is driven by purely stationary predictors

is a well known phenomenon that has been widely documented in contexts such as change-

point detection with cusum type statistics. The mere fact that the variance normaliser

takes into account information under the alternative acts as an important power booster.

Interestingly, these power differences arise solely in the context of DGP(i) that is driven
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solely by purely stationary predictors. If we compare Table B4 with Table 2 for DGPs (ii-a)

and (ii-b) which contain solely persistent predictors we note very similar power estimates

regardless of whether inferences are based on Dd,an (µ0) or Dd,bn (µ0).

Tables B5-B6 repeat the above power experiments using unadjusted test statistics.

Table B5 is based on Dan(µ0) that uses null residuals while Table B6 is based on Dbn(µ0)

that uses residuals from the larger model. Outcomes strongly support the use of our power

enhanced formulation. Comparing Table B6 with Table 2 in the main text for instance and

focusing on their last columns we note that the power enhancement boosts empirical powers

by more than 20%. A similar picture can also be observed from B7 based on DGP(iii)

described above. Comparing outcomes on its mid-panel based on Dbn(µ0) (unadjusted)

with its bottom panel based on Dd,bn (µ0) (adjusted) we note substantial spreads for low

signal to noise parameterisations. As the signal to noise ratio increases these differences

tend to progressively dissipate but remain non-negligible (e.g., 83.5% versus 99.9% under

the most favourable signal to noise scenario).
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Table B4: Empirical Power of Dd,an (µ0) under DGPs (i)-(ii)

DGP (i)

βan 0.423 0.634 0.846 1.057

βbn 1.057 1.269 1.480 1.692

µ0 = 0.35 0.487 0.530 0.572 0.589

µ0 = 0.40 0.694 0.753 0.793 0.819

µ0 = 0.45 0.977 0.992 0.996 0.998

DGP (ii-a)

βcn 0.030 0.045 0.060 0.075

βdn 0.075 0.090 0.106 0.121

µ0 = 0.35 0.171 0.224 0.292 0.329

µ0 = 0.40 0.211 0.286 0.368 0.434

µ0 = 0.45 0.337 0.479 0.611 0.707

DGP (ii-b)

βcn 0.075 0.090 0.106 0.121

βdn 0.121 0.136 0.151 0.166

µ0 = 0.35 0.317 0.372 0.427 0.451

µ0 = 0.40 0.427 0.491 0.554 0.590

µ0 = 0.45 0.704 0.779 0.839 0.870
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Table B5: Empirical Power of Dan(µ0) under DGPs (i)-(ii)

DGP (i)

βan 0.423 0.634 0.846 1.057

βbn 1.057 1.269 1.480 1.692

µ0 = 0.35 0.224 0.241 0.258 0.258

µ0 = 0.40 0.276 0.299 0.333 0.337

µ0 = 0.45 0.451 0.520 0.577 0.592

DGP (ii-a)

βcn 0.030 0.045 0.060 0.075

βdn 0.075 0.090 0.106 0.121

µ0 = 0.35 0.093 0.124 0.161 0.177

µ0 = 0.40 0.089 0.125 0.164 0.192

µ0 = 0.45 0.070 0.118 0.179 0.231

DGP (ii-b)

βcn 0.075 0.090 0.106 0.121

βdn 0.121 0.136 0.151 0.166

µ0 = 0.35 0.169 0.209 0.243 0.261

µ0 = 0.40 0.180 0.225 0.265 0.295

µ0 = 0.45 0.221 0.281 0.336 0.377
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Table B6: Empirical Power of Dbn(µ0) under DGPs (i)-(ii)

DGP (i)

βan 0.423 0.634 0.846 1.057

βbn 1.057 1.269 1.480 1.692

µ0 = 0.35 0.407 0.519 0.613 0.679

µ0 = 0.40 0.577 0.739 0.834 0.896

µ0 = 0.45 0.918 0.983 0.997 1.000

DGP (ii-a)

βcn 0.030 0.045 0.060 0.075

βdn 0.075 0.090 0.106 0.121

µ0 = 0.35 0.093 0.128 0.167 0.187

µ0 = 0.40 0.091 0.128 0.172 0.204

µ0 = 0.45 0.073 0.128 0.198 0.262

DGP (ii-b)

βcn 0.075 0.090 0.106 0.121

βdn 0.121 0.136 0.151 0.166

µ0 = 0.35 0.178 0.221 0.261 0.286

µ0 = 0.40 0.195 0.241 0.291 0.323

µ0 = 0.45 0.252 0.323 0.395 0.445
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Table B7: Empirical Power under DGP(iii)

βan 0.423 0.634 0.846 1.057

βbn 1.057 1.269 1.480 1.692

βcn 0.030 0.045 0.060 0.075

βdn 0.075 0.090 0.106 0.121

Dan(µ0)

µ0 = 0.35 0.219 0.245 0.255 0.270

µ0 = 0.40 0.270 0.307 0.330 0.355

µ0 = 0.45 0.464 0.542 0.575 0.607

Dbn(µ0)

µ0 = 0.35 0.382 0.488 0.559 0.605

µ0 = 0.40 0.554 0.695 0.789 0.835

µ0 = 0.45 0.905 0.974 0.994 0.997

Dd,an (µ0)

µ0 = 0.35 0.489 0.544 0.566 0.583

µ0 = 0.40 0.710 0.768 0.795 0.823

µ0 = 0.45 0.982 0.992 0.996 0.998

Dd,bn (µ0)

µ0 = 0.35 0.807 0.913 0.957 0.975

µ0 = 0.40 0.972 0.995 0.999 0.999

µ0 = 0.45 1.000 1.000 1.000 1.000
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