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Abstract

This paper is concerned with detecting the presence of out of sample predictability
in linear predictive regressions with a potentially large set of candidate predictors. We
propose a procedure based on out of sample MSE comparisons that is implemented
in a pairwise manner using one predictor at a time and resulting in an aggregate
test statistic that is standard normally distributed under the global null hypothesis
of no linear predictability. Predictors can be highly persistent, purely stationary or
a combination of both. Upon rejection of the null hypothesis we subsequently intro-
duce a predictor screening procedure designed to identify the most active predictors.
An empirical application to key predictors of US economic activity illustrates the
usefulness of our methods and highlights the important forward looking role played
by the series of manufacturing new orders.
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1 Introduction

Comparing the out of sample predictive accuracy of competing statistical models in data

rich environments is an essential component of data science and a key step in the workflow

that aims to produce reliable forecasts of an outcome of interest or discriminate between

competing hypotheses. A vast body of statistics research over the past decade has been

concerned with developing estimation and prediction techniques that can accommodate the

availability of large datasets via regularisation techniques and sparsity assumptions on the

underlying DGPs. An important objective driving this literature has been to obtain accu-

rate out of sample predictions of a response variable via suitable estimation and covariate

selection techniques.

The detection of predictability within linear regression settings has also been the subject

of extensive research in the traditional econometrics literature. The broadly labelled topic

of predictive regressions for instance has become an important field of research in its own

right due to the specificities associated with economic data and the complications that these

may cause for estimation, inference and prediction (e.g. persistent nature of many financial

and economic predictors, endogeneity considerations, low signal to noise ratios, imbalance

in the persistence properties of predictand and predictors). Unlike the above mentioned

statistics literature however, predictive regressions as explored in econometrics have been

mainly concerned with in-sample goodness of fit measures and traditional significance test-

ing designed to explicitly accommodate these specificities, often in the context of single

predictor settings (see Gonzalo and Pitarakis (2019) for a survey of this literature). Some

of the early applied research did also highlight the importance of distinguishing between

in-sample and out-of-sample predictability in the context of stock return predictability with

valuation ratios and related predictors (see Pesaran and Timmermann (1995), Goyal and

Welch (2008)).
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Our objective in this paper is to consider this predictive regression environment as

commonly explored in the econometrics literature and propose a method for detecting

the potential presence of out-of-sample linear predictability when the latter is induced

by one or more predictors from a potentially large pool of candidate predictors, possibly

exceeding the available sample size. These predictors could be purely stationary or highly

persistent without affecting the validity of our proposed approach and without the need for

the investigator to have knowledge of these properties. We are thinking of an environment

where one is confronted with not only a potentially large pool of predictors but also with

these predictors allowed to display a mixture of dynamic characteristics, some (or all) being

highly persistent and others noisier as it commonly occurs in economic and financial data.

A macroeconomist interested in forecasts of GDP growth for instance faces hundreds of

potentially useful predictors ranging from noisy indicators with very little memory such

as financial returns to more persistent series such as interest rates. With an increased

availability of unconventional predictor candidates that go beyond traditional macro and

financial series (e.g., internet search related data, climate related predictors, etc.) and

whose persistence properties are not well known, this aspect of our proposed methods that

allows one to remain agnostic about the stochastic properties of predictors is particularly

noteworthy.

Our operating environment is that of a potentially large number of nested specifica-

tions that also include an intercept only model which we view as the benchmark model

or the maintained theory. More specifically, we focus our attention on testing this bench-

mark specification against the alternative hypothesis that at least one of the predictors

under consideration is active in the sense of improving out of sample MSEs relative to the

benchmark.

The approach introduced in this paper is able to accommodate a large number of pre-

dictors as it relies on multiple pairwise comparisons of the benchmark model with a larger
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model that includes solely one predictor at a time. These pairwise MSE comparisons are

implemented via the repeated evaluation of a novel test statistic suitable for out of sample

predictive accuracy comparisons in nested environments. This latter aspect is a particularly

important contribution of this research as traditional test statistics for predictive accuracy

comparisons are known to fail in nested environments. The resulting series of test statistics

are subsequently reassembled into a single aggregate statistic allowing us to test the global

null of no predictability against the alternative that at least one of the predictors is active.

Upon rejection of the benchmark model the important question as to which predictors

are the most important drivers of predictability also arises. To address this question we

subsequently introduce a covariate screening method that allows us to identify the key

predictor that most improves the accuracy of forecasts of the response variable relative

to the forecasts based on the benchmark model. We refer to such a predictor as the key

player. Although the identification of a single predictor may come across as providing only

a limited picture of an underlying true specification, it is nevertheless a valuable picture.

Parsimonious models can often achieve desirable levels of predictive strength by avoiding

distortions due to overfitting for instance.

Our operating environment is particularly relevant to economic and financial applica-

tions where one is interested in the maintained hypothesis of no predictability whereby the

response variable of interest is best described by a martingale difference process (e.g. excess

stock returns, currency returns, consumption growth). More generally, one is often faced

with the need to compare the predictive accuracy of a simple model nested within a richer

one. Nested models are one of the most commonly encountered setting in empirical research

and help answer fundamental questions such as: does the inclusion of additional predic-

tors significantly improve the predictive power of a smaller model or a non-predictability

benchmark? Irrespective of whether one operates in a big data environment combined with

heterogeneous predictor types or in a more idealised environment with few well behaved
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predictors, conducting out of sample predictive accuracy comparisons between nested mod-

els raises many technical challenges that have also not been resolved in a satisfactory way

despite a voluminous literature on the subject (e.g. the fact that two nested models col-

lapse into the same specification under the hypothesis of equal predictive accuracy typically

results in ill-defined test statistics with degenerate variances).

The plan of the paper is as follows. Section 2 introduces our modelling environment

and the key test statistics that are used to implement our predictive accuracy comparisons.

Section 3 develops the asymptotic theory under the benchmark specification and is followed

by a comprehensive local power analysis in Section 4. Section 5 introduces a theoretically

supported power enhancing transformation to our proposed tests. Section 6 introduces

our key player estimator and studies its asymptotic properties. Section 7 demonstrates the

finite sample properties of our methods through a comprehensive simulation based exercise.

Finally Section 8 illustrates the usefulness of our methods through an application to the

predictability of US economic activity. Section 9 concludes. All technical proofs and further

simulations are placed in a supplementary appendix.

2 Models and Theory

Let {yt} denote a scalar random process. Given a sample of size n we wish to assess the

presence of linear one-step ahead predictability in yt. If present, predictability is induced by

at least one predictor from a finite pool of p predictors xt = (x1t, . . . , xpt)
′. Predictability

is understood to be present whenever an intercept only benchmark model is rejected in

favour of a larger model on the basis of out-of-sample MSE based comparisons. Thus the

generic framework within which we operate is given by the predictive regressions

yt+1 = θ0 + β′xt + ut+1 (1)

where β = (β1, . . . , βp)
′ and ut is a random disturbance term. For later use we also

define θ = (θ0,β
′)′ and wt = (1,x′t)

′ so that (1) can equivalently be expressed as yt+1 =
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θ′wt + ut+1. The predictors collected in xt can accommodate candidates with different

degrees of persistence as commonly encountered in economic applications. Nevertheless

our approach does not rely on any knowledge of the persistence properties of the pool of

predictors available to the investigator. We view (1) as encompassing a family of nested

linear predictive regressions including the benchmark specification given by

yt+1 = θ0 + ut+1. (2)

Given the above framework our main goal is to address the following questions. Suppose

a researcher has access to a pool of predictors collected within xt. Is at least one of these

predictors active relative to the benchmark model in (2)? In the affirmative, is it possible

to accurately identify which one of the p predictors has the strongest influence in the sense

of improving forecast accuracy the most relative to the benchmark?

To formalise our environment we let ŷ0,t+1|t denote the one-step ahead forecasts of

yt+1 obtained from the benchmark model in (2) and ŷj,t+1|t, j = 1, . . . , p, the one-step

ahead forecasts of yt+1 obtained from (1) using one predictor at a time from the available

collection of p predictors and inclusive of a fitted intercept. The corresponding forecast

errors are ê0,t+1|t = yt+1 − ŷ0,t+1|t and êj,t+1|t = yt+1 − ŷj,t+1|t. Out of sample forecasts are

constructed recursively with an expanding window approach. We estimate each predictive

regression via recursive least-squares starting from an initial window of size t = 1, . . . , k0

and progressively expand the estimation window up to n − 1. Throughout this paper

k0 is taken to be a given a fraction π0 of the sample size and we write k0 = [nπ0] for

some π0 ∈ (0, 1). Under the benchmark model we have θ̂0t =
∑t

s=1 ys/t leading to the

unconditional mean forecasts ŷ0,t+1|t = θ̂0t. Under the larger models estimated with an

intercept and one predictor at a time we have θ̂jt = (
∑t

s=1 w̃j,s−1w̃
′
j,s−1)

−1∑t
s=1 w̃j,s−1ys

for w̃jt = (1, wjt) and wjt ∈ {x1t, . . . , xpt} with forecasts obtained as ŷj,t+1|t = θ̂′jtw̃jt for

t = k0, . . . , n − 1. At the end of this pseudo out-of-sample exercise we obtain the p + 1

sequences of forecast errors {ê0,t+1|t}n−1t=k0
and {êj,t+1|t}n−1t=k0

for j = 1, . . . , p which form the
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basis of our inferences. Throughout this paper the maintained null hypothesis is that the

population MSEs of the benchmark model and the larger models are equal in the sense

that β = 0 in (1) or equivalently model (2) holds. The alternative of interest is that there

is at least one active predictor wjt in the sense that E[ê20,t+1|t − ê2j,t+1|t] > 0 for at least one

j ∈ {1, 2, . . . , p}.

Addressing the two questions stated above raises four key challenges which the meth-

ods developed in this paper address. The first one arises from the fact that we wish to

conduct out of sample predictive accuracy comparisons in a nested setting (e.g. intercept

only model versus single predictor specifications), rendering traditional sample MSE com-

parisons ineffective as under the null hypothesis of equal predictive accuracy all forecast

errors under consideration will be asymptotically identical, leading to normalised sample

MSE spreads identically equal to zero in the limit (and similarly for their variances). The

second challenge is a dimensionality related complication as we wish our methods to be

computationally feasible to implement despite the availability of a potentially large pool

of predictors. The third challenge is related to the need for inferences to remain reliable

regardless of the persistence properties of the predictors. The fourth challenge has to do

with the identification of active predictors upon rejection of the null hypothesis. Although

numerous covariate screening procedures have been developed in the statistics literature

the validity of most of these relies on assumptions that are not tenable in our time series

environment with persistent predictors.

The issue of predictive performance testing in nested environments has attracted consid-

erable attention in the forecasting literature following the observation that Diebold-Mariano

(DM) type constructions (Diebold and Mariano (1995), West (1996)) are not suitable since

under the null hypothesis of equal predictive ability the pair of models being compared

become identical in the limit. Consequently suitably normalised sample MSE spreads and

their variance both converge to zero asymptotically resulting in statistics with ill-defined
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limits. In the context of predictive regressions this problem has been addressed through the

use of alternative normalisations of sample MSEs, resulting in test statistics with well de-

fined but non-standard limits requiring bootstrap based approaches (see McCracken (2007),

West (2006), Clark and McCracken (2013)). The methods we develop in this paper rely on

traditional standard normal asymptotics and do not require any simulation based inferences

which we view as an important advantage from a practitioner’s perspective.

More recently, alternative solutions involving modifications to DM type statistics that

result in conventional standard normal asymptotics regardless of the nested nature of com-

peting models have also been developed in Pitarakis (2020). These are similar in spirit to

the way Vuong type model selection tests (Vuong (1989)) have been recently adapted to

accommodate both nested and non-nested environments via sample splitting and related

approaches (see Schennah (2017), Shi (2015)). This is also the route we will continue to take

in this paper by introducing a novel DM type test statistic for the initial pairwise model

comparisons between the benchmark model in (2) and the p larger models containing one

predictor at a time. The formulation of our test statistic relies on the same principles as

the statistics introduced in Pitarakis (2020) but does not involve any discarding of sample

information. The resulting DM type statistics associated with the p pairwise model com-

parisons are subsequently reassembled into an aggregate statistic designed to test whether

at least one of the p predictors is active in predicting yt+1.

The idea of considering one predictor at a time makes the practical implementation of

our approach trivial regardless of the size of the pool of predictor candidates and is here

justified by the fact that our null hypothesis is given by the benchmark model in (2). This

is very much in the spirit of Ghysels et al. (2020) where the authors developed a procedure

for testing the statistical significance of a large number of predictors through functionals

(e.g. maximum) of multiple individual t-statistics obtained from models estimated with one

regressor at a time and a benchmark model with none of the explanatory variables included.

8



An important advantage unique to our own setting however is the fact that each of the

pairwise DM type statistics will have identical limits under our null hypothesis, making

the exercise of constructing an aggregate statistic trivial. The average of these individual

statistics will by construction also have the same limiting distribution. Differently put we

do not need to be concerned with the behaviour of the covariances of the p individual test

statistics and the nested nature of our setting is here used to our advantage.

Before proceeding further it is also useful to mention the recent but already extensive

literature on screening for relevant predictors in high dimensional settings and which is

related to our second concern of identifying dominant predictors upon rejection of the

benchmark model in (2). In this context, a particularly popular approach has been based

on ranking marginal correlations via marginal linear regressions (see Fan and Lv (2008),

McKeague and Qian (2015)). In McKeague and Qian (2015) for instance the authors

developed a test for the presence of at least one significant predictor via a maximum

correlation type of approach between each predictor and predictand, also assuming a finite

pool of predictors. Within our own context and upon rejection of the benchmark model we

aim to identify at least one of the active predictors among the pool of p predictors using

the above mentioned aggregate test statistic instead. An important aspect accommodated

by our framework is the possibility that the pool of predictors contains dependent series

with different persistence properties in addition to being possibly correlated as it is the

norm with economic data.

We now introduce and motivate the DM type test statistic which will be used to con-

duct pairwise predictive performance comparisons between the benchmark model and each

of the p marginal predictive regression. Recalling that the key complication arising from

the underlying nestedness of models is that in the limit ê20,t+1|t and ê2j,t+1|t will be identi-

cal under the null hypothesis, we propose to use a sample split estimator for the MSE of

the benchmark model instead of the traditional sample mean. This is achieved by split-
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ting the evaluation of the forecast errors associated with the benchmark model across two

subsamples of size m0 and (n− k0)−m0. We formulate our test statistic as

Dn(m0, j) =

√
n− k0
ω̂n

(
1

2

(∑k0+m0−1
t=k0

ê20,t+1

m0

+

∑n−1
t=k0+m0

ê20,t+1

n− k0 −m0

)
−
∑n−1

t=k0
ê2j,t+1

n− k0

)
.(3)

A simple way to interpret (3) is by observing that it is based on the difference in out of

sample MSEs of the benchmark and augmented models as it is the case for most predictive

accuracy testing statistics. The key novelty here is that we estimate the out of sample

MSE of the benchmark model via a sample-split estimator rather than the full sample

mean used for the ê2j,t’s. In generic notation we are essentially estimating an unknown

population mean with Xsplit,n = (X1n +X2n))/2 rather than Xn and within (3) m0 refers

to the chosen location of the sample split. Throughout this paper we take m0 to be a

user-defined parameter and express it as a fraction µ0 of the effective sample size n − k0,

writing m0 = [(n− k0)µ0].

The motivation for proceeding this way is that the formulation in (3) avoids the variance

degeneracy problems associated with nested model comparisons based on traditional DM

type formulations. The basic intuition behind the usefulness of (3) is that even if the

MSEs of the benchmark and alternative models are identical in the limit, the variances of

Xsplit,n and Xn differ thus avoiding the degeneracy problem. More specifically, under the

null hypothesis the numerator of (3) will have a non-degenerate positive limiting variance

provided that µ0 ∈ (0, 1)\{1/2}. The exclusion of the case µ0 = 1/2 is due to the fact that

for such a choice of the splitting location we would have Xsplit,n ≡ Xn bringing us back to

the traditional DM type constructions which are not suitable for nested model comparisons.

We may also think of (3) as a way of robustifying predictive accuracy inferences to the

nestedness/non-nestedness dichotomy. The idea of using averages of subsample means

instead of grand means has been used in a variety of other contexts such as the construction

of more accurate confidence intervals as discussed in Decrouez and Hall (2014) for instance.
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The normaliser ω̂n in the denominator of (3) is understood to be a consistent estimator

of the long run variance of the numerator. Strictly speaking, we may have wished to index

it as ω̂j,n to highlight the fact that it may be estimated using the residuals under the null

or the residuals of the single predictor based augmented models (for each j). This nuance

is naturally inconsequential when it comes to the asymptotics of Dn(m0, j) under the null

hypothesis whereby the benchmark model in (2) holds. It may however have important

implications when it comes to the finite sample power properties of our proposed test, an

issue we study in greater depth further below.

Given the sequences {ê0,t+1|t}n−1t=k0
, {êj,t+1|t}n−1t=k0

and suitable choices for µ0 and ω̂n the

quantities in (3) can be trivially obtained for each possible predictor j, resulting in p such

statistics which we aggregate into the following overall statistic

Dn(m0) =
1

p

p∑
j=1

Dn(m0, j). (4)

A large positive magnitude of Dn(m0) is expected to indicate that at least one of the p

predictors improves the predictability of yt+1 relative to the benchmark model.

REMARK 1: One may be tempted to view inferences based on the Dn(m0, j)’s through

the lens of multiple comparison and reality check type settings and argue for alternative

constructs to (4) such as taking the supremum of these Dn(m0, j)’s due for instance to

power considerations. It is here important to note however that within our setting and

under the null hypothesis of interest to us all Dn(m0, j)’s will be identical in the limit

and in turn identical to Dn(m0). A useful analogy that illustrates this latter point is by

thinking of the p components of Dn(m0) under the global null hypothesis and in the limit as

realisations from the same seed of a random number generator. If we were solely interested

in null asymptotics and had no power concerns then any of the Dn(m0, j)
′s could be viewed

as inter-changeable.

In what follows our first objective is to establish the limiting behaviour of (4) under
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the null hypothesis that there are no active predictors and which we refer to as the global

null. We subsequently assess its local power properties against departures from (2) that

are relevant to practitioners. This also allows us to formalise suitable choices for µ0 in the

practical implementation of (4).

Upon rejection of the null hypothesis the interesting question as to which predictor

is the key driver of predictability arises. Although our goal here is not to develop a new

covariate screening method, our framework does allow us to identify a key predictor through

the analysis of the Dn(m0, j) components that make up the test statistic in (4). We focus

our attention on the following estimator

ĵn ∈ arg max
j=1,...,p

Dn(m0, j) (5)

which we expect to be informative about the most important contributor to predictability

i.e. the predictor that leads to the greatest reduction in out of sample MSEs relative to the

benchmark model and which we refer to as the key player. A limitation of ĵn is of course the

fact that it allows us to identify only a single predictor. Nevertheless, in numerous economic

applications this information can be extremely valuable as it isolates the key player that

causes the rejection of a maintained martingale difference hypothesis for instance.

3 Asymptotics of Dn(µ0) under the benchmark model

Our objective here is to obtain the limiting distribution of Dn(µ0) under the null hypothesis

of no predictability. Our assumptions are collected under Assumption 1 below and consist

of a collection of high level assumptions that are general enough to accommodate most

environments commonly encountered in economics and finance applications.

Assumptions 1. (i) The u′ts form a martingale difference sequence with respect to the

natural filtration and the sequence ηt = u2t+1−E[u2t+1] satisfies
∑[k0+(n−k0)r]

t=k0
ηt/
√
n− k0

d→

φ W (r) for r ∈ [0, 1] with W (r) denoting a standard scalar Brownian Motion and φ2 =
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∑∞
s=−∞ γη(s) > 0 for γη(s) = E[ηtηt+s]. (ii) There is a φ̂2

n such that φ̂2
n

p→ φ2 ∈ (0,∞). (iii)

For given ra ∈ [0, 1] and rb ∈ [0, 1] with ra < rb and under the null hypothesis, the forecast

errors satisfy
∑[(n−k0)rb]

t=[(n−k0)ra](ê
2
`,t+1|t − u2t+1)/

√
n− k0 = op(1) ∀` ∈ {0, 1, 2, . . . , p}. (iv) µ0

satisfies µ0 ∈ (0, 1) \ {1/2}.

Assumption 1(i) rules out the presence of serial correlation in the u′ts and requires the

sequence of demeaned squared errors driving (2) to satisfy a suitable FCLT. We also note

from the expression of φ2 that the u′ts while being serially uncorrelated could be either

conditionally homoskedastic or conditionally hetereoskedastic. Taking the u′ts to be an

m.d.s. with an ARCH type variance combined with mild existence of moments requirements

would satisfy our environment in 1(i). Assumption 1(ii) requires that a consistent estimator

of the long run variance associated with the ηt’s to be available. Letting η̂t denote a

generic estimator of the η′ts a trivial choice under conditional homoskedasticity would be

φ̂2 =
∑

t η̂
2
t /(n−k0) while under conditional heteroskedasticity one may use a Newey-West

type formulation as in Deng and Perron (2008). As we are operating under the global

null, such an estimator is readily available using the residuals from the benchmark model

in (2). Alternative formulations could also be based on the ê0,t+1’s or the êj,t+1’s as also

justified by Assumption 1(iii). The key point to make at this stage is that these options

will have no bearing on the limiting null distribution of Dn(m0). However, such alternative

choices may have an important influence on power, an issue we postpone to further below.

Assumption 1(iii) can be viewed as a correct specification assumption in the sense that

under the null hypothesis squared forecast errors are understood to behave like their true

counterparts. Such a property holds within a broad range of contexts as established in

Berenguer-Rico and Nielsen (2019), including settings with purely stationary or highly

persistent predictors. Assumption 1(iv) imposes a minor restriction on m0 = [(n − k0)µ0]

used in the construction of Dn(µ0) to ensure that it has a non-degenerate asymptotic

variance. To gain further intuition on this important point it is useful to explicitly evaluate
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the limiting variance, say ω2, of the numerator of (3) under the null hypothesis. Replacing

ê20,t+1 and ê2j,t+1 with ηt+1 = u2t+1−E[u2t+1] in (3), rearranging and taking expectations (see

Lemma A1 in the appendix) results in

ω2 =
(1− 2µ0)

2

4µ0(1− µ0)
φ2 (6)

so that the availability of a consistent estimator for φ2 also ensures that ω2 can be estimated

consistently provided that µ0 satisfies Assumption 1(iv). Expression (6) also highlights the

well known variance degeneracy problem one would face in this context if we had instead

used the full sample mean associated with the forecast errors of the benchmark model by

setting µ0 = 1/2.

Proposition 1. Under the benchmark model in (2), assumptions 1(i)-(iv) and as n→∞

we have
Dn(µ0)

d→ Z (7)

with Z denoting a standard normally distributed random variable.

As it is customary in this literature (7) is implemented using one-sided (right tail) tests

so that a rejection of the null provides support for the availability of at least one active

predictor that helps generate more accurate forecasts than the benchmark model.

4 Asymptotic Local Power Properties of Dn(µ0)

We next explore the ability of Dn(µ0) to detect predictability induced by one or more of

the available p predictors. Two aspects we are interested in exploring are the influence of

the persistence properties of predictors on power and the role played by the choice of µ0 in

Dn(µ0). We analyse local power within the following parameterisation

yt+1 = β′nxt + ut+1 (8)

with βn = n−γβ∗ for β∗ = (β∗1 , . . . , β
∗
p)
′, noting that within (8) all but one of the β∗i ’s may

be zero. We let
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I∗ = {1 ≤ j ≤ p : β∗j 6= 0} (9)

denote the set of active predictors with |I∗| = q ≥ 1 referring to the size of the true model.

In what follows we establish the local power properties of Dn(µ0) across three scenarios.

In a first instance we take all p components of xt to be stationary and ergodic processes

(scenario A). We then focus on the case where the xt’s are parameterised as persistent

processes (scenario B). Finally our last scenario sets xt = (x1,t,x2,t)
′ with x1,t and x2,t

containing non-persistent and persistent predictors respectively (scenario C). In this latter

case (8) takes the following form

yt+1 = β′1nx1t + β′2nx2t + ut+1 (10)

with x1t = (x1,t, . . . , xp1,t) and x2t = (xp1+1,t, . . . , xp,t) so that the pool of p predictors is sub-

divided into two types. The slope parameter vectors are in turn specified as β1n = n−γ1β∗1

for β∗1 = (β∗1,1, . . . , β
∗
1,p1

)′ and β2n = n−γ2β∗2 for β∗2 = (β∗2,p1+1, . . . , β
∗
2,p)
′. This mixed

environment requires us to also modify the formulation of the active set of predictors

included in the DGP. For this purpose we let

I∗1 = {1 ≤ j ≤ p1 : β∗1,j 6= 0} (11)

I∗2 = {p1 + 1 ≤ j ≤ p : β∗2,j 6= 0} (12)

with |I∗1 | = q1 and |I∗2 | = q2. In this setting the specification in (10) has q1 active predictors

satisfying scenario A and q2 active predictors satisfying scenario B.

Assumption 2A summarises our operating framework when all predictors are assumed

to be purely stationary.

Assumption 2A. (i) Assumptions 1(i), 1(ii) and 1(iv) hold. (ii) The model in (8) holds

with γ = 1/4. (iii) The p predictors satisfy supλ∈[0,1] |
∑[nλ]

t=1 xitxjt/n − λE[xitxjt]| = op(1)

and
∑[nλ]

t=1 xitut+1/
√
n = Op(1) for i, j = 1, . . . , p.

Note that part (i) of Assumption 2A excludes 1(iii) as we are no longer operating under

the null hypothesis. Part (ii) sets the rate at which we explore departures from the null.
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The remainder parts essentially require that a uniform law of large number applies to the

predictors and that a suitable CLT holds ensuring the uniform boundedness of relevant

sample moments. Another important point to make here is that under the local to the null

specification in (8) the residual variance estimated from the benchmark model will continue

to remain consistent so that Assumption 1(ii) requiring φ̂2 p→ φ2 continues to hold when

estimated using the residuals from the benchmark model or any of the alternative choices

mentioned earlier.

Regarding the scenario with persistent predictors we parameterise these as mildly inte-

grated processes via

xjt =
(

1− cj
nα

)
xjt−1 + vjt j = 1, . . . , p (13)

where cj > 0, α ∈ (0, 1) and vjt denotes a random disturbance term. The high level

assumptions we impose under Assumption 2B explicitly accommodate dynamics such as

(13) and follow directly from Phillips and Magdalinos (2009). We also let Σvv denote the

p× p covariance of the v′jts and refer to its diagonal components as σ2
vj

and its off-diagonal

components as σvivj respectively.

Assumption 2B. (i) Assumptions 1(i), 1(ii) and 1(iv) hold. (ii) The model in (8) holds

with γ = (1+2α)/4 for α ∈ (0, 1). (iii) The p predictors follow the process in (13) and satisfy∑[nλ]
t=1 xitxjt/n

1+α p→ λσvivj/(ci+cj),
∑[nλ]

t=1 x
2
jt/n

1+α p→ λσ2
vj
/(2cj) and

∑[nλ]
t=1 xjtut+1/n

1+α
2 =

Op(1) for i, j = 1, . . . , p.

In the context of our specification in (8), Assumption 2B(iii) is guaranteed to hold when

the predictors follow the mildly integrated process in (13) as established in Lemmas 3.1-3.3

of Phillips and Magdalinos (2009). Our last assumption accommodates an environment

that combines stationary and persistent predictors.

Assumption 2C. (i) Assumptions 1(i), 1(ii) and 1(iv) hold. (ii) The model in (10) holds

with γ1 = 1/4 and γ2 = (1 + 2α)/4 for α ∈ (0, 1). (iii) The pool of p predictors consists

of p1 predictors satisfying Assumptions 2A(ii)-(iii) and p2 = p − p1 predictors satisfying
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Assumptions 2B(ii)-(iii).

Local Power under Stationarity (scenario A)

Proposition 2A: Under Assumption 2A, q : = |I∗| active predictors in (8) with associated

slope parameters βi = n−1/4β∗i for i ∈ I∗, and as n→∞ we have

Dn(µ0)
d→ Z + g(µ0, π0, φ)

1

p

p∑
j=1

∑
i∈I∗

β∗i
E[xitxjt]√
E[x2jt]

2

(14)

where

g(µ0, π0, φ) =
2
√

1− π0
√
µ0(1− µ0)√

φ2(1− 2µ0)
. (15)

The result in (14) establishes the consistency of our proposed test and its ability to

detect departures from the constant mean model in (2) when predictors are taken to be

stationary processes. The expression in (14) and its counterparts under persistence pre-

sented further below offer novel insights on the asymptotic behaviour of predictive accuracy

comparisons not explored in the existing literature. We can also observe that power is mono-

tonic as the non-centrality component in (14) is non-decreasing as the slope parameters of

the active predictors increase. Another implication of (14) is that under fixed alternatives

Dn(µ0)→∞ and more specifically

Dn(µ0)
H1= Op(

√
n). (16)

REMARK 2. The local power result in Proposition 2A has been obtained under local

departures from the null that are of order n−1/4 rather than the conventional square root

rates one typically observes in stationary environments. This is not due to the way the test

statistic Dn(µ0) has been constructed or to our inference framework in general. The main

reason for operating under such a rate comes from the use of squared errors which result

in the squaring of the relevant parameters in the DGP.

To gain further intuition on the formulation of the second component in the right

hand side of (14) it is useful to specialise the result to a single active predictor scenario.
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Suppose that there is a single active predictor, say xat, with associated slope parameter

βan = n−1/4β∗a. It now follows directly from (14) that

Dn(µ0)
d→ Z + g(µ0, π0, φ) (β∗a)

2 E[x2at]
1

p

p∑
j=1

ρ2a,j. (17)

It is here interesting to note the role played by the correlation between the single

predictor xat driving the DGP in (8) and the remaining components of the predictor pool

(i.e. the irrelevant candidates). The higher this correlation is the stronger we expect

power to be. This clearly conforms with intuition since the models are estimated with one

predictor at a time. A particular fitted specification containing a predictor other than xat

and therefore misspecified will nevertheless continue to dominate the intercept only model

in an MSE sense provided that this pseudo-signal contains relevant information about xat.

Note also that this does not mean that in an environment where all predictors in the pool

are uncorrelated with xat power will vanish as we have ρ2a,a = 1 by construction, implying

that the second component in the right hand side of (17) will always be strictly positive

under our assumptions. Note however that in such instances where all candidate predictors

are uncorrelated with xat the size of the predictor pool p will have a detrimental impact on

power, all other things kept equal.

Another important implication of (17) is the favourable impact that the variance of xat

has on power. The more persistent xat is, the better the power is expected to be. This

hints at the fact that all other things being equal the presence of persistent predictors in

the pool will improve the detection ability of our test. We can also note that the role of

persistence may manifest itself not only via E[x2at] but also via ρ2a,j due to the spurious

correlation phenomenon characterising persistent processes. These issues are explored in

the next proposition.

Local Power under Persistence (scenario B)

Proposition 2B: Under Assumption 2B, q = |I∗| active predictors in (8) with slope
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parameters βi = n−(1+2α)/4β∗i for i ∈ I∗ and as n→∞ we have

Dn(µ0)
d→ Z + g(µ0, π0, φ)

1

p

p∑
j=1

∑
i∈I∗

β∗i
σvivj√
σ2
vj

√
2cj

(ci + cj)2

2

(18)

with g(µ0, π0, φ) as in (15).

The result in (18) highlights the beneficial impact that predictor persistence will have on

the detection ability of Dn(µ0). This can also be observed by focusing on fixed alternatives

under which we can immediately infer from (18) that

Dn(µ0)
H1= Op(n

1+2α
2 ). (19)

If we were to restrict all predictors to have the same non-centrality parameter, say ci = c

∀i = 1, . . . , p, (18) reduces to

Dn(µ0)
d→ Z + g(µ0, π0, φ)

1

p

1√
2c

p∑
j=1

∑
i∈I∗

β∗i
σvivj√
σ2
vj

2

(20)

which also suggests that all other things being equal power is expected to improve for

smaller magnitudes of this non-centrality parameter.

Local Power under Mixed Predictors (scenario C)

The pool of predictors now consists of p1 purely stationary and p2 persistent predictors

with p1 + p2 = p and we let J1 and J2 denote the sets associated with the stationary and

persistent predictors respectively so that |J1| = p1 and |J2| = p− p1.

Proposition 2C: Under Assumption 2C, q1 = |I∗1 | and q2 = |I∗2 | active predictors in (10)

with slope parameters β1,i = n−1/4β∗1,i for i ∈ I∗1 and β2,i = n−(1+2α)/4β∗2,i for i ∈ I∗2 we have

as n→∞

Dn(µ0)
d→ Z +

g(µ0, π0, φ)

p

∑
j∈J1

∑
i∈I∗1

β∗i
E[xitxjt]√
E[x2jt]

2

+
∑
j∈J2

∑
i∈I∗2

β∗i
σvivj√
σ2
vj

√
2cj

(ci + cj)2

2
 (21)

with g(µ0, π0, φ) as in (15).

REMARK 3. The expressions in (14), (18), (21) provide useful insights on suitable choices

of µ0 when constructing our test statistic. As µ0 affects local power via g(µ0, π0, φ) a choice

in the vicinity of 0.5 is expected to lead to the most favourable power outcomes.
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5 A Power enhancing modification of Dn(µ0)

We here consider a modification of Dn(µ0) designed to enhance its power without affecting

its null distribution. Our proposal is in the spirit of Fan, Liao and Yao (2015) and involves

augmenting the test statistic with a quantity that converges to 0 under the null while

diverging under the alternative of at least one active predictor. Consider for instance the

quantity dnj =
∑n−1

t=k0
(ê0,t+1|t − êj,t+1|t)

2/(n − k0). Within our nested context and under

the null of the benchmark model we have dnj = Op(n
−1/2) ∀j = 1, . . . , p while under

the alternative whereby the true model contains at least one active predictor we have

d̃nj ≡
√
n− k0 dnj/ω̂n = Op(1) ∀j = 1, . . . , p with the associated limiting random variable

being strictly positive. This prompts us to propose the following augmentation to Dn(m0)

Ddn(m0) =
1

p

p∑
j=1

(Dn(m0, j) + d̃nj) (22)

which we expect to be power enhancing while being size-neutral. Noting that

Ddn(m0)−Dn(m0) =
1

p

p∑
j=1

d̃nj (23)

Proposition 3 below formalises these observations.

Proposition 3. (i) Under Assumptions 1(i)-(iv) and the null hypothesis we have Ddn(m0)−

Dn(m0)
p→ 0 as n → ∞. (ii) Under Assumptions 2A, 2B or 2C we have Ddn(m0) −

Dn(m0)
p→ Q` > 0, ` = A,B,C with Q` given by the second component in the right hand

side of (14), (18) and (21) respectively.

A key implication of Proposition 3 (ii) is that a test of size α based on Ddn(µ0) will be

strictly preferable in terms of local power to a test of the same size based on Dn(µ0). A

more formal comparison using Pitman’s asymptotic relative efficiency is also informative as

it takes a particularly simple form in the present context. Indeed, our local power results

in (14), (18), (21) combined with Proposition 3(ii) above imply that

ARE(Dn(µ0),Ddn(µ0)) = 1/2 < 1 (24)
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irrespective of any model specific parameters.

REMARK 4: The above power enhancing tranformation based on d̃nj is analogous to

implementing an adjustment to the forecast errors associated with the larger models. More

specifically, implementing our main test statistic in (3) with the ê2j,t+1’s replaced with say

ẽ2j,t+1 = ê2j,t+1 − (ê0,t+1 − êj,t+1)
2 results in a formulation that is algebraically identical

to (22). It is now interesting to observe that these ẽ2j,t+1’s are essentially adjusting the

ê2j,t+1’s for estimation noise coming from the estimation of the larger model when its true

parameters are zero. This is precisely the motivation behind the well known Clark and

West adjustment to equal predictive accuracy tests proposed in Clark and West (2007).

Unlike the setting in Clark and West (2007) however our proposed test statistics result in

formal normal limits rather than approximate ones.

6 Detecting the key player

Upon rejection of the benchmark model it becomes interesting to explore ways of iden-

tifying the predictors driving these departures from the null hypothesis. In this context

we distinguish between two settings and obtain the corresponding limiting behaviour of

ĵn ∈ arg maxj=1,...,pDn(m0, j) and ĵdn ∈ arg maxj=1,...,pDdn(m0, j) which select the predictor

that results in the greatest MSE spread relative to the benchmark model.

In a first instance we evaluate the large sample behaviour of these estimators when the

DGP contains a single active predictor (i.e. q = |I∗| = 1 in (9)) that can be either sta-

tionary or persistent. We subsequently extend our analysis to environments with multiple

predictors that are again assumed to be of the same type in their persistence properties

(i.e. all stationary or all persistent). Finally we consider the case of mixed predictors as

in (11)-(12) with the joint presence of stationary and persistent active predictors number-

ing q1 and q2 respectively. The large sample behaviour of these key player estimators is

summarised in the following Proposition.
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Proposition 4. (i) Under Assumptions 2A or 2B and as n→∞ we have {ĵn, ĵdn}
p→ j0 ∈

I∗ for q ≥ 1. (ii) Under Assumptions 2C and as n→∞ we have {ĵn, ĵdn}
p→ j0 ∈ I∗1 ∪I∗2 .

When the DGP consists solely of a single predictor (stationary or persistent), part (i) of

Proposition 4 implies that ĵn or ĵdn will be consistent for that true predictor asymptotically.

When there are multiple predictors of the same type the same result implies that ĵn or ĵdn

remain consistent for one of the q > 1 active predictors i.e. ĵn or ĵdn is consistent for one

of the true components in I∗. Part (ii) of Proposition 4 relates to a scenario with mixed

active predictors and states that in such a mixed setting ĵn or ĵdn will continue to point to

one of the true predictors which may come from either of the two sets.

Using the results provided in the proof of Proposition 4 it is useful to illustrate the mixed

predictor scenario via a simple example of a predictive regression with two active predictors,

say yt+1 = βanxat + βbnxbt + ut+1 with xat ∈ I∗1 , xbt ∈ I∗2 and as before βan = β∗a/n
1/4

and βbn = β∗b /n
(1+2α)/4. Proposition 4(ii) clearly applies and implies that ĵn or ĵdn will

asymptotically point to either xat or xbt. More specifically (see proof of Proposition 4), we

have that ĵn or ĵdn will asymptotically point to xbt (the persistent predictor) if

(β∗b )
2 >

E[x2at]

(σ2
vb
/2cb)

(β∗a)
2 (25)

and to xat otherwise. It is now interesting to observe from (25) that ĵn or ĵdn is expected to

pick xbt when the squared slope associated with this predictor exceeds the scaled slope of

xat with the scaling factor given by the ratio of the variances of the two predictors. As the

ratio of these variances is likely to be small due the higher persistence of xbt the procedure

is also more likely to identify the persistent predictor unless the slope associated with xat

is particularly large relative to that of xbt. More generally, these results suggest that the

key player selected by our proposed methods will depend on the relative magnitude of

its associated slope combined with its relative variance (relative to the remaining active

predictors). Thus when it comes to where ĵn or ĵdn point asymptotically, there will be a
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trade-off between slope strength and variance dominance.

7 Implementation and Experimental Properties

This section aims to document the empirical properties of our proposed test and key player

estimator in finite samples. Given our theoretical analysis about the superior local power

properties of Ddn(µ0) versus Dn(µ0) we concentrate our discussion on Ddn(µ0) which we

then follow with experiments documenting the correct decision frequencies associated with

the proposed key player estimators. A supplementary appendix accompanying this paper

provides additional simulation based illustrations of the finite sample behaviour of our

proposed tests.

Implementation : The implementation of our test statistics in (3) and (4) requires the

availability of an estimator of the long run variance associated with the numerator of

(3) which we generically referred to as ω̂2
n. The asymptotic outcomes documented above

operated under the assumption that an estimator satisfying ω̂2
n

p→ ω2 was available. Given

the expression of ω2 obtained in (6) and the fact that we operate under given µ0 it is also

clear that a consistent estimator of φ2 would also ensure the availability of a consistent

estimator of ω̂2
n.

We may consider two alternative estimators of the long run variance in (3) using either

residuals from the null model or the marginal regressions considered under the alterna-

tive. From Assumption 1(iii) it is straightforward to note that these will be asymptotically

equivalent under the null hypothesis of interest but they may result in potentially impor-

tant differences in finite samples, when it comes to power in particular. For conditionally

homoskedastic η′ts we consider

ω̂2,a
n =

(1− 2µ0)
2

4µ0(1− µ0)

∑n−1
t=k0(ê

2
0,t+1 − ê20)2

n− k0
, (26)

ω̂2,b
n,j =

(1− 2µ0)
2

4µ0(1− µ0)

∑n−1
t=k0(ê

2
j,t+1 − ê2j)2

n− k0
. (27)
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which can also be readily adapted to accommodate conditionally heteroskedastic u′ts (equiv-

alently, serial correlation in the η′ts) using Newey-West type formulations. Letting η̂t denote

a generic estimator of ηt, such an estimator for the counterpart to ω̂2,a
n above would be given

by

ω̃2,a
n =

(1− 2µ0)
2

4µ0(1− µ0)

m∑
s=−m

(
1−

∣∣∣∣ s

n− k0

∣∣∣∣) γ̂η(s) (28)

where γ̂η(s) =
∑
η̂tη̂t−s/n− k0 for η̂t = û20,t+1 − σ̂2

0,u and similarly for (27). Note that (28)

specialises to (26) under conditional homoskedasticity, whereby γη(s) = 0 ∀s 6= 0 and m

refers to a suitable bandwidth for which one may consider the rule of thumb m = mn =

0.75(n−k0)1/3. In the simulations presented below we analyse finite sample size and power

using the variance normaliser in (27).

Empirical Size : The DGP is given by the benchmark specification in (2). The pool of

p predictors is taken to follow the VAR(1) process xt = Φxt−1 + vt with vt ∼ N(0,Σvv)

which we parameterise in ways that can distinguish between uncorrelated, weakly correlated

and strongly correlated predictors. We consider the following scenarios for the persistence

properties of the predictors: (A) Φ = 0.50 Ip, (B) Φ = 0.95 Ip and (C) Φ = (Φ1,Φ2),

Φ1 = 0.5 Ip1 , Φ2 = 0.95 Ip−p1 . Letting Ω denote the covariance matrix of (ut,vt)
′ we write

Ωp+1×p+1 =

 σ2
u σ′uv

σuv Σvv

 (29)

where σuv = (σuv1 , σuv2 , . . . , σuvp)
′ collects the covariances between the shocks to yt and the

shocks to individual predictors and Σvv is the p× p covariance matrix of the p predictors.

Our experiments involving either purely stationary, purely persistent or mixed predictors

are conducted across three configurations of Ω: (i) Ω0: σ
2
u = 1,σuv = 0p×1,Σvv = Ip, (ii)

Ω1: σ
2
u = 1,σuv = 0p×1,Σvv = [0.5|i−j|]i,j and (iii) Ω2: σ

2
u = 1,σuv = [(−0.5)j]j,Σvv =

[0.5|i−j|]i,j. Accordingly we label these size related DGPs as (A-i)-(A-iii), (B-i)-(B-

iii) and (C-i)-(C-iii). Scenario (i) forces all p predictors to be uncorrelated between
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themselves. It also requires the shocks to the predictors and the shocks to the predictand

to be uncorrelated as does scenario (ii). In this latter case predictors are now allowed to

be correlated. Finally scenario (iii) allows for the shocks to predictand and predictors to

be contemporaneously correlated.

Empirical size outcomes are obtained for p ∈ {10, 50, 500} and samples of size n = 500

with π0 = 0.25 used as the starting point for generating recursive forecasts i.e. n−k0 = 375.

For the sample-split location of our test statistic we experiment with µ0 ∈ {0.35, 0.40, 0.45}.

Results are collected in Table 1 below using 5000 Monte-Carlo replications and a nominal

size of 10%. It is worth pointing out that the case p = 500 implies an environment where

the number of predictors exceeds the effective sample size of n− k0 = 375. Recalling that

our main result in Proposition 1 is obtained under n → ∞, our chosen parameterisations

of the pair (n, p) is meant to illustrate the finite sample adequacy of our asymptotics even

when n lies below p or is near p.

From Table 1 we can note that the one predictor at a time approach based on Ddn(µ0)

appears to be robust to the dimension of the predictor pool with almost identical size

estimates obtained across p = 10, p = 50 and p = 500 predictors. This highlights the

excellent approximation provided by our asymptotics even when n− k0 is smaller than p.

Outcomes can also be seen to be robust to predictor persistence as expected from our result

in Proposition 1. Equally importantly, we can highlight the fact that the chosen sample

split location µ0 has very little influence on outcomes with almost identical empirical sizes

obtained across all chosen magnitudes of µ0. This is particularly important as our earlier

local power analysis suggested that choosing µ0 in the vicinity of 0.5 should result in better

power outcomes, all other things being equal.

Empirical Power : We consider predictive regressions with up to four active predictors

parameterised as

yt+1 = βanxa,t + βbnxb,t + βcnxc,t + βdnxd,t + ut+1 (30)
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Table 1: Empirical Size of Ddn(µ0) (10% Nominal)

µ0 p=10 p=50 p=500 p=10 p=50 p=500 p=10 p=50 p=500

A(i) A(ii) A(iii)

0.35 0.106 0.102 0.103 0.107 0.103 0.103 0.105 0.103 0.103

0.40 0.108 0.103 0.104 0.109 0.105 0.106 0.108 0.105 0.106

0.45 0.109 0.093 0.100 0.115 0.093 0.100 0.114 0.094 0.100

B(i) B(ii) B(iii)

0.35 0.105 0.103 0.103 0.106 0.102 0.103 0.107 0.102 0.103

0.40 0.114 0.105 0.105 0.114 0.104 0.104 0.114 0.104 0.104

0.45 0.116 0.099 0.101 0.119 0.100 0.103 0.122 0.100 0.103

C(i) C(ii) C(iii)

0.35 0.106 0.103 0.103 0.105 0.102 0.102 0.105 0.102 0.102

0.40 0.110 0.104 0.103 0.109 0.106 0.103 0.109 0.106 0.103

0.45 0.115 0.093 0.100 0.119 0.098 0.102 0.118 0.099 0.102

with βan = β∗a/n
0.25, βbn = β∗b /n

0.25, βcn = β∗c/n
0.675, and βdn = β∗d/n

0.675. The two

predictors labelled as {a, b} are chosen to be non-persistent while the predictors labelled

as {c, d} will have more persistence. Accordingly it will be understood that the pool of

predictors to which {xat, xbt, xct, xdt} belong is generated from a VAR(1) parameterised as

in (C-iii) above. The active predictors {xat, xbt} belong to the first set of p1 predictors and

{xct, xdt} belong to the second set of p − p1 predictors. We take xat = x1t, xbt = x2t and

xct = xp1+1,t, xdt = xp1+2,t. The local parameterisations of the slope parameters are chosen

in a way to be compatible with our earlier local power analysis where we documented local

departures of n−0.25 under the stationary setting and n−(1+2α)/4 under mild integratedness.

For this latter case, setting α = 0.85 in the mildly integrated process in (3) results in

(1+2α)/4 = 0.675. As these persistent predictors are driven by the VAR(1) component with

slopes 0.95 we may also note that this corresponds roughly to (1−c/nα) = (1−10/5000.85) ≈

0.95.
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We consider 3 DGP configurations: (i) β∗a ∈ {2, 3, 4, 5}, β∗b ∈ {5, 6, 7, 8}, β∗c = 0,

β∗d = 0, (ii-a) β∗a = 0, β∗b = 0, β∗c ∈ {2, 3, 4, 5}, β∗d ∈ {5, 6, 7, 8} and (ii-b) β∗a = 0,

β∗b = 0, β∗c ∈ {5, 6, 7, 8}, β∗d ∈ {8, 9, 10, 11}. Scenario (i) involves two active predictors

xat and xbt that are not persistent (i.e., selected from the pool of p1 predictors that follow

autoregressive processes with slopes equal to 0.5). Scenarios (ii-a) and (ii-b) involve two

active predictors xct and xdt selected from the remaining pool of p−p1 persistent predictors.

Relative to (ii-a), DGP (ii-b) is characterised by a stronger signal to noise ratio.

It is also useful to point out that with n = 500 the chosen slope parameterisations

translate into βan ∈ {0.422, 0.634, 0.845, 1.057} and βbn ∈ {1.057, 1.269, 1.480, 1.692} for

scenario (i), βcn ∈ {0.030, 0.045, 0.060, 0.075} and βdn ∈ {0.075, 0.090, 0.106, 0.121} for

scenario (ii-a), βcn ∈ {0.075, 0.090, 0.106, 0.121} and βdn ∈ {0.121, 0.136, 0.151, 0.166} for

scenario (ii-b). These highlight the fact that power is evaluated as the DGP moves further

away from the null under a fixed sample size set at n = 500. We also note that the above

slope magnitudes span low, medium and high signal to noise ratios.

Our power experiments are implemented using a predictor pool of p = 100 predictors

with the first half consisting of autoregressive processes with slopes set at 0.50 and the

second half having slopes of 0.95. All experiments are implemented using the covariance

structure labelled as Ω2 above. Outcomes associated with Ddn(µ0) are collected in Table 2.

We note that power increases towards 100% as the slope parameters move away from

the null (each column of Table 2 corresponds to one pair of slopes, and moving rightwards

along the table illustrates power progression for larger departures from the null). Under

DGP(i) empirical powers lie in the vicinity of 100% for µ0 ≥ 0.40 and across all slope

parameterisations. DGP(ii-a) is associated with much weaker signal to noise ratios which

as expected translate into much less favourable empirical powers. Nevertheless we do

note powers as high as 75% even in this context. Here it is important to recall that this

DGP consists solely of persistent predictors. Had we used the slope magnitudes (βan, βbn)
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instead of (βcn, βdn) in this context all empirical powers would have resulted in 100% or

nearly 100% correct decision frequencies. This can also be inferred from the outcomes

based on DGP (ii-b) which uses larger slope magnitudes for the same persistent predictor

scenario. Under (βcn, βdn) = (0.121, 0.166) which are much lower than the most favourable

slope pairs considered in DGP(i) for instance we note empirical power outcomes in excess

of 90%.

Table 2: Empirical Power of Ddn(µ0) under DGPs (i)-(ii)

DGP (i)

βan 0.423 0.634 0.846 1.057

βbn 1.057 1.269 1.480 1.692

µ0 = 0.35 0.829 0.936 0.976 0.991

µ0 = 0.40 0.977 0.997 1.000 1.000

µ0 = 0.45 1.000 1.000 1.000 1.000

DGP (ii-a)

βcn 0.030 0.045 0.060 0.075

βdn 0.075 0.090 0.106 0.121

µ0 = 0.35 0.174 0.231 0.304 0.346

µ0 = 0.40 0.217 0.296 0.391 0.464

µ0 = 0.45 0.349 0.500 0.641 0.747

DGP (ii-b)

βcn 0.075 0.090 0.106 0.121

βdn 0.121 0.136 0.151 0.166

µ0 = 0.35 0.337 0.399 0.464 0.492

µ0 = 0.40 0.455 0.533 0.604 0.655

µ0 = 0.45 0.742 0.827 0.885 0.924

Finite Sample Properties of the key player estimator : In this last set of ex-

periments we illustrate the result in Proposition 3 by documenting the behaviour of the

proposed key player estimator as n is allowed to grow. We base our evaluation of ĵdn on its
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ability to point to one of the true underlying active predictors. Although this estimator

would be typically implemented upon rejection of the null hypothesis our empirical results

below are understood to be unconditional in the sense that the correct decision frequencies

associated with ĵdn’s are averaged across all realisations rather than the ones associated with

rejections of the null. This is justified here on the basis that ĵdn may still point to the true

predictor (or one of the true predictors) even if the underlying inferences based on Ddn(µ0)

do not result in a rejection of the null. Differently put, the realised magnitude of Ddn(µ0)

could still be the largest amongst the j = 1, . . . , p realisations even if it falls below the null

hypothesis rejection threshold.

The DGPs parallel the specifications labelled as (i)-(ii) in our earlier power analysis. The

number of predictors is set at p = 100 throughout. The specific parameterisations are: (i)

(βan, βbn) = (0.634, 1.269), xat = x1t, xbt = x2t, (ii-a) (βcn, βdn) = (0.075, 0.121), xct = x51,t,

xdt = x52,t, (ii-b) (βcn, βdn) = (0.106, 0.151), xct = x51,t, xdt = x52,t. We implement the

above experiments across samples of size n = 100 and n = 200. In DGP(i) the active

predictors are j0 ∈ {1, 2}. In DGPs (ii-a) and (ii-b) we have j0 ∈ {51, 52}. Results are

collected in Table 3 which displays relevant correct decision frequencies. An important

primary observation we can make is the similarity of outcomes across the different sample

split locations (i.e., choices for µ0) whose choice clearly does not matter much. For DGP (i)

our estimator picks up j0 = 2 in excess of 99% of the times even under (n = 100, p = 100).

The preference for j0 = 2 over j0 = 1 which is also included as an active predictor is due to

the much larger slope associated with x2t combined with the fact that these predictors have

the same variance. For DGP (ii-a) which is driven by the two active predictors x51,t and

x52,t we note that the bulk of ĵdn’s decision frequencies converge towards x52,t (e.g., about

70% under n = 200). This can again be explained by the fact that x52,t has a stronger

signal due to its larger slope parameter. Similar outcomes also characterise DGP (ii-b).
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Table 3: Key Player Estimators: Frequency of detection of active predictors

µ0 = 0.35 µ0 = 0.40 µ0 = 0.45 µ0 = 0.35 µ0 = 0.40 µ0 = 0.45

n=100 n=200

DGP − (i), j0 ∈ {1, 2}

ĵdn = 1 0.009 0.009 0.009 0.000 0.000 0.000

ĵdn = 2 0.991 0.991 0.991 1.000 1.000 1.000

DGP − (ii− a), j0 ∈ {51, 52}

ĵdn = 51 0.184 0.182 0.183 0.235 0.235 0.234

ĵdn = 52 0.413 0.414 0.413 0.703 0.702 0.703

ĵdn 6= {51, 52} 0.403 0.404 0.404 0.062 0.063 0.063

DGP − (ii− b), j0 ∈ {51, 52}

ĵdn = 51 0.252 0.253 0.252 0.270 0.271 0.270

ĵdn = 52 0.508 0.508 0.508 0.705 0.705 0.705

ĵdn 6= {51, 52} 0.239 0.239 0.239 0.025 0.025 0.025

8 Application: Predictability of Economic Activity

We apply our methods to the predictability of US economic activity and the monthly

growth rate in industrial production in particular. The predictor pool consists of 130

lagged monthly series drawn from the FRED-MD database whose detailed constituents

are discussed in McCracken and Ng (2016). These series have also been transformed and

outliers processed as documented in McCracken and Ng (2016). FRED-MD consists of

eight groups of time series and is closely aligned with the early Stock and Watson dataset

(Stock and Watson (2002)): (1) output and income, (2) labor market, (3) housing, (4)

consumption, (5) money and credit, (6) interest and exchange rates, (7) prices and (8)

stock-market. Our selection of 130 predictors follows Giannone, Lenza and Primiceri (2021,

GLP2021) using the data vintage provided by the authors and the same sample range

of February 1960 to December 2014. This allows us to make comparisons between the

inferences developed in this paper and existing findings in the literature. Recalling that
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our forecasts are generated recursively we set the starting point of the first recursion at

the 165th month (i.e., k0 = [658(0.25)] = 165). We implement our inferences across µ0 ∈

{0.30, 0.35, 0.40, 0.45} and consider both the “raw” Dn(µ0) statistic and its power enhanced

counterpart Ddn(µ0). We also implement these two test statistic formulations using variance

normalisers based on residuals obtained under the null and the alternative. Accordingly

we label these four versions as Dn(µ0)0, Ddn(µ0)0, Dn(µ0)1 and Ddn(µ0)1.

Table 4 presents the p-values associated with testing the global null of no predictability.

We note strong rejections of the null across all implementations. US economic activity

is clearly predictable using past macroeconomic information. More importantly our key-

player estimator based on either of the four formulations of our test statistic identifies the

same series given by the ISM: New Orders Index (coded as NAPMNOI and numbered as 61

in FRED-MD). This is a monthly index published by the Institute for Supply Management

and informing about the number of surveyed businesses reporting increased customer orders

relative to the previous month. It is interesting that our key-player estimator has pointed

to this predictor as NAPMNOI is the first forward looking indicator made public early

each month. This variable has been found to be an important predictor of US recessions in

Liu and Moench (2016) but perhaps more interestingly here, NAPMNOI can also be seen

to be the most important predictor detected through the Bayesian methods developed in

GLP2021. In their Figure 6 (GLP2021, p. 2425) this variable can be seen to be amongst the

ones having the highest probabilities of inclusion. The picture is even clearer in Fava and

Lopes (2020, FL2020) who have reconsidered GLP2021’s study by evaluating its sensitivity

to the chosen priors. Figure 7 in FL2020 clearly points to the 61th predictor as the one

having a 100% probability of of inclusion as a predictor of the US growth rate in industrial

production.

Although going beyond the detection of a key-player is beyond our scope it is interesting

to evaluate leading predictors beyond the argmax of Ddn(µ0). Table 5 isolates the top 6
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Table 4: p-values

µ0 0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45

Dn(µ0)0 0.000 0.001 0.003 0.001 Dn(µ0)1 0.000 0.001 0.002 0.000

Ddn(µ0)0 0.000 0.000 0.000 0.000 Ddn(µ0)1 0.000 0.000 0.000 0.000

predictors leading to the highest magnitudes of Ddn(µ0). We note a cluster of interest rate

related predictors and a labour market indicator. It is again interesting to point out that

predictors 92 and 39 also appear amongst the predictors with the highest probabilities

of being included in both GLP2021 and FL2020. The heatmap presented in Figure 6 of

GLP2021 (p. 2425) does also show a clustering of active predictors with IDs in the 90s

range as in our Table 5.

Table 5: Key Player and Top 5 predictors

Fred-MD ID Fred-MD Code Description

61 NAPMNOI ISM: New Orders Index

96 T1YFFM 1-Year Treasury C Minus FEDFUNDS

95 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS

92 BAA Moodys Seasoned Baa Corporate Bond Yield

93 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS

39 NDMANEMP All Employees: Nondurable goods

9 Conclusions

We proposed a method for detecting the presence of out-of-sample predictability in the

context of linear predictive regressions linking a response variable to one or more lagged

predictors. An important novelty of our approach is its robustness to the dynamic prop-

erties of predictors which can be noisy, persistent or a mixture of both. In addition, our

approach is able to accommodate a large number of predictors at little computational cost

and has been shown to be very reliable even in contexts where the effective sample size is

smaller than the available pool of predictors and this despite an asymptotic theory that
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operates solely under n → ∞. As argued in McKeague and Qian (2008) who developed

a theory of marginal screening in high dimensional regressions assuming a fixed pool of

predictors, extending our own asymptotic framework that accommodates persistence and

predictor correlatedness to environments in which p is allowed to grow with n would also

raise formidable technical challenges. Nevertheless our local power analysis and simulation

based results have clearly highlighted the suitability and accuracy of our asymptotic regime

in large p environments.

In a wide range of applications one is often interested in whether a series is best de-

scribed as a mean independent process as opposed to being predictable with some predictor

belonging to a large information set. One may not wish to take a stance on a particular

predictor while also being constrained by dimensionality problems. The test we introduced

in this paper is precisely designed to accommodate such environments. Although our pri-

mary focus is not about uncovering a true model our framework does allow us to detect

a key player which can be valuable information in itself. It could for instance be used in

a model further augmented with diffusion index type factors. It could also be useful in

contexts where predictors consist solely of principal components as in such environments

PC type factors are typically obtained while being agnostic about how they relate to the

predictand. As PCs are typically obtained using a pool of very diverse predictors in terms

of their persistence properties, the robustness of our methods to such characteristics also

makes them particularly suitable.
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