Appendices to the paper "Detecting Big Structural Breaks in
Large Factor Models" (2013) by Chen, Dolado and Gonzalo.

A.1: Proof of Propositions 1 and 2

The proof proceeds by showing that the errors, factors and loadings in model (5) satisfy
Assumptions A to D of Bai and Ng (2002) (BN 2002 hereafter). Then, once these results
are proven, Propositions 1 and 2 just follow immediately from application of Theorems 1
and 2 of BN (2002). Define Fj = [F] G}, ¢ = HG? +e;,and T =[A A

Lemma 1. E||F}||* < oo and T-' L FFFY 2 S% as T — oo for some positive matriz
3.

Proof. E||F}||* < oo follows from E||F;||* < oo by Assumption 2 and the definition of G}.
To prove the second part, we partition the matrix Xp(= limp_oo 71 S/, FLF}) into:

(211 Ew)
Sy Y2
and F}! is the k; x 1 subvector of F} that has big breaks in their loadings, F}? is the ko x 1

subvector of F; that doesn’t have big breaks in their loadings. By the definition of F}* and

G} we have:

T Ty PR Ty PrFY T ZtT:r+1 FRY

T Z FyES =| 1771 23:1 F?F} T Zthl FPFE T Z$=T+1 FEF}
—1 _ ’ _ ’ _ ’

! T ZtT:TH F'FY T ZtT:TH F'FE T ZtT:TH FF}

By Assumption 2, the above matrix converges to

Y 12 (1—7")%n
E}:-v = 2’12 222 (1 — 7[‘*)2/12
(1-—79%1 1—7")%¥1 (1-—7%)2n

Moreover,

Y Y2 0
det(X%) =det [ Xy Yoo (1 —79)%), | =det(Ep)det(n* (1 —7")E11) >0
0 0 (1 —7")%1

because Y is positive definite by assumption. This completes the proof. O



Lemma 2. ||T;|| < oo for all i, and N7'T'T = X1 as N — oo for some positive definite

matriz Xr.
Proof. This follows directly from Assumptions 1.a and 3. O

The following lemmae involve the new errors €. Let M and M* denote some positive

constants.
Lemma 3. E(ey) =0, Ele;|® < M* for alli and t.

Proof. Fort =1,...,7, Eley|® = Eley|® < M by Assumption 4. For t =7+ 1,..., T,
Eleu|® = Elew +niF7[* < 27 (E\e,-t|8 + E|77§Ft2!8)

by Loeve’s inequality. Next, E|niF2[® < ||| E| F||® < oo by Assumptions 1.a and 2.
Then the result follows. O]

Lemma 4. E(cie;/N) = E(N"'SN eiseir) = vi(s,1), vk (s,8)] < M* for all s, and
T k(5,2 < M* for allt and T.

Proof.

N
(s t) = N7'Y" E(eiseir)

i=1
N

= N'Y E(eis + n/G2)E(ei + njG7)
=1
N

= N7'Y [E(eiseir) + EmGiGY))]

i=1
N N - -
< NUY Bewen) + N7V Y VE@G2) B G,
i=1 i=1
Since N~' SN E(ejseir) = yn(s,t) by Assumption 4, and E(ngG%)z < |m|PE|F|?* =
O(w7) for all t by Assumptions 1.b and 2, we have 7% (s,t) < (s, t) + O(5). Then
1

v (s,9)] < (s, )| + O(5) < M



by Assumption 4. Moreover,

d * 2 d 1 2
2N R < ) (s t) +0(gp)

s=1 .
= 2_: (*)

< M+O(N)§M*

by Assumption 4. Thus, the proof is complete. O
Lemma 5. E(eiejr) = 775, with |75 ,| < |75 for some 75 and for allt; and N~ IS, Z 1l <
M*.

Proof. By Assumption 4, |74 < |7;;| for some 7;; and all ¢, where 7;;; = E(ejej;). Then:
Tl = |[E(eieji)]
= |E(ew + niG?)(eje + m;G7)|
2 2
< IB(eaes)] + \/E(m’-Gi) E(nG3)

for all ¢t. Therefore

]
]
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by Assumption 4. O
Lemma 6. E(GitEjs) - Tz] ts and (NT)_I 1 Z =1 Zt 1 Zs 1 ‘ z] ts| < M.
Proof. By Assumption 4, (NT)~' SN, Zév:l S ST ijas] < M, where E(ejejs) =

Tijts- Lhen:

E(eitejs) - Tz] ts — E(eltejs) + E(nzth]G ) = Tijts T E(nzthjGQ)



and we have

NT)_lzzZZ’Uts‘ S (NT)_lzZZZ‘TZ]tS|+ NT 1ZZZZ|E771GH73

i=1j=11t=1t=1 i=1j=1t=1t=1 i=1j=1t=11t=1
M+0(1)

<
< M

following the same arguments as above.

Lemma 7. For every (t,s), E|N~ 1/2 ZZ Lleiseir — Eleisen)]|* < M*.
Proof. Since €;; = e;; + n.G?, we have:

eiteis — E(eir€is) = eireis — Eleqeis) + ean;Gi + eisniG} + niGiniGr — E(n,GiniG?).
Since ElexmiG2|* < |nil|*Elea|* E|Fi||* = Op(N~2T~?), and E|}GniG3|* < ||lni|PE|| F[|* =

O,(N=T~*), the result follows from Loéve’s inequality and that

N 4
E”.Z\f_l/2 Z[eiseit — E(eiseit)]’ S M
=1

Lemma 8. E(% SN H% ST Frey 2) < M*.

Proof. By the definition of ¢; we have:

11 &
B3| Sy el < B3] b e

then by the definition of F;* and G?,

) ey Xl 2t

)

1 X 9 1 T L
= Hﬁ ;Fteit + H\/thz-r;rl Fyeit

H\FthG”

1 4 * 12 2 1 d ! 12 2 1 d 1,112 2
|y moet] =y 3 mst]+ | 3w

First, by Assumption 4 we have

2)gM.

1 X1 &
E(N;H\/T;Fte“



Second,

1 7 T 2
= 3 E( Y R
k=1 t=74+1

= LY Y Y B(RuBuiE) )

p=1t=74+1s=7+1

and

E(FiuFis (i F2) ([ F2))

1y
NT”

< |mlPE|F|* = O(
2
so we have EH% S le’-FfH = O(1/N). The result then follows by noting that

2 < ? and Hﬁ ZtT:TH FtlngFtQHQ < Hﬁ ZtT:r+1 FtﬁgFtQHQ‘
O

1L T 1 1 T
H Wi Doi—ri1 Fiei 7T Y oi—ri1 Frei

As mentioned before, once it has been shown that the new factors: Fy, the new loadings:
I' and the new errors: ¢ all satisfy the necessary conditions of BN (2002), Propositions 1
and 2 just follow directly from their Theorems 1 and 2, with r replaced by r 4+ k; and F}
replaced by F}.

A.2: Proof of Theorem 1

We only derive the limiting distributions for the two versions of the LM test, since the
proof for the Wald tests is very similar. Let F} define the 7 x 1 vector of estimated factors.

Under the null: k1 = 0, when ¥ = r we have
Ft = DFt + Op(l).

Let D(;.) denote the ith row of D, and D ;) denote the jth column of D. Define Fr = DF;,
and ﬁkt = Dy X Fi as the kth element of ]:“t. Let 13‘175 be the first element of Ft, and
Foq = [th, .. ,Frt]’, while F; and F_1; can be defined in the same way. Note that F
depends on N and T'. For simplicity, let T'7 denote [T'7].

Note that under Hy, we allow for the existence of small breaks, so that the model can
be written as X;; = a; Fi + ey + 1;G?. However, since 7;G? is Op(l/\/W) by Assumption

1, we can use similar methods as in Appendix A.1 to show that an error term of this order



can be ignored and that the asymptotic properties of F, will not be affected (See Remark
5 of Bai, 2009). Therefore, for simplicity in the presentation below, we eliminate the last
term and consider instead the model X;; = «a;F; + ¢;; in the following lemmae (9 to 13)

required to prove Lemma 14 which is the key one in the proof of Theorem 1.

Lemma 9.

sup H— Ft ]-"t F, H = 5;,T)
mel0,1]

Proof. Following Bai (2003) we have:

1T7rA R TTK'TA T7rTA T7rTA
TZ(F,: —F)F = T2Y S FFn(s, ) + T2 Y EF/(a+T 2> FiFlkg
t=1 t=1s=1 t=1s=1 t=1s=1
Tn T R
+T_2ZZFsFtlfst
t=1s=1
= I+ I1I+1IT+1V
where
e’ e
Cst = ST_'YN(Svt)'

Rst — F;Alet/N.
ést = Ft/A/GS/N.
First, note that:
Trw T . Tr T
I=T72Y "> (Fs— DF)F/yn(s,t) + T72DY Y FoF{yn(s, ).
t=1s=1 t=1s=1
Consider the first part of the right hand side, we have

-2 o A /
|72 3" S0 (F — DR Fn(s. )]

t=1s=1

[723° (5~ DR) S Fan(s,0) |
s=1 t=1

A D LY O ES STPTENES S Seme
>~ T . s s Tt - t < £ I'YN
s= = s

%Zstl HFS — DF; H2 is O (51:,2T) by Theorem 1 of BN (2002), sup,cp, 1 sIn HFtH2
2
%Zthl HFtH = Op(1) by Assumption 2, and SUDPre(0,1] T Zs 1 Zt 1’YN(3 t) S 7 Z 1Zt 1N (s,)% =



Op(1) by Lemma 1(i) of BN (2002). Therefore:

sup (|7~ QZZ F, — DF)Flyn(s,t H = 5K,T T2,
m€[0,1] t=1s=1

For the second part, note that:

Trn T
sup HT_zD Z Z FoF{yn (s, t)H

7€[0,1] t=1s=1
T T
< T DY N FsF [l (s, )]
t=1s=1

and

T T

1
E||E |y (s, )] = E||Ft”2TZZ|'7N(Sat)| <M
t=1s=1

(TZZ i)
PO

*ﬂ \

by Assumptions 2 and 4, so the second part is O,(T~!) given that ||D|| is O,(1). Therefore,

we have )
sup ||I]| =0, ———=). Al
wE[O}i)l] I p<5N,T\/T) (A1)
Next, II can be written as:
Trw T
II=T72Y" > (Fs— DF,)F/Cq + T~ ZDZZFF(St
t=1s=1 t=1s=1
Similarly, we have
Tr T
sup |73 3 (Fy — DE)F{Ca
m€[0,1] t=1s=1
1 T 9 1 T Tr
< sup ZHF DF|* TZHFtH ﬁZZ@
m€(0,1] t=1 s=1t=1
1 A 2 | 1 2
= fZHFs—DFsH TZHFtH T2ZZ<st
s=1 t=1 s=1t=1
1
= Op(———
p<5N,T\/N)



because

N 2
E|Gul* = N7 BINTY2 Y eqeis — Bleues)]| = O(N )
i=1
by Assumption 4. As for the second term of II, we have:
) Tn T 1 1 T
T °D F,F/(4 = ——=—D F)
;; s tCst /7NTT ;% t
where
1 T N
= ﬁ Sz:: g €it€is — ezteis)]Fs-
Since E||q:||> < M by Assumption 4, we have

Tr T
sup ||T72DY" 3" FoF{Ca

m€(0,1] t=1 s=1

1 Tr
= T7'D F!
T 2 TP

1 1 Tr 1 Tr
——=IIDI| sup |I\|7 D> Nal*\| = D IIFil?
VvVNT r€0,1] H T; T;

<
1z
< laell®y| 7 > I1F2
AN Sl 13
_ 1
- p(,/NT)
Then it follows that )
sup ||II]| =0, ———=). (A.2)
r€[0,1] p((SN,T\/N)
Regarding III, it can be written as:
Trw T
III =T72> "N (Fs — DF,)Flkg + T QDZZFF’M
t=1s=1 t=1s=1

and the second part on the right hand side can be written as

Tw N

( Z F F’) T SN @iFeq.

t=1i=1



Therefore:

sup HT QDZZFF/Hst
7€[0,1] t=1s=1

1 T
Dl 7 3

IN

1 Trw N )
sup H%NT;;%E%

7€[0,1]

1
= Op(ﬁ)

by Assumption 8.
As for the first part on the right hand side of III, we have

Tr T

sup |T723° S (B, — DF)Fry
wel0,1] t=1s=1
1z
< g2 IE- DRI ZHTZFw
s=1
) 1 T Tr N
= Op(0nr)— azF €;
p( N’T)\/Niwe[o 1 Zl ;; t
T
< Op(nir) VNT\ T 2~ 01 H ﬁZZO‘ZF%
1 1
= O — ———
p(5N,T \/NT>
by Assumption 8. Thus, )
sup || III|| =0,— ). A3
su 121 = 0p(7) (A.3)
It can also be proved in the similar way that
1
sup ||[IV]| =0, —). A4
s 11VI =0y 757) (A4)
Finally we have:
il[lopl] Hi _ﬁt)Ft/ _WE[OJ} w€(0,1] 7€0,1] w€0,1]

1 1 1
p(mm) oo en) T O ) = 9 (3



Lemma 10.

Op(0x7r)-

sup H T Z FtFt Z ]:t]:t

Proof. Note that:

1 T o 1 T A
7 ZFtFt’ -7 thfg

T
= ZFtFt Z DF;)(F/D)
t 1
1 T ~ L 1 T )
= SN B(F - FD)+ Y (B~ DE)(F/D)
Tt:l Tt:l
1 T R 1 T R 1 T .
= 7 (E, — DF,))(F, — DF,) + TDZFt(Ft — DF) + 7 Z(Ft — DF)(F/D").
t=1 = =
Thus,
1 T 1 Tr
il Al ~ T~
alrEen-sEr
< swp H— Ft DF,)(F, — DF,)’ Ft DF,)F
7r€[0 1]
A 2 A
< fZHFt—DFtH +2|D| sup HfDFt—DFt)F;
Tt:l 7€[0,1] Tt:l

since + 271 |[F — DE|* = 0, (93%) and supepo ||+ ST (Fr = DR)F|| is Op(03%) by

Lemma 9, the proof is complete.

O
The next two lemmae follow from Lemma 10 and Assumption 6:
Lemma 11.
ﬂsellopl H VT & ZF—ltFlt \/» Zf—lt]'—ltH = 0p(1).
Proof. See Lemma 10 and Assumption 6. O

Lemma 12.

Mﬂ

I

Proof. By construction we have - ZtT: F_ltFlt = 0, and then the result follows from
Lemma 11. O

FouFy,

= o0p(1).
t=1

10



Let = denote weak convergence. D*, F;, Fit, F_1¢+ and S are defined as in the paper
(see Page 12). Similarly, let Dzki ) denote the ith row of D*, and D? ) denote the jth column
of D*. Then:

Lemma 13.
1 Tr

\F Z F 10Fi — E(F_1:Fu)) = SY2W,_1(n)

for m € [0,1], where Wy,_1(+) is a r — 1 vector of independent Brownian motions on [0, 1].

Proof. F_1.F1; is stationary and ergodic because F; is stationary and ergodic by Assump-

tion 7. First, we show that {FyrF1e — E(FreFie), 4} is an adapted mixingale of size —1 for
k=2,...,r. By definition, we have Fy; F1; = (Dz‘k_)Ft)(DZ‘L)Ft) = ( =1 D;;prt)( =1 D{prt) =
2 oh=1 2op=1 DipDip Fpt Fnts and FieFre—E(FreF1e) = 2h=1 2p=1 Dip D1 (Fpt Fnt—E(Fpe Fit)) =

> ohe1 Zgzl DiyDipYnpt- Thus:

2
\/E (E(FuFir — E(FiuFio)| Q)

- J (ZZD D3y E(Yipt| Q- m))2

h=1p=1

SN 1D, DV E(E (Vi el )

<
h=1p=1
T T h
< A Z Z A
h=1p=1
< Ar?max (c?p) max (y"P)

since max(y/?) is O(m~179) for some § > 0 by Assumption 7, we conclude that {FpFi; —
E(FitFie), 4} is an adapted mixingale of size —1 for k =2,...,r

Next, we prove the weak convergence using the Crame-Rao device. Define
_ 1g-1/2 _
2 =a' ST (FouwFi — E(F_uFit))

where a € R"™!, and a’a = 1. Note that

2= ap[FruFie — E(FpFue)]
k=2

11



where dy, is the k — 1th element of o’ S~1/2.

E(}) < (Z JE i FuFur — (fktm])Q)Q
k=2
< A(Z ﬁ(ﬂmt)Q - (E(fktfu))2>2 <M
k=2

because E| Fy||* < oo and Fy; = D} F;. Moreover, z; is stationary and ergodic, and we can

show {z, 2} is an adapted mixingale sequence of size —1 because:

\IE(E(Zt’Qt_m)y - JE(;;akE(fktflt — E(fktflt)|9t—m>)2

IA

T 2
> lanly B(B(FuFis ~ BFuF0ln) )
k=2

< max(lawZéf%’;

By the results above we know that 4% is O(m™179) for k = 2,...,r. Hence it follows that
{z¢,Q} is an adapted mixingale sequence of size —1. Then it follows from Theorem 7.17
of White (2001) that:

1 Tr 1 Tr
—N z=ds5/? (FouFit — B(F_1.F11)) = W(r).
ﬁz_: t \FZ 1t/71t ( 1t 1t)) ( )
Moreover, it can be shown that:
Tmo 1 Tmo
al\/> Z ./_" 1t]:1t (ffltflt))‘kagfz f 1t./T"1t* (JT 1tf1t)) *)N(O, (7T277r1)a'15a1+770a'25a2)

t=Tm

by using Corollary 3.1 of Woodridge and White (1988). The proof is completed by using
Lemma A.4 of Andrews (1993).
[

A.3: More discussions on Remark 9

In Remark 9 of the paper we mention that, although our tests are designed for single
break, they should also have power against multiple breaks. To see this, consider the

simple example of a FM with one factor and two big breaks:

Xt:Aft'l(tSTl)—i-Bft'l(Tl<t<7'2)+th'1<t2T2)+6t

12



= Agi + Bhi + Ds; + ey

where gt = fi - 1(t < 711), y = fr-1(11 <t < 1), and sy = f; - 1(t > 72). In view of
Proposition 2, Bai and Ng’s (2002) IC will lead to the choice of 3 factors which, when
estimated by PCA, implies the following result:

fue di dy d7\ (g
fal=da ds ds| | he | +0p(1).
f3t ds dg do St

Then, by the definition of ¢;, h; and s; we have:

fue dq
fo | = [ do | fi +0p(1) fort =1,....7,
fat ds
fe dy
for | = | ds ft—i-Op(l) fort=m,...,70,
f3t dg
fie d7
for | = | ds | fr +0p(1) fort =m,...,T.
fat dy

Hence, we can find one vector [p1, p2, ps]’ which is orthogonal to [dy, da, d3]" and [dy, ds, dg)’,
plus another vector [p4, ps, pg)/ which is orthogonal to [d7,ds,dg]’. It is easy to see that
[p1, P2, P3| # a[p4, ps, ps] for any a # 0 (otherwise the D matrix will be singular), and thus
we can find a breaking relationship between the estimated factors and even use Bai and
Perron’s (1998, 2003) to detect a second break. The simulation results about the power of

our tests against multiple breaks are available upon request.

13
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