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Abstract

Climate is a long-term issue, and as such, climate forecasts should be designed with a
long-term perspective. These forecasts are critical for crafting mitigation policies aimed
at achieving one of the primary objectives of the Paris Climate Agreement (PCA) and
for designing adaptation strategies to alleviate the adverse effects of climate change.
Furthermore, they serve as indispensable tools for assessing climate risks and guiding
the green transition effectively. This paper introduces a straightforward method for
generating long-term temperature density forecasts using observational data, leverag-
ing the realized quantile methodology developed by Gadea and Gonzalo (JoE, 2020).
This methodology transforms unconditional quantiles into time series objects. The
resulting forecasts complement those produced by physical climate models, which pri-
marily focus on average temperature values. By contrast, our density forecasts capture
broader distributional characteristics, including spatial disparities that are often ob-
scured in mean-based projections. The proposed approach involves conducting an out-
of-sample forecast model competition and integrating the forecasts from the resulting
Pareto-superior models. This method reduces dependency on any single forecast model,
enhancing the robustness of the results. Additionally, recognizing climate change as a
non-uniform phenomenon, our approach emphasizes the importance of analyzing cli-
mate data from a regional perspective, providing differentiated predictions to address
the complexities of a heterogeneous future. This regional focus underscores the ne-
cessity of accounting for spatial disparities to better assess risks and develop effective
policies for mitigation, adaptation, and compensation. Finally, this paper advocates
that future climate agreements and policymakers should prioritize analyzing the entire
temperature distribution rather than focusing solely on average values.
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1 Introduction

Climate change has emerged as a critical challenge for humanity, drawing extensive

academic attention and significantly influencing political decision-making. Gov-

ernments, policymakers, stakeholders, international institutions, central banks, and

other key actors in political and economic spheres are deeply engaged in analyzing its

impacts, assessing associated risks, and understanding its far-reaching consequences.

According to multiple reports by the World Economic Forum (2024, 2025), climate

change underlies 5 of the top 10 long-term global risks. It plays a pivotal role in

shaping globalization trends, reshaping geopolitical dynamics, influencing interna-

tional agreements, driving large-scale involuntary migration, and integrating into

financial risk analyses. In this context, accurate climate forecasting becomes imper-

ative for designing more effective mitigation, adaptation, and compensation policies.

Given the long-term nature of climate change, the development of long-term climate

forecasts is a crucial objective. This paper focuses on this issue.

This paper aims to produce long-term forecasts for various characteristics of

temperature distributions—such as quantiles and volatility—moving beyond the

traditional emphasis on the mean, which has been the primary focus of most cli-

mate projections (see Chapters 11 and 12 of the IPCC-AR5, Collins et al., 2013 and

Chapters 10–12 and the Atlas of IPCC-AR6, 2021). While average temperature pre-

dictions are useful, they often fail to capture critical details required for assessing

phenomena such as ice melting, sea-level rise, and risk evaluation. A more com-

prehensive understanding of temperature distribution, through density forecasts, is

vital.1 To achieve this, the paper employs the realized quantile methodology devel-

oped by Gadea and Gonzalo (2020) (GG2020) to produce long-term temperature

density forecasts based on historical observational data. This approach is applied

globally, using data from climate stations worldwide, and regionally, by narrowing

the analysis to specific geographic areas. In this methodology, quantiles and other

distributional characteristics are transformed into time series objects, allowing them

to be forecast similarly to mean temperature time series.

The existing literature on long-term forecasting in economics is relatively sparse,

likely due to the substantial uncertainty inherent in long-term predictions and the

limitations of stationary process models, where long-run forecasts often converge

1Note that the density forecast of the temperature is different from the density forecast of the
average temperature.
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to the unconditional mean.2 An exception is Müeller and Watson (2016), who

developed a method to quantify uncertainty in long-term economic predictions by

analyzing low-frequency components of time series data. Their approach focuses on

long-term averages and incorporates both Bayesian and frequentist perspectives.3

Clemens and Galvão (2024) provide a survey of the most recent forecasting methods

in macroeconomics that include the risks of climate change. More specifically, Castle

et al. (2024) offer an overview of econometric contributions to climate change and

its macroeconomic risks.

Projections in climate change literature primarily relies on complex climate mod-

els that simulate scenarios based on various assumptions. While these models are

highly explanatory, they are less suited for prediction. As Shmueli (2010) notes,

conflating explanation and prediction is a common issue. Climate models provide

valuable insights into the Earth’s future climate but often lack rigorous evaluation

against real-world data. When such evaluations are conducted (e.g., Hausfather et

al., 2020), inconsistencies emerge, with some models predicting excessive warming

and others underestimating it.4

These findings highlight the need for complementary methods to improve pre-

diction, which is crucial for effective climate policy design. Econometric approaches,

such as the one proposed in this paper, offer advantages like flexibility, ease of ap-

plication, out-of-sample evaluation, and the ability to analyze the full temperature

distribution, enriching the predictive analysis. An additional strength of this work

lies in its attention to the heterogeneity of climate change. By acknowledging that

climate change is not a uniform phenomenon across time, space, and distribution,

this study provides valuable insights for the design of more effective mitigation and

adaptation policies. It highlights the importance of incorporating local dimensions

into global climate agreements, thereby addressing the challenges of “free rider”

behavior. While it is important to recognize that forecasts do not imply causa-

tion, their analysis offers critical guidance for action and contributes to advanc-

ing causality-attribution methodologies. Note that in this paper we work with a

“business as usual” (BAU) scenario and only with the temperature series without

2For a discussion on the challenges of long-horizon forecasts, see Kemp (1999), Stock (1996,
1997), Phillips (1998), Pesavento and Rossi (2006), and Granger and Jeon (2007).

3Other notable works include Rossi (2005), Stock (1996, 1997), Lee (2011), Pastor and Stam-
baugh (2012), and Raftery et al. (2012).

4Several climate models coordinate their updates around the IPCC schedule. These coordinated
efforts are part of the Coupled Model Intercomparison Projects (CMIP). IPCC-AR5 presented
CMIP5 climate models, while IPCC-AR6 presents new state-of-the-art CMIP6 models.
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including explanatory variables that may implicitly be in its trend.

Before proposing models to forecast is important to consider some facts about

temperature data. According to GG2020 and Gadea and Gonzalo (2025) is clear

that most of the characteristics of the temperature distribution (mean, quantiles,

etc.) contain a trend as a consequence of the warming process. It is not clear which

particular trend. This is the reason for considering a set of different trend models

jointly with two standard non-trend models: unconditional mean (a constant) and

an AR process.

Forecasts are model dependent. Therefore our final forecasts will be a combina-

tion of forecast. How to combine forecast may be an important issue. We can use

an ad-hock trimming combination forecast or as we propose in this paper combine

only the models that satisfy certain properties. In our case we propose to combine

only the Pareto superior model for a give horizon “h”. The weights of the combi-

nation are those used in the model average literature, an inverse of the Bayesian

Information Criterion (BIC) value for a given model (Claeskens and Hjort, 2012).

This study employs two forecasting methods: a standard approach focused on

a specific characteristic of the temperature distribution, and a density forecast

that captures the entire distribution. For explanatory purposes, let us focus on a

given distributional characteristic Ct (mean, quantiles, etc.). The standard forecast

methodology for any distributional characteristic Ct involves the following steps:

1. Model selection: estimate a set of models (m1, . . . .,mM ) for the time series

Ct ensuring that the models capture key distributional trends (see results in

GG2020).

2. Forecast construction: generate forecasts of Ct for horizons h = (1, 10, 25, 50, 100, ..)

by using the direct forecasting method, which regress Ct at time “t+h” on

model information about the regressors at time “t”.

3. Model evaluation: Select the best model using BIC.

4. Model combination: combine forecasts and remove poorly performing models

(poisoning models).

5. Forecast competition: Conduct an out-of-sample forecasting competition for

each horizon “h”, selecting Pareto-superior models based on forecast evalua-

tion tests.
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6. Final forecast: Combine forecasts from Pareto-superior models to minimize

model forecast dependency.

For long-term density forecasting, the procedure is extended to include predic-

tions for various quantiles of the temperature distribution:

1. Select a set of quantiles that represent the temperature distribution. This can

be done for any quantile of the temperature distribution producing a wider-

angle picture of the future than if we only focus on the mean. The forecast of

all the quantiles is equivalent to a density forecast.

2. Select Pareto-superior models for all quantiles or, at their second best, for the

largest number of quantiles.

3. Combine the winning models using the BIC criterion.

The proposed methodology has been applied to the Globe over an extended pe-

riod, 1880-2023, and at a regional level, dividing the globe into eight geographical

zones with the continents as the primary reference. The main forecast results ob-

tained in this paper relate to the pre-industrial period (1850-1900) mentioned in the

Paris climate agreement and other baseline periods used in the IPPCC-AR5 and

AR6, 1986-2005 and 1995-2014, respectively.

Key findings include:

� Global Trends: Mean temperature is predicted to increase by over 2°C by 2050

and approximately 3°C by 2123. Lower quantiles (e.g., q05 ) indicate more sub-

stantial increases (4–6°C), while higher quantiles (q95 ) show smaller increases

(1.5–2.2°C).5 These are conservative predictions when the whole sample is

considered and the acceleration processes suffered since 1960 is not taken into

account.

� Variance Trends: Long-term forecasts suggest a decline in temperature vari-

ance, consistent with findings by Gadea and Gonzalo (2020) and Diebold and

Rudebusch (2019).

5For context, the Earth’s atmosphere during the last Ice Age was about 4°C cooler than pre-
industrial times (Lynas, 2007).
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� Regional Disparities: Predictions underscore substantial regional heterogene-

ity in warming patterns. The Arctic is expected to experience the most pro-

nounced warming, followed by Europe and Asia. In Europe, both the lower

and upper quantiles, particularly in Southern Europe, are projected to increase

by more than 4°C. North America and Africa exhibit distinct warming trends.

In North America, lower temperature quantiles are anticipated to rise more

significantly than upper quantiles. Conversely, Africa is expected to experi-

ence greater increases in upper temperature quantiles, potentially exceeding

2°C. Australia is forecasted to undergo comparatively milder warming, while

South America is projected to see even less pronounced temperature increases.

Notably, Antarctica shows minimal evidence of significant warming based on

current projections.

Compared to physical climate models (see Chapters 11 and 12 of the IPCC

AR5 and AR6 reports), our mean temperature forecasts align closely with the in-

termediate scenario RCP4.5 or SSP5-4.5. These scenarios assume emissions peak

around 2040, then decline by approximately 2045, reaching roughly half of 2025

levels by 2100. This alignment can be attributed to the conservative nature of our

long-term forecasts, which are constructed using models based on the full historical

sample (1880–2023). As a result, these models are less sensitive to the acceleration

in warming observed during the late 20th century.

Furthermore, the use of the Atlas tool, as presented in the latest IPCC report, en-

ables a more comprehensive comparison of climate model projections across various

scenarios with observation-based predictions, moving beyond purely narrative anal-

yses. Specifically, our forecasts of future temperature distributions across different

horizons offer detailed insights into the nature and severity of warming experienced

by different regions of the globe.

Two additional analyses enhance the methodology:

� Synthetic Control Experiment: This counterfactual predicts temperature trends

using data up to 1960, before the exponential rise in greenhouse gas emissions.

Results confirm the influence of emissions and highlight attribution effects.

� Pseudo-Real-Time Exercise: An out-of-sample prediction for 2000–2024 demon-

strates the superiority of model combinations and highlights the smoothing

effects on predictions amidst high short-term temperature variability.
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In summary, this paper introduces a novel methodology for long-term tempera-

ture density forecasts, offering a complementary perspective to traditional physical

climate models. By emphasizing distributional characteristics and accounting for

regional heterogeneity, this approach provides deeper insights into climate dynam-

ics, which are essential for comprehensive risk assessment and the formulation of

effective policies. Importantly, the proposed methodology captures future hetero-

geneity both within and across regions, offering a more nuanced understanding than

simple average temperature projections. Future research should aim to integrate

these econometric approaches with climate model projections to further improve

predictive accuracy and policy relevance.

The rest of the paper is organized as follows: Section 2 summarizes the the-

oretical framework and forecasting methodology. Section 3 presents the data and

preliminary analysis. Section 4 discusses the empirical results, including the appli-

cation of the standard forecasting methodology and the density forecast for global

data over an extended period, as well as for regional data over a shorter timeframe.

Finally, Section 5 outlines the conclusions.Tables and figures supporting the analysis

are provided in Section 6. An Appendix includes the findings from the synthetic

control experiment and the real-time exercise.

2 Econometrics Methodology

In this section, we first briefly summarize the econometric methodology introduced

in GG2020 that will be used to analyze Global and Local warming processes. Second,

we introduce the methodology to carry out the long-term forecast.

2.1 GG2020 approach

Following GG2020, Warming is defined as an increasing trend in certain character-

istics of the temperature distribution. More precisely:

Definition 1. (Warming): Warming is defined as the existence of an increas-
ing trend in some of the characteristics measuring the central tendency or position
(quantiles) of the temperature distribution.

An example is a deterministic trend with a polynomial function for certain val-

ues of the β parameters Ct = β0 + β1t+ β2t
2 + ...+ βkt

k, as well as, an integrated
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process of order one (I(1))6.

In GG2020 temperature is viewed as a functional stochastic processX = (Xt(ω), t ∈
T ), where T is an interval in R, defined in a probability space (Ω,ℑ, P ). A conve-

nient example of an infinite-dimensional discrete-time process consists of associating

ξ = (ξn, n ∈ R+) with a sequence of random variables whose values are in an appro-

priate function space. This may be obtained by setting

Xt(n) = ξtN+n, 0 ≤ n ≤ N, t = 0, 1, 2, ..., T (1)

so X = (Xt, t = 0, 1, 2, ..., T ). If the sample paths of ξ are continuous, then we have

a sequence X0, X1, .... of random variables in the space C[0, N ]. The choice of the

period or segment t will depend on the situation in hand. In our case, t will be the

period of a year, and N represents cross-sectional units or higher-frequency time

series.

We may be interested in modeling the whole sequence ofG functions, for instance

the sequence of state densities (f1(ω), f2(ω), ..., fT (ω) ) as in Chang et al. (2015,

2016) or only certain characteristics (Ct(w)) of these G functions, for instance, the

state mean, the state variance, the state quantile, etc. These characteristics can

be considered time series objects and, therefore, all the econometric tools already

developed in the time series literature can be applied to Ct(w). With this charac-

teristic approach we go from Ω to RT , as in a standard stochastic process, passing

through a G functional space:

Ω
(w)

X−→ G
Xt(w)

C−→ R
Ct(w)

Going back to the convenient example and abusing notation (Xt(n) = Xtn and

n a natural number), the stochastic structure can be summarized in the following

array:

6An I(1) process is the accumulation of an I(0) process. Our definition of an I(0) process follows

Johansen (1995). A stochastic process Yt that satisfies Yt−E(Yt) =
∞∑
i=1

Ψiεt−i is called I(0) if
∞∑
i=1

Ψ

iz
i converges for |z| < 1 + δ, for some δ > 0 and

∞∑
i=1

Ψ i ̸= 0, where the condition εt ∼ iid(0,σ2)

with σ2 > 0 is understood.
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X00(w) = ξ0(w) X01(w) = ξ1(w) . . . X0N (w) = ξN (w) C0(w)

X10(w) = ξN+1(w) X11(w) = ξN+2(w) . . . X1N (w) = ξ2N (w) C1(w)

X20(w) = ξ2N+1(w) X21(w) = ξ2N+2(w) . . . X3N (w) = ξ3N (w) C2(w)

.

.

.

.

.

.

. . .

. . .

. . .

.

.

.

.

.

.

XT0(w) = ξ(T−1)N+1(w) XT1(w) = ξ(T−1)N+2(w) . . . XTN (w) = ξTN (w) CT (w)

(2)

One of the objectives of this section is to provide a simple test to detect the

existence of a general unknown trend component in a given characteristic Ct of the

temperature process Xt. To do this, we need to convert Definition 1 into a more

practical definition.

Definition 2. (Practical trend definition): A characteristic Ct of a functional
stochastic process Xt contains a trend if in the LS regression,

Ct = α+ βt+ ut, t = 1, ..., T, (3)

β = 0 is rejected.

GG2020 shows that a simple t − test(β = 0) is able to detect most of the

existing deterministic trends(polynomial, logarithmic, exponential, etc.) and also

the trends generated by any of the three standard persistent processes considered in

the literature (see Müeller and Watson, 2008): (i) fractional or long-memory models

(1/2 < d < 3/2); (ii) near-unit-root AR models; and (iii) local-level models.

Several remarks are relevant with respect to this definition: (i) regression (3)

has to be understood as the linear LS approximation of an unknown trend function

h(t) (see White, 1980); (ii) the parameter β is the plim of β̂ols; (iii) if the regression

(3) is the true data-generating process, with ut ∼ I(0), then the OLS β̂ estimator

is asymptotically equivalent to the GLS estimator (see Grenander and Rosenblatt,

1957) and the t − test(β = 0) is N(0,1); (iv) in practice, in order to test β = 0,

it is recommended to use a robust HAC version of tβ=0 (see Busetti and Harvey,

2008); and (v) this test only detects the existence of a trend but not the type of

trend. Notice also that in (3) we could be totally agnostic about ut being I(0) or

I(1). In this case following Perron and Yabu (2009a) we can estimate the model by

Feasible Generalized Least Squares and construct a similar t-stat of β = 0 that sitll

will follow a N(0,1). This method depends on a tuning parameter (how closs is ut

of being I(1)). To avoid that, in this paper, we follow an alternative approach. We



Long-term climate forecasts 10

pre-test the temperature data for unit roots, once they are rejected we proceed as

in 3 ut is I(0).

For all these reasons, in the empirical applications we implement Definition 2

by estimating regression (3) using OLS and constructing a HAC version of tβ=0

(Newey and West, 1987). In the definition of Ct we can consider any distributional

characteristics as time series objects. Note that this set comprises both the quantiles

that make up the distribution and other characteristics that may be of interest,

allowing for a much richer analysis of temperature than is possible with the mean

alone.

2.2 Long-term forecast strategy

Predictive ability is one of the most valued qualities of any econometric model and

serves as a highly useful tool for model selection.7 Applying this principle to our

observational climate models, we begin by proposing a set of candidate models to

identify the most effective ones for forecasting. It is important to emphasize that

the test proposed by GG2020, despite its simplicity, demonstrates strong power in

detecting a wide variety of trends, which do not necessarily need to be linear. As

indicated in GG2020’s results, most of these models incorporate a trend component

that captures the presence of global warming. The remaining models, which lack a

trend component, can be viewed as a control group representing scenarios without

global warming. Nevertheless, even models without a trend component exhibit a

degree of persistence in their predictions.

After selecting the models to be part of the competition, we adopted two fore-

casting approaches: standard average forecast and density forecast.

2.2.1 Competing models

To run our model competition, 13 models have been selected, reflecting the main

trends noted in the literature.

1. Unconditional mean model (mean)

2. Linear trend model (linear-trend)

7Prediction has always been a central challenge in econometrics, resulting in an extensive body
of literature. Comprehensive references include Elliott and Timmermann (2006) and Clarke and
Clark (2018). However, when focusing on long-term prediction, the number of references diminishes
significantly. Among the most notable works are Müeller and Watson (2008).
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3. Polynomial trend model (pol-trend)

4. Polynomial trend model average slope (pol-trend-av-sl)

5. Logarithmic polynomial trend model (pol-trend-log)

6. Structural breaks model (struct-breaks)

7. Polynomial trend autoregressive model (pol-trend-arp)

8. Polynomial trend autoregressive model average slope (pol-trend-arp-av-sl)

9. Autoregressive model (arp)

10. Random walk model (rw)

11. Random walk model with drift (rwd)

12. Ima model (ima)

13. Fractional model (arfima)

14. Large autoregressive model (arp20 )

A detailed description of these models is given in Table 3. Notice that although

most models consider different types of trend, for the sake of completeness we have

included two additional models without trend: mean and arp. arp20 captures

possible long-memory different from the one described by a fractional model.

Other potential candidates were evaluated but ultimately dismissed due to their

inadequacy as long-term predictors. This is exemplified by spline functions. The

selection of appropriate nodes and boundary conditions poses significant challenges,

and their application exhibits a strong dependence on the sample’s endpoints.

Let’s denote by Ct any distributional characteristic (mean, max, min, std, iqr,

rank, kur, skw, q05, q10, q20, q30, q40, q50, q60, q70, q80, q90, q95 ) as a time series

object. The general pol-trend-arp model we propose for Ct is:

Ct =

k∑
i=0

βit
i +

p∑
j=1

ϕjCt−j + ut (4)

where k and p denote the order of the polynomial trend and the autoregressive part,

respectively.
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The average− slope models are time varying linear trend models derived from

their corresponding polynomial trend models in the following way:

Ct = β0 + τT t+ ut (5)

where

τT =
1

T

T∑
t=1

∂

∂t
Ct. (6)

An example: Ct = β0 + β1t+ β2t
2 + Ut, τT = β1 + 2β2

∑T
t=1 t/T .

2.2.2 Standard average long-term forecast

In the standard long-term forecast we work individually with a given characteristic,

for instance the average. We apply the following roadmap that comprises three steps.

In the first, we select one of the trend models in-sample (via BIC) and forecast out-

sample (h=1, 10, 25, 50, 100, ..., etc., depending of the sample size and objectives)

by using the direct method.8 The direct forecasting method involves producing a

specific “h-steps-ahead” forecast without calculating intermediate steps. For a given

model, it uses the information the model has at time “t” about the horizon “t+h”.

Two examples:

1. AR(1)

Ĉt+h = α̂o,h + ϕ̂1,hCt

2. linear trend

Ĉt+h = α̂o,h + ϕ̂1,h(t+ h)

Secondly, following a common practice in the forecasting literature because fore-

cast are model dependent, we combine the considered models.9 Some in-sample

non-linear trend models do “strange” things out-of-sample in the long-run. For

this, we need a combination forecast method, combining all the models, trimming

the extreme models, or selecting only the “Pareto” forecasting superior models,

etc. At this point, it is necessary to reflect on what type of information we ob-

tain when we produce point forecasts of the mean (q05 or other characteristic)

8Note that the prediction horizon will depend on the sample size and in some models will be
constrained by the order of the autoregressive.

9The combination of models for forecasting was initially proposed by Bates and Granger (1969)
and has been discussed in the literature on numerous occasions. Recent surveys on this technique
can be found in Atiya (2020) and Wang et al. (2022).
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time series object and its confidence intervals, because we are not saying much

about the future temperature distribution. For instance, when we use the mean

time series, we are forecasting the population mean distributional characteristic and

nothing is said about the lower or upper quantiles of the whole temperature dis-

tribution. Following the model averaging literature (Claeskens and Hjort, 2012),

forecasts model are combined using weighted average, where weights calculated as

follows: wm = e−1/2BICm∑M
m=1 e

−1/2BICm
where BICm is the BIC criterion of each model from

m = 1...M in sample.

Thirdly, for each predictive horizon, “h”, we select the “Pareto” forecasting su-

perior models via an out-of-sample forecasting competition, using the Giacomini and

White (2006) rolling window test (GW test). A model is defined as Pareto-superior

when it beats at least one other model and is not beaten by any other model in the

competition. We use the specification selected for each type of model and re-estimate

the parameters in each iteration. The GW test is used to arrange the conditional

predictive ability of the different models. This test, unlike that of Diebold and Mar-

iano (1995), has the advantages of capturing the effect of estimation uncertainty

on relative forecast performance and handling forecasts based on both nested and

non-nested models.

The null hypothesis proposed by GW to compare the accuracy of two compet-

ing forecasts ft(β1t) and gt(β2t) for the h-steps-ahead variable Yt+h, using the loss

function Lt+h(.) is

H0 : E[Lt+h(Yt+h+, ft(β̂1t))− Lt+h(Yt+h+, gt(β̂2t))|Gt] = 0 (7)

This proposal differs from Diabold and Mariano’s in that the loss function depends

on the estimates β̂1t, β̂2t rather than their probability bounds and, in addition, the

experiment is conditional on some information set Gt.

Confidence intervals are constructed by standard methods for individual fore-
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casts and following this procedure for combinations:

c̃t+h =

M∑
m=1

ϖmft,m(h)

CI0.05 =

M∑
m=1

ϖmft,m(h) + 1.96

√√√√var(

M∑
m=1

ϵ̂t+h,m)

var(
m∑

m=1

ϵt+h,m) =
M∑

m=1

ϖmσ̂2
m + 2

∑
m ̸=j

ϖmϖj σ̂m,j

where ϵ̂t+h,m are the estimated errors and σ̂2
m their estimated variance.

Summarizing, the strategy of the standard forecast comprises the following steps:

(1) Forecast with BIC selected models

(2) Combine models

a) Combine all models, detect and remove poisonous models

b) Apply a Pareto-superior model strategy with a rolling competition by

using GW test; in this case, in addition to combining the winning models

with the BIC weights, we have also used the simple average and the

method proposed by Bates and Granger (1969), obtaining very similar

results.

2.2.3 Long-term density forecast

Using the method described in the previous section for the average, it is possible to

generate predictions for any characteristic of interest within the temperature distri-

bution. More importantly, our approach enables predictions for the entire distribu-

tion, providing a proxy for the density forecast of temperature.10 This methodology

allows for the selection of quantiles that are most representative of the temperature

distribution, such as a subset q05, q50, q95 , or a complete set of quantiles, q05, q10,

q20, q30, q40, q50, q60, q70, q80, q90, q95 . This strategy can be applied either in-

dividually to each quantile or characteristic, identifying the Pareto-superior models

for each one, or jointly by selecting models that are superior across all characteristics

10The literature on density forecasting is extensive. Notable contributions include Granger and
Timmermann (2006), Corradi and Swanson (2006), Hall and Mitchell (2007), Rossi (2014), Rossi
and Sekhposyan (2014), Kapetanios et al. (2015), and Ganics (2017), among others.
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of the analyzed subset. In this paper we use the latter approach. A Pareto-superior

model is defined as one that outperforms at least one other model while being out-

performed by none, according to the competition based on the GW test.11 It is

important to highlight that this competition is conducted for various window sizes

and forecasting horizons.

Specifically, the following strategy has been implemented in the empirical anal-

ysis. Once the ability of each model m=1,...,M is analyzed for each characteristic,

we look for those that are Pareto superior for all the characteristics (q1...qj ...qQ).

If this is not possible and we obtain an empty set, we select the model(s) that are

Pareto superior for the largest number of characteristics.

Q/mod mod1 ... modi ... modM

q1 I11 ... I1i ... I1M

... ... ... ... ... ...

qj Ij1 ... Iji ... IjM

... ... ... ... ... ...

qQ IQ1 ... IQi ... IQM

IP1=
Q∑

j=1
Ij1 IPi=

Q∑
j=1

Iji IPM=
Q∑

j=1
IjM

This matrix represents the decision. For each model m, the indicator Ijm = 1 if that

model is Pareto-superior in quantile j. Each model m will be chosen as first-best if
Q∑

j=1
Ijm = Q; the second-best will be those that maximize the previous expression.

A heatmap is a good option representing this decision matrix. The winning models

can be combined in 3 possible ways: with the BIC weights, with the simple average

or using the method in Bates and Granger (1969).

Two alternative methods were considered:

� method 0: The Pareto-superior models are chosen for each quantile.

� method 1: We select those models that are Pareto superior for all the charac-

teristics of the set of interest. The loss functions of the different quantiles are

aggregated over quantiles and the GW test is applied, Lm
t+h =

Q∑
j=1

Lj
t+h where

m = 1, ...,M is the model and Q the number of quantiles. It is also possible

11This approach shares certain similarities with Hansen et al. (2011).
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in a second step to find the optimum of the chosen set of models as the one

that beats the largest number of models, although this would imply reducing

the number of models selected.

Method 0 and method 1 are not being included for reasons of space.

At this point some considerations should be taken into account. Firstly, our

approach differs from others such as Adrian et al. (2019) who obtain by applying

a quantile regression the density of the mean temperature, not the density of the

temperature. By means of a simple exercise we will show in the empirical part both

results. It can be show that our approach has a quantile regression (qr) equivalent.

It is equivalent to performing the following qr -regression of Y=temperature on

X=trend where N is the number of units (stations):

years Y X

t = 1 temp11 1

... ... ...

t = 1 temp1N 1

t = 2 temp21 2

... ...

t = 2 temp2N 2

... ... ...

t = T tempT1 T

... ...

t = T tempTN T

However, our approach has important advantages. It is more parsimonious and

allows us to obtain not only the trend coefficients but explicitly the series of all the

desired characteristics, which greatly expands the analytical capacity.

3 The data

In this paper we adopt a cross sectional perspective and work with data from the

CRU. The CRU offers monthly and yearly data of land and sea temperatures in both

hemispheres from 1850 to the present, collected from different stations around the

world. HadCRUT5 is a global temperature data set, providing gridded temperature

anomalies across the world, as well as averages for the hemispheres and for the globe
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as a whole. CRUTEM5 and HadSST4 are the land and ocean components of this

overall data set, respectively.12 This database (in particular, the annual temperature

of the Northern Hemisphere) has become one of the most widely used to illustrate

GW from records of thermometer readings. These records form the blade of the well-

known ‘hockey stick” graph, frequently used by academics and other institutions,

such as, the IPCC. In this paper, we prefer to base our analysis on raw station

data.13 These data show high variability at the beginning of the period, probably

due to the small number of stations in this early stage of the project, as noted by

Jones et al. (2012). Following these authors, our study period begins in 1880 and

ends in 2023.

Although there are over 10,000 stations on record in the last update, the effective

number fluctuates each year during the period 1850-2023. To guarantee the stability

of the characteristics over the whole sample, we select only those month-stations

units with data for all years in the sample period, which forces us to reduce the

sample size. We have also removed stations that present problems of inhomegeneities

(Jones et al., 2012). Applying this procedure to the sample period 1880-2023, we

have N=1230 month-stations units belonging to 135 stations. These characteristics

are constructed for each year using monthly temperature records. Note that a

benefit of using stable raw station data is that we always have perfect knowledge of

every observation, and can easily detect the origin of any extreme observations or

outliers.14 In summary, we analyze raw global data (stations instead of grids) for

the period 1880 to 2023. However, for reasons of homogeneity and stability, we use

only data from stations that are represented in the whole sample period for each

month and year.

In addition to the globe analysis, we adopt a regional perspective to make more

accurate predictions at the regional level. To do so, we divide the globe into eight ge-

ographical regions: the Arctic Polar Circle, Europe, North America, South America,

Asia, Africa, Australia and Antarctic. The partitioning of the sample into smaller

geographical areas significantly reduces the number of stable observations, especially

12These data sets were developed by the Climatic Research Unit (University of East Anglia)
in conjunction with the Hadley Centre (UK Met Office), with the exception of the sea surface
temperature (SST) data set, which was developed solely by the Hadley Centre. We use CRUTEM
version 5.0.1.0, which can be downloaded from (https://crudata.uea.ac.uk/cru/data/temperature/).

13Gadea and Gonzalo (2024b) discuss the advantages and disadvantages of using stations versus
grids.

14A more detailed description of the construction process of the series can be found in Gadea
and Gonzalo (2020).
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in some areas. Therefore, for the regional analysis, the sample has been reduced

to the period 1960-2023, which guarantees a reasonable number of observations.

Furthermore, this period is the subject of the majority of climatological studies

due to the intensity with which the phenomenon of climate change is beginning to

manifest itself. Applying the strategy described in the previous paragraph, the unit

month-season number for the globe is 10,897, 469 for the Arctic, 3,208 for Europe,

2,382 for North America, 344 for South America, 4,590 for Asia, 249 for Africa, 417

for Australia and, finally, 63 for the Antarctic. It should be noted that this is not

an exact political classification but a geographical one, so the stations are selected

according to a rectangle formed by the latitude and longitude that circumscribes

each continent. In this way, the latitude variable is given priority over other classifi-

cations that strictly consider the political variable. Figure 1 shows the distribution

of the selected stations according to the unit month-station criterion for the whole

globe for the periods 1880-2023 and 1960-2023, and Figure 2 the distribution for the

different geographical regions into which we have divided the globe for the second

period.

3.1 Preliminary analysis: A first look of the data and their trends

To illustrate the application of our approach, it is helpful to visualize the evolution

of temperature data distributions over time. Figure 3 displays the density of raw

temperature data for the entire globe during the 1880–2023 period. From this, the

distributional characteristics of interest can be computed and transformed into time

series objects. Figure 4 shows the temporal evolution of these characteristics (mean,

max, min, std, iqr, rank, kur, skw, q05, q10, q20, q30, q40, q50, q60, q70, q80, q90,

q95 ). Finally, Figure 5 shows the geographical location of some quantiles of interest.

Before conducting the forecasting exercise, we test the presence of unit roots in

the time series of distributional characteristics and test for the existence of trends.15

The results are presented in Tables 1 and 2. Most characteristics show no evidence

of unit roots; the null hypothesis cannot be rejected in only 6 out of 190 analyzed

series. Nevertheless, there is a trend in all the characteristics. This finding supports

the stationarity of temperature characteristics around a deterministic trend, a key

assumption for the rest of the analysis.16

15The null hypothesis of a unit root is rejected in 96.8% of cases (characteristics and regions), a
value lower than the size of the test.

16This result challenges the common belief that global temperature exhibits non-stationary be-
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Regarding global warming, the results can be summarized as follows:

1. Trends in central and position distributional characteristics: Most measures

of central (mean, median) and position (quantiles) exhibit an increasing trend

which confirms the existence of a clear warming process.

2. Lower Quantile Intensification: The increasing trend is more pronounced in

the lower quantiles than in the mean, median, or upper quantiles.

3. Dispersion Trends: Features measuring dispersion indicate a decreasing trend,

meaning lower temperatures are converging toward the median faster than

higher temperatures.

4. Acceleration Phenomenon: The magnitude of these trends has accelerated

significantly in the 1960–2023 period compared to 1880–2023. For instance,

the coefficients for the mean, q05, q50 and q95 were 0.0117, 0.0182, 0.0101

and 0.0078, respectively, during 1880–2023. These values increased to 0.0304,

0.0468, 0.0251 and 0.0216, respectively, in the later period.

When the analysis is extended to the regional level, the findings confirm the

heterogeneity of climate change. Key observations include:

� Arctic Circle: The Arctic Circle demonstrates the most significant warming

process, with higher intensity in lower quantiles and decreasing dispersion.17

� Europe: Europe exhibits the second-highest degree of warming, though the

trend magnitude across quantiles, lower and upper, is relatively uniform. De-

creasing trends in dispersion are not significant.

� Asia and North America: These regions follow Europe in warming intensity,

with patterns resembling the Arctic Circle—greater warming in lower quantiles

and significant decreases in dispersion.

havior, which often arises from the use of grid-analyzed mean temperature series with a heavy
concentration in the Northern Hemisphere. Our hypothesis, supported by simulation exercises,
is that spatial and temporal aggregation effects artificially increase the persistence of such series,
Gadea et al. (2024a).

17Due to its critical role in global climatological processes, the Arctic Circle has been analyzed
specifically by Gadea and Gonzalo (2024b), who identify clear acceleration and amplification phe-
nomena.



Long-term climate forecasts 20

� Australia and South America: These areas show lower levels of warming with-

out discernible differences across quantiles or significant trends in dispersion

measures.

� Africa: While Africa’s average warming is comparable to that of North Amer-

ica, the warming is more pronounced in the higher quantiles than the lower

quantiles, accompanied by an increase in dispersion.

� Antarctica: Antarctica shows no significant evidence of warming, but this may

result from data limitations. The available stable sample comprises stations

concentrated in East Antarctica, while climatologists have identified warming

trends in West Antarctica and regions closer to South America. The IPCC’s

Fourth Assessment Report concluded that Antarctica was the only continent

without detected anthropogenic warming, likely due to sparse data collec-

tion.18

4 Results

In the empirical application, we detail all the steps of our approach using global

observations from 1880 to 2023, focusing initially on the average temperature. Sub-

sequently, we compute the density forecast for a comprehensive set of quantiles,

Q={q05,q10,q20,q30,q40,q50,q60,q70,q80,q90,q95} employing the methodology in-

troduced in the previous section. For the regional data, we directly compute fore-

casts for our selected set of quantiles and analyze the differences between predictions

at varying horizons and the mean across the two reference periods typically consid-

ered by the IPCC. This approach enables us to relate the projections of global

warming across different geographical regions generated by climate models with our

predictions.

4.1 The Globe, 1880-2023

Focusing on the global long-term dataset, we conducted a rolling analysis using a

window of w=100 years and several prediction horizons, h = 1, 10, 25, 50, 100 years.19

18Based on this and related analyses, Gadea and Gonzalo (2025) propose a typology of climate
change and introduce the concept of “Warming Dominance”, which enables comparisons between
regions. The former characterizes heterogeneity inside regions and the latter between regions.

19It is important to note that these prediction horizons are used to compare model performance
across different time intervals and are conditioned by factors such as sample size, window length,
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The three comparison periods correspond to the pre-industrial era (1880–1900), the

period commonly used in previous IPCC-AR5 reports (1986–2005), and the recent-

past period referenced in IPCC-AR6. Our forecast horizons align with the so-called

near-term and mid-term projections. Additionally, forecasts were generated for a

specific long-term horizon, 2100 (h = 77), with temperature increases calculated

for each comparison period. This enables direct comparisons with the projections

provided in IPCC.

4.1.1 Standard forecast for the average temperature

In this section, we adopt a standard forecasting approach for the average temper-

ature treated as a time series object. This methodology will be applied to this

characteristic using the 1880–2023 sample, which includes all stations with continu-

ous data throughout this period.20 Initially, we rely on the BIC to guide the selection

process without incorporating the results from the inter-model competition. In the

subsequent step, we present the results based on the models identified as Pareto-

optimal during the competition. Because forecast are clear model dependent, we

propose forecast combination in both cases.

Table 4 presents the BIC values and their corresponding weights. The preferred

model in sample is the pol-trend ; consequently, Table 5 includes this model, its

variant pol-trend-av-sl, and the linear trend model as a benchmark.21 The results

predict a temperature increase of over two degrees with the linear trend model

and over three degrees with the pol-trend-av-sl model over 100 years relative to the

baseline period.

Since the predictions depend on the model, Table 6 presents several model com-

binations that progressively eliminate those with undesirable behavior. As shown,

“combined3” produces results very similar to the pol-trend-av-sl model.

Instead of combining forecasts in an ad-hoc manner, our approach provides an

alternative by identifying Pareto-superior models. Within this framework, the aver-

and the specific characteristics of certain models, particularly those with autoregressive compo-
nents. The selected horizons can be applied to short-term forecasts or extended to very long-term
predictions.

20Although the mean has been chosen because it is the most studied characteristic in the climate
literature, this procedure can be applied to any other characteristic. Results are available upon
request from the authors.

21It is important to note that the best in-sample model does not necessarily produce the best out-
of-sample predictions. For instance, the pol-trend model generates predictions that lack meaningful
interpretation. To address this issue, we introduce its counterpart, the pol-trend-av-sl.
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age temperature is projected to increase by slightly more than two degrees over the

next 25 years, relative to the baseline model established by the Paris Agreement.

Two points merit attention. First, as shown in Table 7, the Pareto-superior

model selection avoids extreme-behavior models, unlike earlier approaches that did

not filter out such models. Second, although rolling competitiveness imposes con-

straints where the prediction horizon cannot exceed w-p (where w is the rolling

window size and p is the autoregressive order), it remains feasible to select a model

for this horizon and extend predictions to longer horizons.

4.1.2 Temperature density forecast

Until now, we have focused on generating forecasts for the average. However, these

forecasts provide an incomplete picture. Our methodology allows us to perform sim-

ilar forecasting exercises for any quantile and approximate the forecast density from

a set of selected quantiles using the method described in the methodological sec-

tion. If more than one Pareto-superior model is identified, these are combined using

rescaled BIC weights, and confidence intervals are calculated as outlined earlier.

The results obtained using a window size (w) of 100 and prediction horizons “h”

of 1, 10, and 25 years are presented in Table 8 and Figure 6, illustrating the decision

matrix at each horizon. This approach identifies models that are Pareto-superior

across all quantiles, or, alternatively, second-best for the largest number of cases.

The findings indicate that warming forecast generally increase with “h”. However,

for most quantiles, particularly the upper quantiles, the projections tend to stabilize

in the medium term. It is important to note that selecting models specific to horizon

“h” enhances prediction accuracy but may introduce temporal inconsistencies.22 A

similar issue arises in climate projections when the number of models or simulations

varies across periods or scenarios.

To analyze the temperature increases at different horizons relative to selected

reference periods, such as the pre-industrial period (1880–1900), the baseline period

used in IPCC reports (1986–2005) in AR5, and the ”recent past” (1995–2014) from

AR6, we have included a long-term horizon (h=77 ) corresponding to 2100. The

numerical results are summarized in Table 9 when confidence intervals are included.

22One approach for future research to addressing these temporal inconsistencies is to incorporate
the prediction horizon “h” into the Pareto superior selection process (in the spirit of Martinez,
2017). This refinement ensures the selection of models that are Pareto superior across all quantiles
and prediction horizons “h”, thereby enhancing consistency and robustness in the results.
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Figure 7 depicts the forecasted temperature increases of the different quantiles in

2100 relative to each reference period.

Key Conclusions:

� Global Warming Intensity: The intensity of warming varies across quantiles

showing a clear future heterogeneity. Temperature increases in lower quantiles

could reach 4°C above the pre-industrial period and over 2°C relative to the

two most recent periods.

� Acceleration: The method demonstrates a clear acceleration in warming over

time, as evidenced by the evolution of temperature increases across periods.

� Asymmetry: The warming process is asymmetric, with the largest increases

occurring in the lowest quantiles. This indicates that the acceleration of warm-

ing is accompanied by a narrowing of the distribution (shrinkage effect) at the

global level. Using our unconditional quantile methodology (see Figure 5), we

can identify zones corresponding to q70 and q80 that exhibit larger temper-

ature increases compared to the surrounding quantiles. These zones include

locations such as Kansas, Madrid, and Marseille.”

Comparison with IPCC AR6 Projections23:

� Direct Comparability with Scenario-Based Projections24: Our mean tempera-

ture forecasts closely align with the intermediate scenario RCP4.5 or SSP5-4.5.

These scenarios assume emissions peak around 2040, decline by approximately

2045, and reach roughly half of 2025 levels by 2100. This alignment is likely

due to the conservative nature of our long-term forecasts, which are based on

models trained on the full historical sample (1880–2023). Consequently, these

models are less sensitive to the accelerated warming observed in the late 20th

century.

23The IPCC utilizes CMIP5 and CMIP6 as reference climate models in their respective assess-
ment reports, AR5 and AR6. In the latter, the scenarios proposed are the Shared Socioeconomic
Pathways (SSPs), which represent the most complex and comprehensive frameworks developed to
date. These scenarios range from highly ambitious mitigation efforts (SSP1) to continued emissions
growth (SSP5). Each SSP defines a distinct trajectory for future greenhouse gas emissions and
land-use changes under specific baseline assumptions. The SSPs are an enhanced evolution of the
Representative Concentration Pathways (RCPs)—RCP2.6, RCP4.5, RCP6.0, and RCP8.5—used
in CMIP5 and AR5, allowing for a rough comparison between the two frameworks.

24The comparison of absolute values for both mean and density forecasts is affected by discrep-
ancies between the historical series provided by the CMIP6 model and CRU observations.
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� Insights from Density Forecasts: While the results of the density forecast are

not directly comparable to IPCC projections, they offer valuable insights into

the quantiles driving the average temperature increase. The most significant

increases occur in the lower quantiles, which are typically associated with high

latitudes (regions near the poles), as well as in quantiles q70 and q80. This

heterogeneity, as revealed by the density forecast, cannot be captured by the

IPCC’s average projections.

Unlike IPCC projections, our methodology does not rely on predefined scenarios.

Instead, it follows a BAU approach. Some researchers equate this scenario with

RCP8.5/SSP5-8.5, while others associate it with RCP4.5, which represents a more

plausible trajectory if modest mitigation efforts or technological advances occur

alongside aggressive policy actions. Our results align more closely with the latter

(see Figure 8).

4.2 Regional approach

For various geographical regions, we present the results of the long-term density

forecast for the globe and individual regions over the period 1960–2023, encompass-

ing all quantiles and prediction horizons (h=1,10,25). To accommodate the smaller

sample size, the rolling window was reduced to 25, allowing all models to compete,

even as the prediction horizon extends to 2100 (h=77). Detailed predictions are pro-

vided in Table 10 for global forecasts, and in Tables 11-18 for the Arctic, Europe,

North America, South America, Asia, Africa, Australia, and the Antarctic.

These results facilitate an analysis of temperature increases across regions and

quantiles for the reference periods 1986–2005 (end of the 20th century) and 1995–2014

(beginning of the 21st century). Although primarily descriptive, Table 19 offers valu-

able insights into regional temperature level differences by presenting mean quantiles

over the period and their most recent values. For instance, significant differences are

observed, such as the Antarctic’s -58.55°C compared to Africa’s 10.35°C for quantile

q05, and -0.90°C versus 31.15°C for q95 within the same regions. Table 20 provides

detailed temperature increases by quantiles and reference periods for each region

for 2100, including confidence intervals, while Figures 9-12 offer a more illustrative

depiction of temperature increases by quantiles and horizons over the two reference

periods.

A key observation from these graphs is the pronounced heterogeneity in warming
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patterns across quantiles and regions. By regions, and focusing on the predictions

for 2100 (Table 20 and Figure 12):

� Arctic: The Arctic stands out as the region experiencing the most significant

warming, particularly in the lower quantiles. Temperature increases in these

quantiles range from 5°C to 8°C, depending on the reference period. This

extreme warming in the lower quantiles is a key driver of ice melt and future

sea level rise.

� Europe: Europe, alongside Asia, exhibits substantial temperature increases,

undergoing a dangerously rapid warming process. In Europe, temperature

increases exceed 4°C in the lower quantiles and are slightly lower in the up-

per quantiles, resulting in a U-shaped distribution. This pattern is primarily

driven by the intense warming observed in Southern Europe, particularly in

Spain, Italy, and Greece.

� Asia: Asia follows a warming pattern similar to that of the Arctic, with tem-

perature increases decreasing across quantiles and peaking at approximately

5°C.

� North America: While warming is evident, it is less pronounced compared to

the Arctic, Europe, and Asia. The temperature increase is more prominent in

the lower quantiles, whereas the upper quantiles exhibit only minimal warm-

ing. The U-shaped pattern observed in Europe is barely noticeable in North

America.

� South America and Australia: These regions exhibit minimal or negligible

warming, suggesting a less pronounced impact of temperature changes.

� Africa: Africa experiences significant warming at the upper end of the tem-

perature distribution, in contrast to northern regions. Warming peaks at ap-

proximately 3°C in the upper quantiles, which is a major contributor to severe

droughts across the continent.

� Antarctica: Antarctica shows near-zero or even negative temperature changes

during the second reference period, indicating minimal or no warming.

Some methodological Observations: The forecasts highlight the critical impor-

tance of considering both quantile-based temperature distributions and the pro-

nounced regional heterogeneity of future warming. These insights are essential for
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comprehensively understanding and effectively addressing the localized impacts of

climate change. For example, the warming trend observed in the upper quantiles

in Europe has been identified as a key factor contributing to heat-related mortality

across the continent (see Masselot et al., 2025).

4.2.1 Comparing regional predictions with regional projections of Atlas

Since AR5, the IPCC has emphasized the critical importance of understanding the

local dimensions of climate change while highlighting the inherent complexity of re-

gional analyses. However, the methodology for regional climate assessments remains

non-standardized, and the process of synthesizing regional climate information from

multiple lines of evidence varies significantly across studies. While comparisons be-

tween climate model projections and observations are often made narratively, the

practice of directly comparing observation-based predictions with climate model pro-

jections is less common. This section addresses this gap. Specifically, we utilize the

Atlas introduced in AR6 (see Gutierrez et al., 2021), a tool that generates regional

average projections based on various climate models, enabling deeper numerical

insights into regional climate dynamics.

The Atlas project evaluates average climate conditions at regional scales, focus-

ing primarily on temperature and precipitation over land areas.25 The division of the

globe into 14 regions, as depicted in Figure 13, facilitates comparisons with the re-

gions defined in our study. Differences include the subdivision of Central and South

America (CAM, SAM) and the segmentation of Asia into Central Asia (CAS), East

Asia (EAS), South Asia (WAS), and Southeast Asia (SEA). CAS was excluded due

to a limited number of simulations, as were the Mediterranean (MED) and North

Africa (MNA) regions. Consequently, comparisons were made using EAS, which

encompasses the majority of the continent.

The regions with available data and reproducible results are: Europe (EUR),

Africa (AFR), South America (SAM), North America (NAM), East Asia (EAS),

Australasia (AUS), Arctic (ARC), and Antarctic (ANT). The Atlas utilizes data

from the CORDEX (Coordinated Regional Climate Downscaling Experiment) project

25The interactive Atlas is accessible at https://interactive-atlas.ipcc.ch/. Supplementary files,
data sources, R scripts, and materials required for reproducing the results are available at
https://github.com/IPCC-WG1/Atlas. A concise summary of these resources can be found at
https://digital.csic.es/handle/10261/280324 (Iturbide et al., 2022). We extend our sincere grat-
itude to Professor Iturbide (Instituto de F́ısica de Cantabria) for assistance in accessing these
resources.
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at the regional level, offering simulations based on multiple climate models. These

models reproduce historical data from 1970–2005 and generate projections for 2006–2100

under RCP2.6, RCP4.5, and RCP8.5 scenarios, reflecting varying levels of emissions

intensity.

The comparison of regional density forecast results with Atlas projections is

presented in Figure 14. The conclusions are clear: in all cases, the projections for

the three scenarios fall within the density distributions for both the 2050 and 2100

predictions. The relative position of these projections with respect to the median

provides insight into whether our forecasts anticipate greater or lesser warming. If

a scenario lies below the median, our forecasts indicate greater warming than the

projections; conversely, if it lies above, our forecasts suggest less warming. Moreover,

a greater distance between a projection and the median implies a stronger alignment

of our predictions with that particular scenario.

Beyond the standard advantage of density distributions providing more infor-

mation than mean values, our approach offers an additional benefit: in our case,

quantiles correspond to specific zones within a given region. This added value un-

derscores the strength of our unconditional quantile methodology.

By region, and focusing on the long-term (2100), the following observations

emerge:

� Arctic: For both horizons, AR6 projections under RCP4.5 and RCP8.5 lie

below the median of our density forecast, indicating that we predict greater

warming with high probability. Alternatively, this suggests that our forecasts

identify numerous zones within the Arctic experiencing more intense warming

than projected by the mean.

� Europe: Europe exhibits a similar pattern, with the median of our forecast dis-

tribution located above the high-emissions scenario, suggesting greater warm-

ing than IPCC projections.

� North America: North America follows a comparable trend, with all three sce-

narios situated within the left tail of our density forecast distribution, implying

a higher likelihood of greater warming.

� Asia: In contrast, our density forecast for Asia indicates less warming with

high probability, or identifies numerous zones with lower warming compared
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to the projections. However, it should be noted that the EAS region excludes

North Asia.

� South America: In the near term, the median of our density forecast aligns

with the low-emissions scenario. For the long-term (h=77), our predictions

suggest less warming than RCP8.5 but more than RCP2.6, with closer align-

ment to RCP4.5.

� Central America: The differing geographical delineation of Central America

may affect results observed in North and South America.

� Africa: In Africa, projections lie within the right tail of our distribution. How-

ever, similar to South America, in the long-term, the median aligns with the

most optimistic projection.

� Australia: Australia exhibits a pattern similar to South America, with the

median lying between the projections for different scenarios, depending on the

horizon.

� Antarctic: In the Antarctic, our forecasts indicate greater warming than the

projections. However, these results should be interpreted cautiously due to

the limited observational data and simulations available for this region.

Summary: The forecasts underscore the need to account for both quantile-based

temperature distributions and the significant regional heterogeneity in future warm-

ing. This approach provides critical insights into localized climate dynamics and em-

phasizes the importance of integrating density-based predictions with scenario-based

projections for a more comprehensive understanding of regional climate change.

However, a stylized fact emerges: projections below our predicted median are

associated with colder regions, characterized by higher warming intensity in the

lower quantiles.26 In contrast, projections that exceed our predicted median are

observed in warmer regions, which exhibit lower warming intensity across quantiles.

The analysis of these results underscores the usefulness of our approach, as it pro-

vides richer predictive insights by considering the entire distribution rather than just

26A possible explanation for this result, particularly in the case of Europe, is that climate model
projections may be biased by changes occurring in the lower quantiles. Unlike density estimates,
these models may not fully account for the warming observed in the higher quantiles, particularly
in the Mediterranean region.
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the mean. The same average projection could indicate less or more future warm-

ing. Furthermore, our methodology achieves this with minimal implementation and

updating costs.

5 Conclusions

Climate is inherently a long-term phenomenon, and designing effective mitigation

and adaptation policies for climate change requires reliable long-term forecasts.

However, long-term prediction poses significant challenges for both econometric and

geophysical models. Econometric models, while requiring less data and offering

greater flexibility by relying on observational information, are often surrounded by

substantial uncertainty. Geophysical models, on the other hand, possess greater

causal explanatory power but depend heavily on theoretical assumptions and prede-

fined greenhouse gas concentration pathways. These models are primarily focused

on mean temperature projections, limiting their capacity to explore broader distri-

butional dynamics.

This paper introduces a simple novel methodology for generating long-term fore-

casts of temperature distributional characteristics beyond the commonly studied

mean temperature. The approach builds on Gadea and Gonzalo (2020), treating

temperature as a functional stochastic process from which various distributional

characteristics (e.g., mean, quantiles, volatility) can be extracted as time series

objects. Recognizing that these distributional characteristics often exhibit trend

components, our out-of-sample forecasting competition incorporates 13 models de-

signed to accommodate various types of trend elements. Because forecasts are model

dependent and to address the uncertainty inherent in model selection, we propose

long-term forecast combinations derived from Pareto-superior models, as determined

by an accuracy evaluation test.

Our methodology is versatile, applicable to global cross-sectional data (monthly

temperatures from diverse global stations) and regional analyses, dividing the globe

into continents and other regions. Focusing on a global analysis for the period

1880–2023, our findings are clear: our mean temperature forecasts align closely with

the intermediate scenario RCP4.5 or SSP5-4.5. These scenarios assume emissions

peak around 2040, then decline by approximately 2045, reaching roughly half of

2025 levels by 2100. This alignment can be attributed to the conservative nature

of our long-term forecasts, which are constructed using models based on the full
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historical sample (1880–2023). As a result, these models are less sensitive to the

acceleration in warming observed during the late 20th century.

Importantly, our analysis of the Globe reveals that, behind the average temper-

ature increases are the predicted increase in the lower quantiles. They are predicted

to increase more than the upper ones. This asymmetry has more severe impli-

cations than the standard focus on mean temperature increases, emphasizing the

need for a broader perspective on climate impacts. Furthermore, our methodology

not only enables the estimation of the probability that the mean temperature will

exceed or fall below a given value in the future but also identifies the specific quan-

tiles—corresponding to latitudes—where the most significant increases are expected

to occur.

A regional analysis for the period 1960–2023 highlights the substantial hetero-

geneity of climate change, which our density forecast methodology effectively cap-

tures. The results enable the establishment of a regional ranking based on the

intensity and characteristics of future warming processes. The Arctic ranks first,

exhibiting the highest numerical increases in temperature. Europe, in second place,

displays a concerning U-shaped pattern due to the intense warming in the Southern

Europe. Africa ranks third, marked by significant increases in the upper quantiles.

Asia and North America, occupying the fourth position, share some similarities

with Europe but demonstrate more moderate temperature increases and behavioral

patterns. Australia and South America follow in fifth place, showing the least con-

cerning warming trends. Lastly, Antarctica’s future situation remains challenging

to assess due to the scarcity of observational data.”

These findings align with the projections provided in the recent IPCC AR6 report

(e.g., the Atlas tool), while offering a complementary perspective based on observa-

tional data. This approach enhances flexibility and simplifies analysis, making it a

valuable addition to traditional climate modeling frameworks.

Given these conclusions, we advocate for climate agreements to move beyond

the sole focus on mean temperature. Greater attention must be paid to the full

temperature distribution, particularly lower and upper quantiles, to better capture

the breadth of climate impacts. The average temperature is not enough, we need the

whole distribution. Furthermore, the design of mitigation, adaptation, and compen-

sation policies should incorporate detailed regional analyses to address the uneven

distribution of climate change effects. Future research should merge forecasting and

atribution-causal models.



Long-term climate forecasts 31

References

[1] Adrian, T., Boyarchenko, N., Giannone, D. 2019. Vulnerable growth. American

Economic Review 109(4), 1263-89.

[2] Martinez, A. B. 2017. Testing for Differences in Path Forecast Accuracy:

Forecast-Error Dynamics Matter. Working Paper 17-17, Federal Reserve Bank

of Cleveland.

[3] Atiya, A.F. 2020. Why does forecast combination work so well? International

Journal of Forecastingg 36, 197-200.

[4] Bennedsen, M., Hillebrand, E., and Lykke, J.Z. 2022. Global temperature pro-

jections from a statistical energy balance model using multiple sources of his-

torical data.

[5] Botosaru, I. Giacomini, R., and Weidner, M. 2023. Forecasted Treatment Ef-

fects. arXiv:2309.05639v2 [econ.EM].

[6] Busetti, F. and Harvey, A. 2008. Testing for trend. Econometric theory 24,

72-87.

[7] Castle J.L., Hendry, D.F., Miller, J.I. 2024. Econometric Forecasting of Climate

Change. In Clements, M.P., Galvão, A.B., (eds.) Handbook of Research Meth-

ods and Applications in Macroeconomic Forecasting Edition:1, Edward Elgar

Publishing.

[8] Chen, L., Dolado, J.J., Gonzalo, J., Ramos, A. 2023. Heterogeneous predictive

association of CO2 with global warming. Economica 90(360), 1397-1421.

[9] Claeskens, G. Hjort, N.L. 2012. Model Selection and Model Averaging. Cam-

bridge University Press.

[10] Clarke, B.S. and Clarke, J.L. 2018. Predictive Statistics. Analysis and Inference

Beyond Models. Cambridge University Press.

[11] Clements, M.P., Galvão, A.B. 2024. (eds.) Handbook of Research Methods and

Applications in Macroeconomic Forecasting Edition:1, Edward Elgar Publish-

ing.



Long-term climate forecasts 32

[12] Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedling-

stein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi,

A.J. Weaver and M. Wehner, 2013. Long-term Climate Change: Projections,

Commitments and Irreversibility. In: Climate Change 2013: The Physical Sci-

ence Basis. Contribution of Working Group I to the Fifth Assessment Report of

the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K.

Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and

P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United King-

dom and New York, NY, USA. Chapter 12 of IPCC-AR5.

[13] Corradi, V. and Swanson, N. R. 2006. Chapter 5 Predictive Density Evaluation.

In Elliott, G., Granger, C. W. J., and Timmermann, A., editors, Handbook of

Economic Forecasting, volume 1, 197–284. Elsevier.

[14] Diebold, F. X. and Mariano, R.S. 1995. Comparing Predictive Accuracy. Jour-

nal of Business & Economic Statistics 13, 253–263.

[15] Diebold, F.X., Rudebusch, G.D. 2019. for the US. On the Evolution of U.S.

Temperature Dynamics. PIER Working Paper No. 19-012.

[16] Diffenbaugh1,, N.S., Field, Ch.B. 2013. Changes in Ecologically Critical Ter-

restrial Climate Conditions Science Volumne 341, Issue 6145, pp. 486-492 DOI:

10.1126/science.1237123.

[17] Elliot, G. 2006. Forecasting with Trending Data, in Elliott, C.W. J. G. G. and

Timmerman A. (eds) Handbook of Economic Forecasting, Vol. 1, (Amsterdam:

North-Holland), 555–604.

[18] Eyring, V., Cox, P.M., Flato, G.M., Gleckler, P.J., Abramowitz, G., Cald-

well, P., Collins, W.D., Gier1, B.K., Hall, A.D., Hoffman, F.M., Hurtt1, G.C.,

Jahn, A., Jones, Ch. D., Klein, S.A., Krasting, J.P., Kwiatkowski, L., Lorenz,

R., Maloney, E., Meehl1, G.A., Pendergrass, A.G., Pincus, R., Ruane, A.C.,

Russell, J.L., Sanderson, B.M., Santer, B.D., Sherwood, S.C., Simpson, I.R.,

Stouffer, R.J., Williamson, M.S. 2019. Taking climate model evaluation to the

next level. Nature Climate Change 9(2), 102-110.

[19] Gadea, M.D., Gonzalo, J. 2020. Trends in distributional characteristics: Exis-

tence of global warming. Journal of Econometrics 214, 153-174.



Long-term climate forecasts 33

[20] Gadea, M.D., Gonzalo, J., Ramos, A. 2024a. Trends in Temperature Data:

Microfundations of their Nature. Economic Letters 244, 111992.

[21] Gadea, M.D., Gonzalo, J. 2024b. Polar warming. mimeo.

[22] Gadea, M.D., Gonzalo, J. 2024c. Regional heterogeneity and warming domi-

nance in the United States. Working Paper UC3M, 2415.

[23] Gadea, M.D., Gonzalo, J. 2025. Climate change heterogeneity: A new quanti-

tative approach, PLOS ONE (forthcoming).

[24] Ganics, G.A. 2017. Optimal Density Forecast Combinations. Documentos de

Trabajo 1751, Banco de España.

[25] Giacomini, R., White, H. 2006. Test of Conditional Predictive Ability. Econo-

metrica 74, 1545-1578.

[26] Global Carbon Budget 2024. – with major processing by Our World in Data.

“Annual CO2 emissions – GCB” [dataset]. Global Carbon Project, “Global

Carbon Budget” [original data].

[27] Global Economic Forum 2024. The Global Risks Report 2024. 19the Edition.

Insight Report.

[28] Global Economic Forum 2025. The Global Risks Report 2025. 20the Edition.

Insight Report.

[29] Granger, C.W. and Jeon, Y. (2007), Long-Term Forecasting and Evaluation.

International Journal of Forecasting 23, 539–551.

[30] Granger, C.W. and & Timmermann, A. (Eds.), Handbook of economic forecast-

ing, vol. 1 (pp. 197–284). North Holland: Elsevier.

[31] Grenander, U., Rosenblatt, M., 1957. Statistical Analysis of Stationary Time

Series. New York: Wiley.

[32] Gutiérrez, J.M., R.G. Jones, G.T. Narisma, L.M. Alves, M. Amjad, I.V.

Gorodetskaya, M. Grose, N.A.B. Klutse, S. Krakovska, J. Li, D. Mart́ınez-

Castro, L.O. Mearns, S.H. Mernild, T. Ngo-Duc, B. van den Hurk, and J.-

H. Yoon, 2021: Atlas. In Climate Change 2021: The Physical Science Basis.



Long-term climate forecasts 34

Contribution of Working Group I to the Sixth Assessment Report of the In-

tergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A.
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6 Tables and Figures

Figure 1
Selected stations in the Globe

(a) Panel A. 1880-2023
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Figure 2
Selected stations by regions

(a) Arctic Polar Circle
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Figure 3
Globe temperature(CRU data 1880-2023)

Figure 4
Distributional characteristics of the Globe temperature as time series objects (CRU

data 1880-2023)
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Figure 5
Geographic location of quantiles (CRU data 1880-2023)
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Table 1
UR tests (Globe, 1880-2023, Globe regions,1960-2023)

Characteristic Globe (1880-2023) Globe (1960-2023) Arctic Polar Circle Europe North-America South-America Asia Africa Australia Antarctica

mean -4.1870 -5.0774 -6.7657 -5.7861 -7.9723 -6.8985 -6.2625 -4.7278 -8.3806 -6.8522
(0.006) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.000) (0.000)

max -9.3101 -7.8904 -9.3069 -7.7026 -5.9964 -3.5653 -7.8904 -4.4724 -6.2391 -6.5458
(0.000) (0.000) (0.000) (0.000) (0.000) (0.043) (0.000) (0.004) (0.000) (0.000)

min -13.1042 -6.7483 -7.9836 -6.9283 -7.7393 -10.5299 -6.3115 -5.2667 -7.5143 -6.7483
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

std -11.2885 -7.5630 -9.1176 -6.5618 -6.9401 -7.2441 -7.6369 -7.4243 -6.7136 -7.4692
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

iqr -12.6301 -6.9232 -3.0585 -8.0302 -6.9431 -6.1364 -7.8286 -7.6917 -7.1301 -8.6031
(0.000) (0.000) (0.126) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

rank -12.7324 -8.1645 -8.0896 -6.8916 -7.2885 -8.0290 -7.3696 -9.2664 -5.8760 -6.7454
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

kur -12.3332 -6.7736 -7.7489 -6.8561 -7.6480 -7.8315 -6.6772 -8.8368 -7.8564 -8.6054
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

skw -12.3451 -7.5406 -7.9753 -5.7338 -7.8162 -8.4360 -6.9558 -5.8690 -6.8361 -8.2356
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

q05 -10.2598 -7.8391 -8.6953 -5.6976 -7.8601 -8.0394 -7.1901 -7.3590 -9.4343 -8.8238
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

q10 -9.6121 -7.3237 -8.1298 -5.9147 -7.4385 -9.2167 -7.2456 -6.6092 -8.8654 -7.9041
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

q20 -9.8748 -6.0291 -6.6535 -6.4320 -8.3694 -9.8059 -7.5230 -6.3614 -10.6432 -7.1970
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

q30 -4.7739 -6.7136 -8.2277 -6.9905 -8.2217 -5.9457 -6.6584 -4.2185 -9.6534 -5.0430
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.008) (0.000) (0.000)

q40 -9.0937 -5.0414 -7.2383 -5.6642 -7.5628 -7.5935 -6.1152 -3.1261 -7.5061 -7.6953
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.111) (0.000) (0.000)

q50 -8.3186 -4.3501 -6.5651 -5.5552 -6.1780 -9.1166 -5.9936 -3.6556 -6.2759 -8.0043
(0.000) (0.005) (0.000) (0.000) (0.000) (0.000) (0.000) (0.034) (0.000) (0.000)

q60 -4.2865 -3.8642 -6.8818 -7.7783 -6.4810 -7.4314 -6.3246 -3.6184 -6.3399 -6.7380
(0.005) (0.020) (0.000) (0.000) (0.000) (0.000) (0.000) (0.037) (0.000) (0.000)

q70 -1.9574 -2.5087 -6.1557 -4.8997 -5.9801 -6.4516 -3.9806 -5.6874 -6.6900 -4.4908
(0.611) (0.343) (0.000) (0.001) (0.000) (0.000) (0.015) (0.000) (0.000) (0.004)

q80 -3.1590 -2.9303 -4.7917 -8.1616 -7.8226 -4.5003 -4.1783 -5.5063 -7.0438 -6.3762
(0.097) (0.161) (0.002) (0.000) (0.000) (0.004) (0.009) (0.000) (0.000) (0.000)

q90 -3.7781 -6.7083 -6.1802 -7.7920 -8.4331 -5.2557 -6.8749 -6.2127 -5.9022 -7.6965
(0.021) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

q95 -6.3470 -7.1615 -7.4286 -7.3475 -7.9032 -4.6887 -8.1790 -6.7734 -6.3377 -5.6170
(0.000) (0.000) (0.000) (0.000) (0.000) (0.003) (0.000) (0.000) (0.000) (0.000)

Notes: Augmented Dickey-Fuller test is applied; lag-selection with BIC; pvalues in brackets.
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Table 2
Trend tests (Globe, 1880-2023, Globe regions,1960-2023)

Characteristic Globe (1880-2023) Globe (1960-2023) Arctic Polar Circle Europe North-America South-America Asia Africa Australia Antarctica

mean 0.0117 0.0304 0.0536 0.0342 0.0280 0.0061 0.0330 0.0252 0.0191 0.0020
(0.000) (0.000) (0.000) (0.000) (0.000) (0.021) (0.000) (0.000) (0.000) (0.534)

max -0.0018 0.0212 0.0234 0.0373 0.0490 0.0060 0.0212 0.0480 0.0223 -0.0056
(0.389) (0.000) (0.006) (0.000) (0.000) (0.494) (0.000) (0.000) (0.001) (0.256)

min 0.0194 -0.0082 0.0424 0.0725 0.0790 0.0139 0.0424 0.0154 0.0353 -0.0082
(0.022) (0.494) (0.001) (0.000) (0.000) (0.001) (0.002) (0.091) (0.000) (0.494)

std -0.0024 -0.0076 -0.0137 -0.0025 -0.0072 -0.0007 -0.0094 0.0064 -0.0006 -0.0011
(0.000) (0.000) (0.000) (0.414) (0.000) (0.608) (0.001) (0.000) (0.606) (0.676)

iqr -0.0005 -0.0062 -0.0355 -0.0032 -0.0032 -0.0011 -0.0124 0.0046 0.0000 0.0072
(0.695) (0.029) (0.000) (0.430) (0.486) (0.760) (0.000) (0.094) (0.989) (0.490)

rank -0.0212 0.0294 -0.0190 -0.0352 -0.0301 -0.0079 -0.0212 0.0326 -0.0131 0.0026
(0.017) (0.002) (0.253) (0.030) (0.132) (0.431) (0.138) (0.000) (0.087) (0.852)

kur -0.0005 0.0021 0.0040 -0.0025 -0.0042 -0.0005 0.0017 -0.0005 -0.0005 0.0004
(0.168) (0.098) (0.000) (0.104) (0.007) (0.321) (0.027) (0.556) (0.142) (0.674)

skw 0.0001 0.0001 -0.0021 0.0036 0.0018 0.0001 -0.0003 -0.0006 -0.0005 -0.0001
(0.601) (0.759) (0.000) (0.000) (0.000) (0.664) (0.319) (0.235) (0.248) (0.740)

q05 0.0182 0.0468 0.0548 0.0490 0.0451 0.0074 0.0485 0.0134 0.0150 0.0012
(0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.000) (0.000) (0.000) (0.893)

q10 0.0158 0.0475 0.0713 0.0458 0.0377 0.0055 0.0508 0.0139 0.0186 0.0136
(0.000) (0.000) (0.000) (0.000) (0.000) (0.004) (0.000) (0.000) (0.000) (0.055)

q20 0.0131 0.0374 0.0748 0.0378 0.0311 0.0081 0.0472 0.0192 0.0170 0.0019
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.867)

q30 0.0120 0.0291 0.0787 0.0281 0.0219 0.0074 0.0368 0.0211 0.0213 0.0088
(0.000) (0.000) (0.000) (0.000) (0.000) (0.009) (0.000) (0.000) (0.000) (0.235)

q40 0.0110 0.0241 0.0723 0.0246 0.0211 0.0048 0.0299 0.0233 0.0226 0.0019
(0.000) (0.000) (0.000) (0.000) (0.000) (0.120) (0.000) (0.000) (0.000) (0.794)

q50 0.0101 0.0251 0.0585 0.0253 0.0230 0.0048 0.0281 0.0272 0.0197 -0.0010
(0.000) (0.000) (0.000) (0.000) (0.000) (0.145) (0.000) (0.000) (0.000) (0.868)

q60 0.0100 0.0252 0.0420 0.0256 0.0245 0.0082 0.0270 0.0275 0.0197 0.0002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.025) (0.000) (0.000) (0.000) (0.981)

q70 0.0127 0.0293 0.0379 0.0272 0.0236 0.0068 0.0278 0.0318 0.0189 0.0009
(0.000) (0.000) (0.000) (0.000) (0.000) (0.059) (0.000) (0.000) (0.000) (0.888)

q80 0.0118 0.0276 0.0361 0.0353 0.0232 0.0018 0.0281 0.0303 0.0174 0.0024
(0.000) (0.000) (0.000) (0.000) (0.000) (0.712) (0.000) (0.000) (0.000) (0.593)

q90 0.0086 0.0242 0.0294 0.0424 0.0240 0.0073 0.0218 0.0340 0.0195 0.0066
(0.000) (0.000) (0.000) (0.000) (0.000) (0.013) (0.000) (0.000) (0.000) (0.076)

q95 0.0078 0.0216 0.0293 0.0430 0.0257 0.0044 0.0199 0.0337 0.0177 -0.0021
(0.000) (0.000) (0.000) (0.000) (0.000) (0.294) (0.000) (0.000) (0.000) (0.721)

Notes: OLS estimates and HAC tβ=0 from regression: Ct = α+ βt+ ut; pvalues in brackets.
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Table 4
BIC model selection for the mean (The Globe, CRU data, 1880-2023)

Models BIC weights

mean -0.9753 0.0420
linear-trend -1.8821 0.0661
pol-trend (k=5) -2.2704 0.0803
pol-trend-av-sl (k=5) -2.2704 0.0803
pol-trend-log (k=8) -2.1682 0.0763
struct-breaks -2.1853 0.0769
pol-trend-arp (k=3, p=1) -2.2653 0.0801
pol-trend-arp-av-sl (k=3, p=1) -2.2653 0.0801
arp (p=2) -2.0724 0.0727
rw -1.9017 0.0668
rwd -1.8741 0.0658
ima -2.2360 0.0789
arfima -2.0991 0.0737
arp20 -1.6917 0.0601

Notes: The weights used to combine forecast in the rest of the paper are calculated as follows:

wj = e
−1/2BICj∑m

j=1 e
−1/2BICj

where BICj is the BIC criterium of each model from j=1...m in sample.

Table 5
Mean temperature forecasts (The Globe, CRU data, 1880-2023)

Horizon Benchmark model: linear trend Selected model: pol-trend Selected model: pol-trend-av-sl

1 12.53 13.24 13.26
(11.91,13.16) (12.75,13.73) (12.77,13.75)

10 12.64 13.42 13.38
(12.01,13.26) (12.94,13.91) (12.90,13.87)

25 12.81 12.84 13.59
(12.19,13.44) (12.36,13.33) (13.10,14.08)

50 13.10 6.22 13.93
(12.48,13.73) (5.73,6.71) (13.45,14.42)

100 13.69 -66.70 14.62
(13.06,14.31) (-67.19,-66.21) (14.14,15.11)

Notes: The average value of the mean in the full sample is 11.69; the average value of the Mean in
1880-1900 (the baseline model for the Paris Agreement) is 11.12; the average value of the Mean in
the AR5 reference period (1986-2005) is 12.17; in the AR6 period (1995-2014) is 12.39; Standard
95% confidence intervals.
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Table 6
Long-term forecasts for the mean (The Globe, CRU data, 1880-2023)

Models/horizon h=1 h=25 h=50 h=100

mean 11.69 11.69 11.69 11.69
(10.67,12.70) (10.67,12.70) (10.67,12.70) (10.67,12.70)

linear-trend 12.53 12.81 13.10 13.69
(11.91,13.16) (12.19,13.44) (12.48,13.73) (13.06,14.31)

pol-trend 13.24 12.84 6.22 -66.70
(12.75,13.73) (12.36,13.33) (5.73,6.71) (-67.19,-66.21)

pol-trend-av-sl 13.26 13.59 13.93 14.62
(12.77,13.75) (13.10,14.08) (13.45,14.42) (14.14,15.11)

pol-trend-log 13.48 15.96 20.03 33.43
(12.03,14.93) (14.51,17.41) (18.58,21.48) (31.98,34.88)

struct-breaks 13.50 14.03 14.58 15.67
(13.02,13.98) (13.55,14.51) (14.10,15.05) (15.20,16.15)

pol-trend-arp 13.38 15.80 17.63 70.49
(12.88,13.88) (15.29,16.30) (17.13,18.12) (70.03,70.96)

pol-trend-arp-av-sl 13.36 13.84 13.27 51.37
(12.86,13.86) (13.33,14.34) (12.78,13.77) (50.90,51.83)

arp 13.20 13.36 13.26 14.70
(12.60,13.80) (12.48,14.23) (12.35,14.17) (13.91,15.49)

rw 13.47 13.47 13.47 13.47
(12.83,14.10) (12.53,14.40) (12.37,14.57) (12.29,14.65)

rwd 13.48 13.84 14.20 14.94
(12.85,14.12) (13.05,14.63) (13.36,15.04) (14.38,15.50)

ima 13.20 13.56 13.92 14.66
(12.42,13.99) (12.68,14.43) (13.10,14.75) (14.17,15.15)

arfima 13.07 12.32 12.16 12.03
(6.39,19.74) (5.64,18.99) (5.48,18.84) (5.36,18.71)

arp20 13.20 13.61 13.92 19.72
(12.67,13.73) (12.71,14.51) (13.33,14.52) (19.56,19.89)

combined0 13.20 13.71 13.73 16.91
(12.47,13.93) (12.85,14.56) (12.85,14.60) (16.12,17.70)

combined1 13.24 13.61 13.87 19.79
(12.53,13.96) (12.76,14.46) (12.95,14.79) (18.97,20.62)

combined2 13.29 13.50 13.58 16.74
(12.59,13.99) (12.62,14.38) (12.66,14.51) (15.92,17.56)

combined3 13.29 13.50 13.63 15.11
(12.59,13.99) (12.59,14.42) (12.64,14.62) (14.24,15.98)

Notes: The average value of the mean in the full sample is 11.69; the average value of the mean in
1880-1900 (the baseline model for the Paris Agreement) is 11.12; the average value of themean in the
AR5 reference period (1986-2005) is 12.17; in the AR6 period (1995-2014) is 12.39. “Combination0”
weights the models using the BICs obtained in-sample; “combined1” removes two extreme values ;
“combined2” removes four extreme values and “combined3” six extreme values. In these last cases
BIC-weights are properly recalculated. Confidence intervals for combined models are built with
estimated errors following the procedure described in the text.
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Table 7
Long-term forecasts for the mean with ”Pareto” superior models (The Globe, CRU

data, 1880-2023, w=100)

Models/horizon h=1 h=10 h=25

mean - - -
(-,-) (-,-) (-,-)

linear-trend - - 12.81
(-,-) (-,-) (12.19,13.44)

pol-trend - - -
(-,-) (-,-) (-,-)

pol-trend-av-sl 13.26 13.38 13.59
(12.77,13.75) (12.90,13.87) (13.10,14.08)

pol-trend-log 13.48 14.26 -
(12.03,14.93) (12.81,15.71) (-,-)

struct-breaks - - -
(-,-) (-,-) (-,-)

pol-trend-arp - - -
(-,-) (-,-) (-,-)

pol-trend-arp-av-sl - - -
(-,-) (-,-) (-,-)

arp - - -
(-,-) (-,-) (-,-)

rw 13.47 - -
(12.83,14.10) (-,-) (-,-)

rwd 13.48 - 13.84
(12.85,14.12) (-,-) (13.05,14.63)

ima 13.20 13.34 13.56
(12.42,13.99) (12.48,14.19) (12.68,14.43)

arfima - 12.54 -
(-,-) (11.75,13.34) (-,-)

arp20 - - -
(-,-) (-,-) (-,-)

combined 13.37 13.39 13.46
(12.64,14.10) (12.68,14.10) (12.57,14.35)

Notes: combined uses BIC weights.
The confidence intervals are computed with forecast errors following the procedure described in the
text.
The average value of the mean in the full sample is 11.69; the average value of the mean in 1880-
1900 (the baseline model for the Paris Agreement) is 11.12; the average value for the AR5 reference
period (1986-2005) is 12.17; the average value for the AR6 reference period (1995-2014) is 12.39.
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Table 8
Long-term density forecasts with Pareto superior model for all quantiles (the Globe,

CRU data, 1880-2023, w=100)

h=1 h=10 h=25

q05 -1.70 -1.10 -2.06
(-4.19,0.80) (-2.91,0.71) (-3.95,-0.17)

q10 1.37 1.94 0.83
(-0.67,3.41) (0.45,3.43) (-0.78,2.44)

q20 4.87 5.34 4.58
(3.49,6.25) (4.35,6.32) (3.50,5.65)

q30 7.59 8.00 7.50
(6.63,8.55) (7.32,8.67) (6.76,8.24)

q40 10.63 11.11 10.38
(9.78,11.48) (10.48,11.73) (9.68,11.08)

q50 13.28 13.51 12.98
(12.53,14.03) (12.97,14.06) (12.34,13.63)

q60 15.87 16.19 15.47
(15.09,16.64) (15.67,16.72) (14.80,16.13)

q70 18.83 19.15 18.31
(18.06,19.61) (18.59,19.70) (17.58,19.03)

q80 21.73 22.12 21.27
(20.95,22.52) (21.55,22.69) (20.52,22.01)

q90 25.50 25.67 25.17
(24.66,26.33) (25.09,26.26) (24.47,25.86)

q95 27.83 27.90 27.72
(27.15,28.51) (27.41,28.39) (27.15,28.29)

Notes: The method selects the Pareto-superior models for all the quantiles and combines them
according with the BIC weights. The selected model are: ima, pol-trend-av-sl and linear-trend for
h=1,10, 25, respectively.
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Figure 6
Selected Pareto-superior models

(a) h=1

Decision matrix for Parecto-superior models (w=100, h=1)
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(b) h=10

Decision matrix for Parecto-superior models (w=100,h=10)
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(c) h=25

Decision matrix for Parecto-superior models (w=100, h=25)
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Table 9
Temperature quantile increases by reference periods and horizons, w=100 (CRU data,

Globe 1880-2023)

quantile periods h
=
1
,
2
02

4

h
=
1
0,

2
0
33

h
=
2
5,

2
0
48

h
=
77

,
21

00

q05 1880-1900 3.19 3.79 2.82 3.77
(-0.22,6.59) (1.99,5.59) (0.94,4.71) (1.88,5.66)

1986-2005 1.20 1.80 0.83 1.78
(-2.21,4.60) (-0.00,3.60) (-1.05,2.72) (-0.11,3.67)

1995-2014 1.03 1.63 0.67 1.61
(-2.37,4.44) (-0.17,3.44) (-1.22,2.55) (-0.28,3.50)

q10 1880-1900 2.92 3.49 2.38 3.20
(0.46,5.39) (2.01,4.98) (0.78,3.99) (1.59,4.81)

1986-2005 1.29 1.86 0.75 1.57
(-1.17,3.76) (0.38,3.35) (-0.85,2.36) (-0.04,3.18)

1995-2014 1.18 1.75 0.64 1.46
(-1.29,3.64) (0.26,3.23) (-0.97,2.24) (-0.15,3.07)

q20 1880-1900 2.30 2.76 2.00 2.68
(0.78,3.81) (1.78,3.74) (0.93,3.07) (1.61,3.76)

1986-2005 1.02 1.49 0.73 1.41
(-0.49,2.54) (0.51,2.47) (-0.35,1.80) (0.33,2.48)

1995-2014 0.80 1.26 0.50 1.18
(-0.72,2.31) (0.28,2.24) (-0.57,1.57) (0.11,2.25)

q30 1880-1900 1.90 2.31 1.82 2.44
(0.93,2.88) (1.64,2.99) (1.08,2.55) (1.70,3.18)

1986-2005 0.72 1.13 0.63 1.26
(-0.25,1.70) (0.46,1.80) (-0.10,1.37) (0.52,2.00)

1995-2014 0.51 0.92 0.42 1.05
(-0.47,1.48) (0.24,1.59) (-0.32,1.16) (0.30,1.79)

q40 1880-1900 1.86 2.33 1.61 2.18
(0.58,3.14) (1.72,2.95) (0.92,2.30) (1.48,2.88)

1986-2005 0.87 1.35 0.63 1.20
(-0.41,2.16) (0.73,1.97) (-0.07,1.32) (0.50,1.89)

1995-2014 0.59 1.06 0.34 0.91
(-0.70,1.87) (0.44,1.68) (-0.36,1.03) (0.21,1.61)

q50 1880-1900 1.73 1.96 1.43 1.96
(0.45,3.00) (1.42,2.50) (0.79,2.07) (1.31,2.60)

1986-2005 0.91 1.14 0.61 1.14
(-0.37,2.18) (0.60,1.68) (-0.03,1.25) (0.50,1.78)

1995-2014 0.62 0.85 0.32 0.85
(-0.66,1.89) (0.31,1.39) (-0.32,0.96) (0.20,1.49)

q60 1880-1900 1.76 2.09 1.36 1.88
(0.65,2.88) (1.57,2.61) (0.70,2.02) (1.22,2.55)

1986-2005 0.99 1.32 0.59 1.11
(-0.12,2.11) (0.80,1.84) (-0.07,1.25) (0.45,1.78)

1995-2014 0.79 1.11 0.38 0.90
(-0.33,1.90) (0.59,1.63) (-0.28,1.05) (0.24,1.57)

q70 1880-1900 2.29 2.61 1.77 2.42
(1.39,3.19) (2.06,3.16) (1.04,2.49) (1.70,3.15)

1986-2005 1.27 1.58 0.74 1.40
(0.37,2.17) (1.03,2.13) (0.02,1.46) (0.68,2.13)

1995-2014 0.99 1.31 0.47 1.13
(0.09,1.89) (0.76,1.86) (-0.26,1.19) (0.40,1.85)

q80 1880-1900 2.10 2.49 1.64 2.25
(1.20,3.00) (1.92,3.06) (0.90,2.38) (1.51,2.99)

1986-2005 1.23 1.62 0.76 1.38
(0.33,2.13) (1.05,2.19) (0.02,1.50) (0.63,2.12)

1995-2014 0.92 1.31 0.45 1.07
(0.02,1.82) (0.74,1.88) (-0.29,1.19) (0.32,1.81)

q90 1880-1900 1.50 1.68 1.17 1.62
(0.66,2.34) (1.10,2.26) (0.48,1.87) (0.92,2.31)

1986-2005 0.83 1.00 0.50 0.94
(-0.01,1.66) (0.42,1.59) (-0.20,1.19) (0.25,1.64)

1995-2014 0.60 0.78 0.27 0.71
(-0.24,1.44) (0.20,1.36) (-0.42,0.96) (0.02,1.41)

q95 1880-1900 1.20 1.27 1.09 1.50
(0.52,1.89) (0.78,1.76) (0.53,1.66) (0.93,2.06)

1986-2005 0.54 0.61 0.43 0.84
(-0.14,1.23) (0.12,1.10) (-0.13,0.99) (0.27,1.40)

1995-2014 0.32 0.39 0.21 0.61
(-0.37,1.00) (-0.10,0.87) (-0.36,0.77) (0.05,1.18)

Notes: The predictions, and consequently the estimated temperature increases over the reference
periods, were derived by combining the Pareto-superior models for each prediction horizon. For
h=77, the model selection corresponding to h=25 was applied; Confidence intervals for combined
models are built with estimated errors following the procedure described in the text.



Long-term climate forecasts 50

Figure 7
Temperature increases in 2100 by reference periods
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Figure 8
Comparing predictions and projections for the mean temperature

(a) h=25, 2048
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Table 10
Long-term density forecasts with Pareto superior model for all quantiles (the Globe,

CRU data, 1960-2023, w=25)

h=1 h=10 h=25

q05 -14.02 -13.60 -12.90
(-15.66,-12.38) (-15.24,-11.96) (-14.54,-11.25)

q10 -5.97 -5.54 -4.83
(-7.15,-4.79) (-6.72,-4.37) (-6.01,-3.65)

q20 1.31 1.65 2.21
(0.30,2.32) (0.63,2.66) (1.20,3.22)

q30 5.44 5.70 6.13
(4.78,6.09) (5.04,6.35) (5.48,6.79)

q40 8.84 9.05 9.42
(8.36,9.32) (8.57,9.53) (8.93,9.90)

q50 12.12 12.35 12.72
(11.68,12.56) (11.90,12.79) (12.28,13.16)

q60 15.05 15.27 15.65
(14.65,15.45) (14.87,15.67) (15.25,16.05)

q70 18.02 18.28 18.72
(17.59,18.45) (17.85,18.71) (18.29,19.15)

q80 21.26 21.51 21.93
(20.82,21.71) (21.07,21.96) (21.48,22.37)

q90 25.55 25.77 26.13
(25.15,25.94) (25.37,26.16) (25.73,26.52)

q95 27.77 27.97 28.29
(27.46,28.08) (27.66,28.27) (27.98,28.60)

Notes: The selected models are linear-trend for all horizons.

Table 11
Long-term density forecasts with Pareto superior model for all quantiles (the Arctic,

CRU data, 1960-2023, w=25)

h=1 h=10 h=25

q05 -31.94 -31.45 -30.63
(-34.22,-29.66) (-33.73,-29.17) (-32.91,-28.35)

q10 -27.05 -26.41 -25.34
(-28.96,-25.14) (-28.31,-24.50) (-27.25,-23.43)

q20 -20.15 -19.48 -18.36
(-21.94,-18.36) (-21.27,-17.69) (-20.15,-16.57)

q30 -13.21 -12.50 -11.32
(-15.26,-11.16) (-14.55,-10.46) (-13.37,-9.27)

q40 -7.80 -7.14 -6.06
(-9.67,-5.92) (-9.02,-5.27) (-7.93,-4.19)

q50 -3.40 -2.87 -2.00
(-4.74,-2.06) (-4.21,-1.53) (-3.34,-0.66)

q60 0.20 0.58 1.21
(-0.81,1.21) (-0.44,1.59) (0.19,2.22)

q70 3.68 4.02 4.59
(2.73,4.63) (3.07,4.98) (3.64,5.54)

q80 7.30 7.63 8.17
(6.18,8.42) (6.51,8.75) (7.05,9.29)

q90 11.64 11.91 12.35
(10.76,12.53) (11.02,12.79) (11.46,13.23)

q95 13.82 14.08 14.52
(12.79,14.84) (13.05,15.10) (13.49,15.54)

Notes: The Pareto-superior model is linear-trend for all the horizons.
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Table 12
Long-term density forecasts with Pareto superior models for all quantiles (Europe,

CRU data, 1960-2023, w=25)

h=1 h=10 h=25

q05 -2.19 -1.75 -1.02
(-4.55,0.16) (-4.11,0.60) (-3.38,1.34)

q10 0.50 0.91 1.60
(-1.58,2.58) (-1.16,2.99) (-0.48,3.68)

q20 3.58 3.92 4.48
(2.07,5.08) (2.41,5.42) (2.98,5.99)

q30 5.78 6.03 6.45
(4.86,6.70) (5.11,6.95) (5.53,7.37)

q40 8.07 8.29 8.66
(7.29,8.85) (7.51,9.07) (7.88,9.44)

q50 10.57 10.80 11.18
(9.67,11.47) (9.90,11.70) (10.28,12.08)

q60 12.97 13.20 13.58
(12.18,13.75) (12.41,13.98) (12.80,14.37)

q70 15.25 15.50 15.90
(14.46,16.04) (14.71,16.28) (15.12,16.69)

q80 17.77 18.08 18.61
(16.90,18.63) (17.22,18.95) (17.75,19.48)

q90 20.63 21.01 21.64
(19.67,21.58) (20.05,21.96) (20.69,22.60)

q95 23.03 23.42 24.07
(22.13,23.94) (22.52,24.33) (23.16,24.97)

Notes: The selected model is linear-trend for all the horizons.

Table 13
Long-term density forecasts with Pareto superior model for all quantiles (North

America, CRU data, 1960-2023, w=25)

h=1 h=10 h=25

q05 -10.78 -10.35 -9.67
(-12.98,-8.59) (-12.17,-8.53) (-11.50,-7.85)

q10 -4.26 -3.87 -3.30
(-6.58,-1.95) (-5.76,-1.97) (-5.20,-1.40)

q20 1.59 2.08 2.54
(0.05,3.12) (0.83,3.32) (1.30,3.79)

q30 5.92 6.17 6.50
(4.78,7.06) (5.24,7.10) (5.57,7.43)

q40 9.35 9.58 9.90
(8.48,10.23) (8.87,10.29) (9.19,10.61)

q50 12.71 12.86 13.20
(11.92,13.49) (12.20,13.51) (12.55,13.86)

q60 15.92 16.07 16.44
(15.20,16.64) (15.46,16.68) (15.83,17.05)

q70 19.21 19.30 19.65
(18.46,19.96) (18.63,19.97) (18.99,20.32)

q80 22.38 22.51 22.85
(21.51,23.24) (21.78,23.24) (22.12,23.58)

q90 25.47 25.73 26.09
(24.72,26.21) (25.12,26.33) (25.48,26.69)

q95 27.56 27.83 28.22
(26.84,28.27) (27.25,28.42) (27.64,28.80)

Notes: The selected model are {linear-trend,pol-trend-log}; linear-trend ; linear-trend for h=1, 10
and 25, respectively.
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Table 14
Long-term density forecasts with Pareto superior model for all quantiles (South

America, CRU data, 1960-2023, w=25)

h=1 h=10 h=25

q05 7.17 7.25 7.47
(6.24,8.10) (6.28,8.23) (6.72,8.22)

q10 8.73 8.80 8.96
(7.80,9.66) (7.82,9.77) (8.21,9.71)

q20 11.24 11.33 11.57
(10.32,12.15) (10.37,12.29) (10.83,12.30)

q30 13.38 13.47 13.68
(12.69,14.08) (12.74,14.19) (13.13,14.23)

q40 15.62 15.68 15.82
(14.65,16.60) (14.66,16.70) (15.03,16.61)

q50 17.85 18.00 18.04
(16.89,18.80) (17.02,18.99) (17.27,18.82)

q60 19.95 20.17 20.28
(19.01,20.88) (19.22,21.11) (19.53,21.02)

q70 21.98 22.17 22.26
(21.12,22.84) (21.30,23.05) (21.57,22.95)

q80 24.06 24.28 24.14
(23.19,24.93) (23.43,25.13) (23.43,24.85)

q90 26.36 26.52 26.65
(25.73,26.99) (25.87,27.16) (26.16,27.15)

q95 27.39 27.63 27.57
(26.60,28.18) (26.87,28.39) (26.93,28.21)

Notes: The selected models are: {mean, linear-trend}, {mean, linear-trend, pol-trend-av-sl} and
linear-trend for h=1,10,25, respectively.
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Table 15
Long-term density forecasts with Pareto superior model for all quantiles (Asia, CRU

data, 1960-2023, w=25)

h=1 h=10 h=25

q05 -20.08 -19.62 -18.90
(-24.07,-16.09) (-25.56,-13.68) (-21.53,-16.26)

q10 -12.42 -11.91 -11.15
(-15.56,-9.27) (-16.35,-7.46) (-13.19,-9.10)

q20 -3.59 -3.24 -2.54
(-5.68,-1.50) (-5.32,-1.17) (-3.87,-1.21)

q30 2.24 2.64 3.03
(0.29,4.19) (1.21,4.07) (2.21,3.85)

q40 6.86 7.00 7.47
(5.63,8.09) (2.45,11.56) (6.82,8.11)

q50 10.94 11.07 11.49
(10.00,11.87) (9.45,12.70) (10.90,12.08)

q60 14.73 14.89 15.29
(14.08,15.39) (13.99,15.79) (14.86,15.72)

q70 18.15 18.28 18.72
(17.39,18.90) (17.02,19.54) (18.21,19.22)

q80 21.99 22.09 22.56
(21.14,22.85) (19.39,24.78) (22.01,23.11)

q90 26.78 26.89 27.22
(26.12,27.43) (26.09,27.68) (26.81,27.63)

q95 28.47 28.68 28.91
(27.97,28.97) (28.17,29.19) (28.59,29.24)

Notes: The selected model are: {linear-trend, pol-trend-log}, {linear-trend, pol-trend-av-sl} and
linear-trend for h=1,10, 25, respectively.

Table 16
Long-term density forecasts with Pareto superior model for all quantiles (Africa, CRU

data, 1960-2023, w=25)

h=1 h=10 h=25

q05 10.92 11.04 11.24
(9.88,11.96) (10.00,12.08) (10.21,12.28)

q10 12.20 12.33 12.54
(11.44,12.97) (11.57,13.09) (11.78,13.30)

q20 14.10 14.27 14.56
(13.41,14.78) (13.58,14.95) (13.87,15.24)

q30 15.95 16.14 16.46
(15.28,16.63) (15.47,16.82) (15.79,17.13)

q40 17.71 17.92 18.27
(17.14,18.28) (17.35,18.49) (17.69,18.84)

q50 19.71 19.95 20.36
(19.10,20.32) (19.35,20.56) (19.76,20.97)

q60 21.56 21.80 22.22
(20.96,22.15) (21.21,22.40) (21.62,22.81)

q70 23.89 24.18 24.66
(23.27,24.52) (23.56,24.81) (24.03,25.28)

q80 26.07 26.34 26.79
(25.43,26.71) (25.70,26.98) (26.16,27.43)

q90 28.56 28.87 29.38
(27.81,29.32) (28.11,29.63) (28.62,30.14)

q95 31.75 32.05 32.56
(30.86,32.64) (31.16,32.95) (31.66,33.45)

Notes: The selected model is linear-trend for all horizons.
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Table 17
Long-term density forecasts with Pareto superior model for all quantiles (Australia,

CRU data, 1960-2023, w=25)

h=1 h=10 h=25

q05 10.92 11.04 11.24
(9.88,11.96) (10.00,12.08) (10.21,12.28)

q10 12.20 12.33 12.54
(11.44,12.97) (11.57,13.09) (11.78,13.30)

q20 14.10 14.27 14.56
(13.41,14.78) (13.58,14.95) (13.87,15.24)

q30 15.95 16.14 16.46
(15.28,16.63) (15.47,16.82) (15.79,17.13)

q40 17.71 17.92 18.27
(17.14,18.28) (17.35,18.49) (17.69,18.84)

q50 19.71 19.95 20.36
(19.10,20.32) (19.35,20.56) (19.76,20.97)

q60 21.56 21.80 22.22
(20.96,22.15) (21.21,22.40) (21.62,22.81)

q70 23.89 24.18 24.66
(23.27,24.52) (23.56,24.81) (24.03,25.28)

q80 26.07 26.34 26.79
(25.43,26.71) (25.70,26.98) (26.16,27.43)

q90 28.56 28.87 29.38
(27.81,29.32) (28.11,29.63) (28.62,30.14)

q95 31.75 32.05 32.56
(30.86,32.64) (31.16,32.95) (31.66,33.45)

Notes: The selected model is linear-trend for all horizons.

Table 18
Long-term density forecasts with Pareto superior model for all quantiles (the

Antarctic, CRU data, 1960-2023, w=25)

h=1 h=10 h=25

q05 -58.52 -58.53 -58.52
(-60.62,-56.43) (-61.07,-55.99) (-60.62,-56.43)

q10 -53.82 -53.82 -53.82
(-56.12,-51.51) (-56.65,-51.00) (-56.12,-51.51)

q20 -26.59 -26.59 -26.59
(-29.15,-24.03) (-29.72,-23.46) (-29.15,-24.03)

q30 -19.00 -19.00 -19.00
(-20.87,-17.13) (-21.30,-16.71) (-20.87,-17.13)

q40 -16.47 -16.48 -16.47
(-18.17,-14.78) (-18.55,-14.40) (-18.17,-14.78)

q50 -14.51 -14.51 -14.51
(-16.00,-13.01) (-16.34,-12.68) (-16.00,-13.01)

q60 -12.36 -12.36 -12.36
(-13.81,-10.91) (-14.13,-10.59) (-13.81,-10.91)

q70 -9.50 -9.50 -9.50
(-10.85,-8.16) (-11.15,-7.86) (-10.85,-8.16)

q80 -5.59 -5.59 -5.59
(-6.66,-4.52) (-6.89,-4.29) (-6.66,-4.52)

q90 -2.19 -2.19 -2.19
(-3.12,-1.27) (-3.33,-1.06) (-3.12,-1.27)

q95 -0.79 -0.81 -0.79
(-1.85,0.27) (-2.07,0.44) (-1.85,0.27)

Notes: The selected models are: mean, {mean, arp}, mean, for h=1,10,25, respectively.
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Table 19
Descriptive values of quantiles by regions (CRU data 1960-2023)

quantile statistics G
lo
b
e

A
rc
ti
c

E
u
ro
p
e

N
or
th
A
m
er
ic
a

S
ou

th
A
m
er
ic
a

A
si
a

A
fr
ic
a

A
u
st
ra
li
a

A
n
ta
rc
ti
c

q05 mean 1986-2005 -15.15 -33.76 -3.64 -11.71 7.06 -21.12 10.35 10.21 -58.85
mean 1995-2014 -15.07 -33.13 -3.48 -11.52 7.08 -21.35 10.69 10.33 -58.57

q10 mean 1986-2005 -7.22 -29.63 -0.89 -4.91 8.68 -13.66 11.68 11.54 -53.98
mean 1995-2014 -6.97 -28.64 -0.73 -4.91 8.70 -13.58 11.93 11.68 -53.76

q20 mean 1986-2005 0.25 -22.86 2.44 1.07 11.17 -5.06 13.49 13.30 -26.89
mean 1995-2014 0.42 -21.81 2.60 1.12 11.18 -4.66 13.73 13.52 -26.83

q30 mean 1986-2005 4.57 -15.93 4.86 5.45 13.23 1.10 15.31 15.35 -18.99
mean 1995-2014 4.83 -14.97 5.17 5.47 13.25 1.52 15.56 15.62 -18.69

q40 mean 1986-2005 8.13 -10.32 7.32 8.81 15.49 5.93 16.98 17.25 -16.51
mean 1995-2014 8.39 -9.44 7.64 8.88 15.55 6.28 17.23 17.56 -16.39

q50 mean 1986-2005 11.32 -5.28 9.73 11.94 17.65 10.03 18.93 19.21 -14.63
mean 1995-2014 11.63 -4.59 10.13 12.04 17.77 10.42 19.20 19.49 -14.52

q60 mean 1986-2005 14.24 -1.21 12.14 15.02 19.68 13.91 20.80 20.93 -12.24
mean 1995-2014 14.49 -0.65 12.51 15.19 19.83 14.22 21.03 21.20 -12.47

q70 mean 1986-2005 17.09 2.36 14.36 18.22 21.75 17.13 23.00 22.68 -9.40
mean 1995-2014 17.42 2.83 14.68 18.45 21.87 17.58 23.30 22.91 -9.59

q80 mean 1986-2005 20.37 6.01 16.64 21.47 23.86 20.99 25.21 24.84 -5.70
mean 1995-2014 20.70 6.56 17.01 21.69 24.00 21.43 25.51 25.04 -5.62

q90 mean 1986-2005 24.78 10.69 19.35 24.71 26.19 26.06 27.51 27.20 -2.20
mean 1995-2014 25.06 10.94 19.77 24.94 26.36 26.37 27.94 27.33 -2.14

q95 mean 1986-2005 27.13 12.94 21.75 26.80 27.11 27.89 30.53 28.66 -0.82
mean 1995-2014 27.34 13.23 22.17 27.05 27.34 28.09 31.15 28.73 -0.99
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Temperature quantile increases with respect to the mean 1986-2005 (h=1)
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Temperature quantile increases with respect to the mean 1995-2014 (h=1)
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Figure 9
Comparing regional forecast (h=1, 1960-2023)
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Temperature quantile increases with respect to the mean 1986-2005 (h=10)
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Temperature quantile increases with respect to the mean 1995-2014 (h=10)
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Figure 10
Comparing regional forecast (h=10, 1960-2023)

Temperature quantile increases with respect to the mean 1986-2005 (h=25)
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Temperature quantile increases with respect to the mean 1995-2014 (h=25)
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Figure 11
Comparing regional forecast (h=25, 1960-2023)
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Table 20
Forecasted temperature increases in 2100

quantile statistics G
lo
b
e

A
rc
ti
c

E
u
ro
p
e

N
or
th
A
m
er
ic
a

S
ou

th
A
m
er
ic
a

A
si
a

A
fr
ic
a

A
u
st
ra
li
a

A
n
ta
rc
ti
c

q05 mean 1986-2005 4.58 6.37 5.07 4.19 0.03 4.80 1.61 1.55 0.30
mean 1995-2014 4.49 5.74 4.92 3.99 -0.00 5.01 1.23 1.41 -0.05

q10 mean 1986-2005 4.79 7.84 4.68 3.35 0.01 5.15 1.56 1.76 0.06
mean 1995-2014 4.52 6.84 4.52 3.34 -0.01 5.07 1.30 1.64 0.08

q20 mean 1986-2005 3.77 8.24 3.94 2.95 -0.05 4.94 2.14 1.81 0.24
mean 1995-2014 3.59 7.16 3.78 2.90 -0.07 4.55 1.90 1.62 0.16

q30 mean 1986-2005 2.98 8.58 3.02 2.16 -0.00 3.81 2.19 2.29 -0.00
mean 1995-2014 2.73 7.62 2.71 2.12 0.00 3.41 1.96 2.02 -0.30

q40 mean 1986-2005 2.13 8.08 2.65 2.14 0.08 3.08 2.50 2.10 0.05
mean 1995-2014 1.86 7.20 2.32 2.08 -0.05 2.73 2.25 1.88 -0.11

q50 mean 1986-2005 2.32 6.44 2.71 2.32 0.03 2.89 2.80 2.13 0.20
mean 1995-2014 2.01 5.74 2.30 2.20 -0.02 2.50 2.54 1.89 0.09

q60 mean 1986-2005 2.80 4.61 2.72 2.61 0.12 2.79 2.83 2.15 -0.16
mean 1995-2014 2.53 4.04 2.35 2.44 -0.07 2.48 2.58 1.90 0.07

q70 mean 1986-2005 3.25 4.19 2.81 2.62 0.10 3.03 2.93 2.15 -0.07
mean 1995-2014 2.92 3.71 2.49 2.40 -0.05 2.58 2.65 1.93 -0.01

q80 mean 1986-2005 2.87 3.81 3.71 2.57 0.15 3.00 3.04 1.95 0.13
mean 1995-2014 2.54 3.26 3.34 2.35 0.01 2.55 2.75 1.75 -0.08

q90 mean 1986-2005 2.41 3.02 4.48 2.67 0.08 2.27 3.17 2.09 -0.05
mean 1995-2014 2.12 2.77 4.07 2.45 -0.10 1.97 2.82 1.97 -0.04

q95 mean 1986-2005 2.25 3.00 4.49 2.63 0.21 2.06 3.73 1.92 0.03
mean 1995-2014 2.04 2.71 4.08 2.39 -0.04 1.87 3.34 1.86 0.21
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Temperature quantile increases with respect to the mean 1986-2005 (2100)
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Temperature quantile increases with respect to the mean 1995-2014 (2100)
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Figure 12
Comparing regional forecast 2100

1942

Atlas�

A

analysis based on time slices for particular scenarios (Atlas.1.3.1). 
This dimension allows for enhanced comparability of CMIP5 and 
CMIP6, since it constrains the regional patterns to the same global 
warming level for both datasets.

Building on this information, the Interactive Atlas displays a number 
of (mean and extreme) indices and climatic impact-drivers (CIDs), 
considering both atmospheric and oceanic variables (Atlas.2.2). Some 
of these indices have been selected in coordination with Chapters 11 
and 12, in order to support and extend the assessment performed in 
these chapters (see Annex VI for details on the indices). In order to 
harmonize this information, the indices have been computed for each 
individual model on the original model grids and the results have been 
interpolated to a common 2° (for CMIP5) and 1° (CMIP6) horizontal 
resolution grids. In addition, for the sake of comparability with CMIP6 
results (in particular when using baselines going beyond 2005), 
the historical period of the CMIP5 and CORDEX datasets has been 
extended to 2006–2014 using the first years of RCP8.5-driven transient 
projections (Atlas.1.3.1). Tables listing the CMIP5 and CMIP6 models 
used in the Atlas and in the Interactive Atlas for different scenarios and 
variables are included as Supplementary Material (Tables Atlas.SM.1 
and Atlas.SM.2, respectively); moreover, full inventories including 
details on the specific Earth System Grid Federation (ESGF) versions 
are given in the Atlas GitHub repository (Iturbide et al., 2021).

Chapter 3 and Flato et al. (2013) describe the evaluation of CMIP6 
and CMIP5 models, respectively, assessing surface variables and 
large-scale indicators. Section 10.3.3 assesses the general capability 
of GCMs to produce climate output for regions.

Information from the existing CMIP5 and CMIP6 datasets is 
supplemented with downscaled regional climate simulations from 
CORDEX. This facilitates an assessment of the effects from higher 
resolution, including whether this modifies the projected climate 

change signals compared to global models and adds any value, 
especially in terms of high-resolution features and extremes.

Atlas.1.4.4	 Regional Model Data (CORDEX)

Global model data, as generated by the CMIP ensembles, although 
available globally, have spatial resolutions that are limited for 
reproducing certain processes and phenomena relevant for regional 
analysis (around 2° and 1° for CMIP5 and CMIP6, respectively). The 
Coordinated Regional Climate Downscaling Experiment (CORDEX; 
Gutowski Jr. et  al., 2016) facilitates worldwide application of 
Regional Climate Models (RCMs, see Section  10.3.1.2), focusing 
on a  number of regions (Figure Atlas.6) with a  typical resolution 
of 0.44° (but also at 0.22° and 0.11° over some domains, such as 
Europe). However, only a  few simulations are available for some 
domains (Annex II, Table AII.1), thus limiting the level of analysis 
and assessment that can be performed using CORDEX data in some 
regions. Moreover, there are regions where several domains overlap, 
thus providing additional lines of evidence. The use of multi-domain 
grand ensembles to work globally with CORDEX data have recently 
been proposed (Legasa et al., 2020; Spinoni et al., 2020). Ongoing 
efforts, such as the multi-domain CORDEX-CORE simulations are 
promoting more homogeneous coverage and thus more systematic 
treatment of CORDEX domains (Box Atlas.1).

A lot of progress has been made by the regional climate modelling 
community since AR5 (Table AII.1) to produce and make available 
evaluation (reanalysis-driven) simulations over the different 
CORDEX domains along with downscaled CMIP5 historical and 
future climate projection information under a  range of emissions 
scenarios, mainly RCP2.6, RCP4.5 and RCP8.5 (Tables AII.3 and AII.4). 
However, these ensembles cover only a  fraction of the uncertainty 
range spanned by the full CMIP5 ensemble in the different domains 
(e.g., Figures Atlas.16, Atlas.17, Atlas.21, Atlas.22, Atlas.24, Atlas.26, 

1: South America (SAM)
2: Central America (CAM)
3: North America (NAM)
4: Africa (AFR)
5: Europe (EUR)
6: South Asia (WAS)
7: East Asia (EAS)
8: Central Asia (CAS)
9: Australasia (AUS)
10: Antarctica (ANT)
11: Arctic (ARC)
12: Mediterranean (MED)
13: Middle East North Africa (MNA)
14: South East Asia (SEA)

0
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Figure Atlas.6 | CORDEX domains showing the curvilinear domain boundaries resulting from the original rotated domains. The topography corresponding to 
the standard CORDEX 0.44° resolution is shown to illustrate the orographic gradients over the different regions.

Figure 13
Atlas regional classification

Notes: Source: Gutierrez et al. (2021).
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Figure 14
AR6 Atlas average projections and density forecasts

(a) Arctic Polar Circle
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(e) Asia
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7 Appendix: Additional exercises

7.1 A synthetic control experiment

As a complement to the previous prediction exercises, this section employs a syn-

thetic control experiment, a methodology recently highlighted for its utility in pre-

diction as an attribution tool (see Botosaru et al., 2023). The control group is derived

from data spanning 1880 to 1960, a period prior to the significant acceleration of

greenhouse gas concentrations in the atmosphere and the widespread adoption of

climate change mitigation measures (see Global Carbon Budget, 2024). Using the

methodology detailed in earlier sections, predictions are extended to the present,

and the results are compared against observed temperature data.

The counterfactual framing of this experiment is straightforward: What would

have occurred in the absence of increased emissions concentrations and mitigation

measures? Since these factors act in opposing directions—emissions driving warm-

ing and mitigation efforts aiming to reduce it—the experiment seeks to quantify the

extent to which mitigation efforts have counteracted the effects of elevated emissions.

Figure A-1 displays the density forecast of the projections. The results are unequiv-

ocal: in all cases, current observed temperatures exceed those projected under a

business-as-usual (BAU) scenario extrapolated from the trends of the first half of

the 20th century. This divergence is evident across all quantiles, though with vary-

ing intensities. The lower quantiles show the most significant discrepancies between

observed and predicted temperatures, as highlighted in the lower panel of Figure

A-1. This is in line with Chen et al. (2023) who show that a ∆C02 accumulation

affects the lower than the upper quantiles. These findings suggest that while miti-

gation measures have had some effect, they have not been fully effective in offsetting

the warming effects of elevated emissions.

This experiment underscores the complex interplay between emissions growth

and mitigation efforts. Although the latter have likely prevented more severe warm-

ing, the persistent gap between observed and counterfactual scenarios highlights the

need for more robust and effective measures to combat global warming.
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Figure A-1
Synthetic control exercise: Density forecast

(a) True and forecasted temperature by quantiles in 2023
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7.2 A short-run exercise in real time

Climate, by nature, is a long-term phenomenon. Accordingly, our methodological

approach has been designed with this principle in mind. However, in this section,

and without claiming to act as “weathermen”, we demonstrate the effectiveness of

our methods over shorter timeframes and in real-time scenarios. To this end, we

conduct prediction exercises for the Globe. 27. In all cases, data up to 1999 serve as

the reference period, with real-time forecasts recursively calculated through 2024.

The proposed methods are applied to both the mean and the distribution density.

For global forecasts, we use the same dataset as the rest of this study, covering

the period 1880–1999 as the reference. Predictions are computed recursively for

the years 2000–2024 with h=1. A fan plot (Figure A-2) illustrates the forecasts

through 2024. The predictions generally align with observed trends but display

non-negligible variability. Figure A-3 compares predictions from the benchmark

linear model, the BIC-selected model, and various combinations of models. While

the linear model performs adequately, combinations yield more precise predictions.

Evaluation performance using RMSE (2000–2023), shows that model combinations,

particularly those based on Pareto-superior models and the BIC criterion, achieve

the lowest RMSEs. Figure A-4 compares real-time density forecasts against actual

data.

Two key observations emerge: Predictions successfully capture the observed

rightward shift in the temperature distribution. Predicted distributions tend to

smooth out observed variability, reflecting the trend-based nature of the methodol-

ogy.

27An application for the Central England and Madrid-Retiro station is available upon request.
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Figure A-2
Forecasted mean temperature in real time with individual models (Globe, 2000-2024)

Notes: The forecasts are made with each of the 14 models with recursive information for the period
2000-2024. The dots are the historical lines and the filled line (in red) indicates the mean of the
forecasts.
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Figure A-3
Forecasted mean temperature in real time with combinations of models (Globe,

2000-2024)

Notes: Benchmark model refers to “linear trend”; selected model is “pol-trend-av-sl”;
“comb3”removes the six extreme values; “comb-pareto” combines the selected Pareto-superior mod-
els by using the BIC weights.
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Figure A-4
Density forecast in real time (Globe, 2000-2024)


