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Abstract
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1 Introduction

Estimating the impact of economic shocks is a crucial aspect of macroeconomics. To identify

economically meaningful shocks, the literature has traditionally relied on systems of equations

coupled with restrictions implied by economic theory. Recently, researchers are increasingly

using narrative identification, e.g., looking at written official documentation or newspapers

and exploiting arguably exogenous variation in these series— see Romer and Romer (2004),

Romer and Romer (2010), or Ramey and Zubairy (2018) for prominent examples of narrative

identification. While its focus on identifying exogenous variation is appealing, the lack of

restrictions in narrative methods yields objects with less standard time series properties.

In this paper, we analyze how the presence of persistence in narrative shocks affects the

identification and estimation of their dynamic effects, providing empirical researchers with

methods and guidance to deal with this issue.1

We begin by showing that many narrative shocks used by prominent literature are serially

correlated. In particular, we systematically test for serial correlation in eight shocks used

in leading economics journals. We find evidence of serial correlation in seven of them. The

presence of persistence in the shock does not necessarily preclude these variables from being

categorized as “shocks” following standard definitions of aggregate shocks. More concretely,

according to Ramey (2016), a shock should represent unanticipated movements. What this

condition implies is that shocks are unforecastable, i.e., they are forecast errors. In partic-

ular, when the forecasting loss function is not quadratic (for instance, the check function),

the forecasting errors may not be a martingale difference sequence (m.d.s) and therefore

could be serially correlated. However, serial correlation poses additional challenges for the

identification of the macroeconomic experiment of interest.

When estimating the dynamic response of some variable to a serially correlated shock,

some part of this persistence may be passed on to the impulse response function (IRF).
1Throughout the paper we use the term persistence as a phenomenon captured or reflected by serial

correlation, a testable condition. We use both terms interchangeably.
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Hence, a researcher may want to identify one of two objects of interest: the response as if

the shock were uncorrelated, i.e., to a counter-factual serially uncorrelated shock (R(h)∗), or

the response to the shock as it is, i.e., including the effect of persistence in the IRF (R(h)).

Deciding for one or the other depends on what specific question the researcher is trying

to address. On the one hand, R(h)∗ allows to compare effects with those obtained from a

theoretical or empirical model, and facilitates comparisons across different types of shocks

(e.g., monetary versus fiscal shocks) or across countries. On the other hand, R(h) is more

appropriate if the researcher is interested in evaluating the most likely dynamic response of

a variable to a shock based on historical data. Regardless of which object is preferred by

the researcher, the difference between R(h) and R(h)∗ is informative about how much of the

dynamic transmission of a shock is due to the presence of persistence.

We consider the two most popular methods to estimate impulse responses when a shock

has already been identified (e.g., using narrative methods). These are local projections (LPs)

(Jordà (2005)) and distributed lag models (DLMs). By DLMs we refer to single-equation

regressions of an outcome variable against the contemporaneous value and lags of the shock

with or without an autoregressive component, as in Romer and Romer (2004), Cerra and

Saxena (2008), Romer and Romer (2010), Alesina et al. (2015), Arezki et al. (2017), and

Coibion et al. (2018). We show that, if there is no serial correlation, the two methods

identify the same object. However, we demonstrate that this equivalence breaks down in

the presence of serial correlation. In this case, LPs identify R(h) while DLMs regressions

identify R(h)∗. The intuition is that LPs compute the response at horizon h by regressing

the outcome variable in t+h against the shock in time t. Since the standard setting does not

account for how the shock evolves between t and t+h, the responses include two components:

an economic effect (the economic impact of the shock on the endogenous variables) and an

effect that exclusively depends on the degree of serial correlation of the shock. By contrast,

DLMs implicitly account for the evolution of the shock, hence identifying the effect as if the

shock were not persistent.
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While this result might seem discouraging for empirical work, we then show that it is

possible to adjust both estimating methods to obtain the desired object of interest. Consider

a researcher who wants to use LPs and is interested in identifying R(h)∗. As mentioned,

if she runs standard LPs with a persistent shock, she will identify R(h) instead. Perhaps

surprisingly, the most obvious solution of including lags of the shock will not address this

issue. However, we show that, by including leads of the shock, she will recover R(h)∗.

Likewise, we show how standard DLMs can be adapted so that they identify R(h).

We also show that the lack of equivalence between LPs and DLMs under persistence

carries over to multivariate settings. In particular, the equivalence between VARs with the

shock embedded as an endogenous vs. an exogenous variable breaks down in the presence

of serial correlation, which has relevant practical implications for applied researchers.2 Our

analysis of multivariate settings opens up new avenues, like using LPs to uncover the dynamic

relations of two variables by including leads of a third variable, hence obtaining the response

as if this third variable had remained constant over the response horizon. This can be seen as

the LP counterpart of constructing counterfactual responses in a VAR that allow to separate

a direct effect of a regressor on a dependent variable from other indirect effects as in Bernanke

et al. (1997), Sims and Zha (2006), or Bachmann and Sims (2012).

To illustrate how our methods work, we consider an empirical application, which also

serves to assess the quantitative relevance of persistence in a real case by comparing estimates

of R(h) and R(h)∗. In particular, we consider Ramey and Zubairy (2018)’s LPs estimation

of the dynamic effects to a shock constructed from news about future changes in defense

spending. We find that, after two years, the responses that exclude the effect of persistence

in the shock are about 40% lower than the original Ramey and Zubairy (2018)’s estimates.

The effect of serial correlation also seems to have an effect on the short-run response of fiscal

multipliers during recessions.
2Note that the equivalence arises because a VAR with a shock as an exogenous variable (often known as

VAR-X) can be seen as multivariate generalization of a DLM (see Mertens and Ravn (2012) or Favero and
Giavazzi (2012) for examples of VAR-X specifications).
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In the appendix, we consider two additional applications, based on Guajardo et al. (2014)

and Romer and Romer (2010). Overall, we find that how persistence is treated can have a

sizable impact on the estimated effects. Hence, computing the statistic R(h) − R(h)∗ can

help the empirical researcher to recognise how much of the dynamic response of a variable

depends on the serial correlation of a shock.

Our paper makes four contributions to the literature. First, we formally and systemati-

cally test for the presence of serial correlation in shocks used by previous work. Although the

issue of persistence in shocks has been noted before,3 we believe we are the first to formally

and systematically test for serial correlation in prominent narratively-identified shocks.

Our second contribution is to show that, while both LPs and DLMs identify the same

object if the shock is serially uncorrelated, this equivalence breaks down in the presence of

persistence. Plagborg-Møller and Wolf (2021) prove that LPs and VAR methods identify

the same impulse responses when both methods have an unrestricted lag structure. This

result formalizes some of the examples provided in Ramey (2016), which implies that different

identification schemes in a VAR setting can be implemented in a LP context. Our result builds

on a different premise: we consider the cases where the shock has already been identified using

narrative measures and the researcher wants to use LPs or DLMs to estimate dynamic effects.

Our third contribution is to provide methods to re-establish the LP-DLM equivalence

when there is persistence, providing applied researchers with a menu of options to identify

their desired object of interest. In this regard, our method of adding leads to LPs is related to

the tradition in factor analysis by Geweke and Singleton (1981) and on the DOLS estimation

of cointegration vectors (Stock and Watson (1993)). Dufour and Renault (1998) introduce

leads in some of their IRFs to study causality at different horizons. Faust and Wright (2011)

find that including ex-post forecast errors results in an accuracy improvement when forecast-

ing excess bond and equity returns. More recently, Teulings and Zubanov (2014) find that
3Ramey (2016) finds that the time aggregation required to convert the shock in Gertler and Karadi (2015)

to monthly frequency, inserts serial correlation. Miranda-Agrippino and Ricco (2018) corroborate this finding,
by regressing the shock on four lags and testing their joint significance. They also find that other measures
of monetary shocks such as Romer and Romer (2004) exhibit serial correlation.
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estimating dynamic effects of a dummy variable (e.g., banking crisis) in a panel data context

with fixed effects and LPs suffers from a negative small-sample bias, since the estimation of

the fixed effect picks up the value of future realization of the dummy variable. The authors

show that this bias is attenuated either by increasing the sample size or by including future

realizations of the dummy variable over the response horizon. By contrast, the difference

between LPs and DLMs that we identify is not due to a bias in the estimates, but instead

to differences in identification due to the persistence of the shock. Since our problem still

persists asymptotically, increasing the sample does not reduce the LP-DLM difference. Ad-

ditionally, this difference is not necessarily negative, but will depend on the nature of the

data generating process (DGP) that drives the persistence.

Finally, we speak to some recent and well-known empirical work on the effects of monetary

and fiscal policy (Ramey and Zubairy (2018) Guajardo et al. (2014), Romer and Romer

(2004), and Gertler and Karadi (2015)). Our contribution is to apply our methods to these

works and re-assess their empirical evidence. We do not claim that any of these papers is

“wrong”. Rather, what our results suggest is that the interpretation of their results depends

on the desired object of interest and the employed estimating method.

The rest of the paper proceeds as follows. Section 2 provides evidence of serial correlation

in shocks used by previous work. Section 3 shows that LPs and DLMs treat persistence

differently, and proposes a solution to re-establish the equivalence between them. It also

introduces generalizations to VARs and discusses briefly the case of LP-IV. Section 4 lays

out an application based on Ramey and Zubairy (2018). Section 5 concludes. The appendix

contains proofs of the theoretical results, simulations, and additional empirical applications.

2 Evidence and implications of serial correlation in shocks

When shocks are identified from within an empirical model, the researcher imposes a set of

restrictions to recover shocks that can be economically meaningful. Typically, this implies
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that the resulting shocks are well-behaved and display some statistical features that might

be seen as desirable—in particular, no persistence. Alternatively, shocks may be identified

without the use of a model, for example, by using narrative methods. This alternative

identification relies on the existence of historical sources, such as official documentation,

periodicals, etc., from which a shock variable is constructed. In this section, we provide

evidence that it is common that shocks identified this way are persistent. We then take stock

on this finding in light of Ramey (2016)’s canonical definition of a shock.

We study eight aggregate shocks used by prominent literature on monetary and fiscal

policy. Some of these shocks are identified using narrative methods, while some employ al-

ternative strategies such as timing restrictions using high-frequency methods.4 The literature

has used these variables mainly as direct measures of shocks, although it sometimes refers to

these shocks as instruments or proxies.

To test for the presence of persistence we use a portmanteau-type test following Box and

Pierce (1970). We implement the small sample correction following Ljung and Box (1978).

For the cases of Arezki et al. (2017) and Guajardo et al. (2014), which refer to panel data,

we test serial correlation using a generalized version of the autocorrelation test proposed

by Arellano and Bond (1991) that specifies the null hypothesis of no autocorrelation at a

given lag order. The null hypothesis is that the data are not serially correlated. We test for
4In particular, Romer and Romer (2010) and Cloyne (2013) construct measures of exogenous tax changes

for the US and the UK, respectively. The authors classify legislated tax measures according to the motivation,
as reflected in official documentation, and consider those tax changes that are the result of causes non-related
to the state of the economy. In a similar vein, Ramey and Zubairy (2018) construct a measure of government
spending shocks by looking at the announcements of future changes in defense spending. Guajardo et al.
(2014) construct a series of fiscal consolidations in OECD countries motivated by a desire to reduce the
deficit (as opposed to motivated by current or prospective economic conditions). Romer and Romer (2004)
and Cloyne and Hürtgen (2016) identify exogenous changes in monetary policy by looking at the minutes and
discussion of the monetary policy committees of the Federal Reserve and Bank of England, respectively (they
also orthogonalize the resulting series using forecastable information available at that time). Alternatively,
Gertler and Karadi (2015) identify a proxy of monetary policy shocks using high frequency surprises around
policy announcements. Lastly, Arezki et al. (2017) construct a measure of news shocks based on the date
and size of worldwide giant oil discoveries. While some of these papers employ auxiliary regressions to isolate
forecastable information, all have in common that the shocks have not been exclusively identified from a time
series model. Note that the present analysis could also be generalized to other type of innovations obtained
without the use of a model such as climate shocks (defined as deviations of the temperatures from the their
corresponding trend), which might also be serially correlated.
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the presence of autocorrelation in 40 periods. Results are robust to different horizons (see

Table D.1).

The results from these tests are displayed in Table 1. Out of the eight considered shocks,

six show very large test statistics that result in rejections of the hypothesis of serial uncor-

relation for any level of significance. One of them (Romer and Romer (2004)) displays some

degree of serial correlation which leads to failure to reject the null hypothesis only for signifi-

cance levels above 5%.5 As further evidence of the presence of serial correlation in the above

series, Figure D1 plots the associated correlograms. Romer and Romer (2010) constitutes

the only considered shock for which we fail to detect the presence of persistence.6

According to the canonical definition (Ramey (2016)), empirical shocks should (i) be

exogenous to current and lagged endogenous variables, (ii) be uncorrelated to other exogenous

shocks, and (iii) represent unanticipated movements (or news about future shocks). While

one might think that the presence of persistence violates the third condition, this is not

necessarily the case. When the forecasting loss function is the quadratic one, it is well

known that the forecasting errors must be a m.d.s with respect to some information set and

therefore uncorrelated—see Granger and Machina (2006) and Lee (2008) for a description and

analysis of loss functions. This is the case when the shocks come directly from a conditional

expectation model, like a VAR model. When the forecasting loss function is not quadratic,

for instance, the check function (popular in quantile regressions), the forecasting errors are

not a m.d.s and therefore they could be serially correlated. They still are forecasting errors
5The hypothesis of serial uncorrelation is rejected for significance levels below 5% when considering fewer

lags in the test or when considering a longer series (with updated data) from Coibion (2012). The presence
of some degree of autocorrelation is shown in Panel E of Figure D1.

6Persistence may have different origins. In some instances, it arises because of the method used to convert
a nominal series into real terms. For example, Cloyne (2013) and Arezki et al. (2017) divide their series by
lagged GDP, while Ramey and Zubairy (2018) use the GDP deflator and a measure of trend GDP. In other
instances, the serial correlation arises because of the mapping between different time frequencies. This is
usually the case with the identification of monetary policy shocks, such as Romer and Romer (2004), Gertler
and Karadi (2015), or Cloyne and Hürtgen (2016), where daily monetary changes are converted into monthly
series. Finally, there are other shocks that are more likely to appear together, because of their multi-period
nature (for example, episodes of fiscal consolidations, as identified by Guajardo et al. (2014), tend to be
spread over the course a few years) or because they cluster around events like wars (as in Ramey and Zubairy
(2018)).
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Table 1: Persistence in macroeconomic shocks

paper type of shock Box-Pierce (40) test p-value

Arezki et al. (2017) news about oil discoveries 177.903 0.000

Cloyne (2013) tax (UK) 98.751 0.000

Cloyne and Hürtgen (2016) monetary policy (UK) 84.422 0.000

Gertler and Karadi (2015) monetary policy (US) 124.568 0.000

Guajardo et al. (2014) fiscal consolidations 185.810 0.000

Ramey and Zubairy (2018) government spending 182.950 0.000

Romer and Romer (2004) monetary policy (US) 53.758 0.072

Romer and Romer (2010) tax (US) 19.023 0.998

The third column implements the Box and Pierce (1970) test of serial correlation using the small sample
correction following Ljung and Box (1978). The null hypothesis of this test assumes that the data are not
serially correlated within 40 periods. For Arezki et al. (2017) and Guajardo et al. (2014), which refer to panel
data, we use a generalized version of the autocorrelation test proposed by Arellano and Bond (1991). The
serial correlation test yields p-values smaller than 0.05 when testing the shocks of Romer and Romer (2004)
with fewer lags or when using the updated data from Coibion (2012) (p-value drops to 0.0041). Ramey and
Zubairy (2018) use extended data from Ramey (2011).
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(satisfy (iii)) but are serially correlated.

This indicates that serially-correlated shocks can still be labeled “shocks” according to

the previous definition. However, even if a researcher always operates under the quadratic

loss function and considers that serially-correlated shocks should not be called “shocks”, in

the rest of the paper we show that such shocks can still provide valuable information for

empirical analysis.

3 Theoretical framework

3.1 General setup

We consider the following VAR as the DGP:

yt =
∞∑
ℓ=1

Aℓyt−ℓ +
∞∑
q=0

δqxt−q + ut

xt =
∞∑
r=1

γrxt−r + εt, (1)

where yt is a vector of endogenous time series. Following the evidence discussed in the

previous section, xt is considered to be a shock identified using narrative methods and is

allowed to be persistent. We define Ωt = (yt, xy) as the information set at time t. We impose

the following assumptions:

Assumption A.1. All the roots of the determinant |A(L)| =
∣∣(I −

∑∞
ℓ=1 AℓL

ℓ
)∣∣ and the

polynomial (1−
∑∞

r=1 γrL
r) are outside the unit-root circle.

Assumption A.2. E (ut|{Ωτ}−∞<τ<t, {xt+j}j≥0) = 0 and E (εt|{Ωτ}−∞<τ<t) = 0.

Assumption A.3. ut and εt are independent from each other and with mean and variance

given by ut ∼ (0, Σ2
u) and εt ∼ (0, σ2

ε), respectively.

These are standard assumptions that imply stationarity (Assumption A.1), linearity (As-

sumption A.2), xt is a strictly exogenous variable (Assumption A.2) and the error terms are
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m.d.s with respect the information set Ωτ with τ < t (Assumptions A.2 and A.3).

This general framework encompasses several empirical specification often found in the

literature. For example, when ignoring the second equation, system (1) becomes a VAR with

an exogenous variable (or VAR-X)— see, for example, Mertens and Ravn (2012) or Favero

and Giavazzi (2012), which assume ℓ and q are finite numbers. Additionally, when yt is a

scalar and Aℓ = 0 ∀ℓ, system (1) becomes a DLM (as in Romer and Romer (2004) or Romer

and Romer (2010)). Alternatively, when xt is instead included in the vector of endogenous

variables yt, system (1) becomes a standard VAR (as in Bloom (2009) or Ramey (2011)).

We explore the implications of this last representation in Section 3.6.

Without loss of generality, we consider a simpler version of system (1), where yt is a

scalar and Aℓ = 0 ∀ℓ > 1, δq = 0 ∀q > 1 and γr = 0 ∀r > 1:

yt = ρyt−1 + δ0xt + δ1xt−1 + ut

xt = γxt−1 + εt, (2)

where yt is the economic outcome variable of interest (for example, growth rate of GDP), xt is

an economic shock (e.g., a fiscal or monetary policy shock). δ0 measures the contemporaneous

impact of variable xt on yt and is the main parameter of interest. Assumptions A.1 - A.3

continue to hold.

The DGP described by system (2) is intentionally simple to illustrate how the dynamic

relationship between the dependent variable yt and the shock xt depends on the persistence

of the latter. But it is sufficiently rich as to incorporate relevant empirical features such as

persistence in the dependent variable and lagged effects of the shock. Importantly, the results

also arise in more complex settings where we incorporate more general characteristics as in

system (1), such as a multivariate setting.7

7For example, in Sections 3.6 and B.1 we consider models that also include persistence in the dependent
variable and lagged effects of the shock. Appendix B.2 provides an alternative specification where the degree
of serial correlation in the shock xt is taken from real-world data.
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3.2 Impulse response functions

We are interested in recovering the response of our variable of interest yt when a shock xt

hits the system in period t. We consider two different IRFs.8 The first, denoted by R(h) for

period h ≥ 0, is:

R(h) = E [yt+h|xt = 1,Ωt−1]− E [yt+h|xt = 0,Ωt−1] . (3)

Importantly, note that the above definition does not condition on future realizations of

xt. Hence, if γ ̸= 0, an initial unit impulse in xt does not imply that xt+j = 0, for example:9

R(0) =
∂yt
∂xt

= δ0

R(1) =
∂yt+1

∂xt

= ρδ0 + δ0γ + δ1

R(2) =
∂yt+2

∂xt

= ρ2δ0 + ρ(δ0γ + δ1) + δ0γ
2 + δ1γ

. . .

Second, the researcher might also be interested in the response to the shock as if the

shock had no persistence. We call this second IRF R(h)∗ and define it as the “traditional

impulse response function” by Koop et al. (1996) when xt is the shock variable of interest:

R(h)∗ = E [yt+h|xt = 1, xt+1 = 0, ..., xt+h = 0,Ωt−1]−E [yt+h|xt = 0, xt+1 = 0, ..., xt+h = 0,Ωt−1] .

(4)

It provides an answer to the question “what is the effect of a shock of size 1 hitting the

system at time t on the state of the system at time t+ h given that no other shocks hit the

system?”.
8Forecast error variance decompositions (FEVD) are additional tools to analyze the dynamic effects of

shocks. See Gorodnichenko and Lee (2020) for an FEVD estimator based on LPs.
9Note that the expression R(h) = ∂yt+h

∂xt
coincides with the definition laid out in equation (3) because

system (2) is linear by Assumption A.2. Gonçalves et al. (2024) show that this might not necessarily be the
case in non-linear models.
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Contrary to R(h), R(h)∗ explicitly controls for future realizations of xt so that it describes

dynamic responses that do not incorporate the effect of persistence (regardless of the value

of γ), i.e., the responses are observationally equivalent to those that would arise from a DGP

with γ = 0: 10 11

R(0)∗ =
∂yt
∂xt

= δ0

R(1)∗ =
∂yt+1

∂xt

∣∣∣
(xt+1)

= ρδ0 + δ1

R(2)∗ =
∂yt+2

∂xt

∣∣∣
(xt+1,xt+2)

= ρ2δ0 + ρδ1

. . .

Note that, if γ = 0 (the shock is not persistent), then R(h) = R(h)∗ ∀ h. By contrast, if

γ ̸= 0, then R(h) ̸= R(h)∗ ∀ h > 0. Note that these differences are particularly visible when

further assuming that ρ = δ1 = 0. In this special case, R(h)∗ = 0 ∀ h > 0 while R(h) ̸= 0 ∀

h > 0 if γ ̸= 0.

An important question is what are the relative features of R(h)∗ vs. R(h). Since R(h)∗

can be understood as the IRF resulting from a shock that is not serially correlated, it should

be the desired object when the researcher wants to establish comparisons across dynamic

responses. There are at least two instances when R(h)∗ can facilitate comparisons. First, a

shock identified from within a model (say, a structural VAR) or the innovation to a stochastic

process in a DSGE model are, by construction, a m.d.s. (they are non-persistent). Given the

absence of serial correlation, the thought experiment carried out in such cases is equivalent

to constructing and IRF such as the shock takes the value of 1 on impact and 0 afterwards.

Contrary to VAR-identified shocks or innovations in a DSGE model, narratively-identified

shocks may display serial correlation. If this is the case, R(h) will identify a different object,
10Note that this would also correspond to the average treatment effect typically discussed in the microe-

conomics literature. For a link between this literature and the LPs, see Dube et al. (2023).
11Throughout the paper we write ∂y

∂x |(z) to indicate that the partial derivative is calculated as if z were
constant, even when z is a function of x (i.e. we do not apply the chain rule).
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since the effect of serial correlation is included in the IRFs.

Second, R(h)∗ can also be an object of interest when the researcher wants to compare

the effects of different shocks, e.g., whether fiscal or monetary policy is more effective in

stimulating output.12 For example, it may be the case that fiscal shocks tend to show more

persistence or that a given identification procedure tends to generate shocks with different

degree of serial correlation. If the effect of persistence amounts to a non-negligible amount

of the dynamic response, this could wrongly lead to the conclusion that one shock is more

effective than the other when the true underlying cause is that the DGP of both shocks is

different. Since R(h)∗ effectively computes responses to a shock that is not serially correlated,

regardless of the underlying GDP, this would facilitate such comparison.

On the other hand, R(h) should be the object of interest when the researcher is interested

in estimating the most likely dynamic response of a variable to a shock according to the

historical data. This argument is similar to the one posed by Fisher and Peters (2010) and

Ramey and Zubairy (2018) to support the use of the cumulative multiplier (the ratio of the

integral of the output response to that of the government spending response) to evaluate

the effectiveness of fiscal policies. If we consider the effects of a monetary policy shock that

cuts the policy rate by one percentage point, it is important to note that, if that shock

displays persistence, then the total monetary policy action (the evolution of the nominal

interest following the initial tightening) may be different to what would occur if the shock

were non-persistent.

Importantly, and regardless of the experiment that one wants to run, looking at the

difference between R(h) and R(h)∗ is informative by itself, as it speaks about how much of

the dynamic response is due to the implied DGP of the shock variable. Put differently, it
12This also applies to a comparison of responses to the same shock with, say, data from different countries.

Consider the following example: we want to compare the effects of fiscal policy in the US (using a news
variable) and in another country (where we have availability of an alternative news variables). Consider
the case that the news variables have different amounts of serial correlation and we obtain estimates of the
government spending multipliers in both countries. Could we conclude that government spending is more
effective in one country versus the other? Potentially, both policies could be equally effective but their
sources of identification (news variables) may have different DGPs (one with more serial correlation than
other), which leads to different multipliers.
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informs the researcher of a propagation mechanism: R(h) includes the propagation through

the persistence of xt while R(h)∗ does not. Hence, the statistic R(h)−R(h)∗ can be an useful

addition to the empirical researcher’s toolbox to explore how the properties of an identified

shock might affect the dynamic responses.

3.3 Differences between DLMs and LPs under persistence

We now consider the two most frequently used methods to estimate impulse responses when a

shock is independently identified, DLMs and LPs, and compare the objects that they identify

when the shock is persistent. We first consider the case of DLMs. The use of these models is

widespread in applied macroeconomics.13 In the case of system (2), note that we can recover

the response function R(h)DLM using the following regression:14

yt = θ0xt + θ1xt−1 + θ2xt−2 + θ3xt−3 + θ4xt−4 + . . .+ et, (5)

and it follows that R(h)DLM = ∂yt+h

∂xt
= θh ∀ h.

The second main method to compute impulse responses is LPs, proposed by Jordà (2005).

LPs are more robust to certain sources of misspecification and for this reason, their use has

increased in recent times (see Ramey (2016) for examples). LPs compute impulse responses

by estimating an equation for each response horizon h = 0, 1, . . . , H :

yt+h = ρhyt−1 + δ0,hxt + δ1,hxt−1 + ξt+h, (6)

where the sequence of coefficients {δ0,h}Hh=0 determines the response of the variable of interest

R(h)LP = δ0,h for each horizon h.15

13See, for example, Romer and Romer (2004), Cerra and Saxena (2008), Romer and Romer (2010), Alesina
et al. (2015), Arezki et al. (2017), Coibion et al. (2018) for interesting applications based on DLM methods,
or Baek and Lee (2020) for a discussion of their properties. As mentioned in the introduction, these methods
are also a special case of more general specifications such as VARs with exogenous variables (or VAR-X). We
develop this point further in Section 3.6, when generalizing some of the results of the paper.

14This regression should include as many lags as the response horizon h = 0, 1, . . . , H .
15Unrelated to our case at hand, note that the structure of the LPs induce serial correlation in the residuals
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We now consider under which conditions both methods identify the same objects.

Proposition 1. Given the data generating process described by system (2), if the shock xt is

serially uncorrelated, then the response functions identified by DLMs and LPs are equal for

all response horizons, that is:

If γ = 0, then R(h)DLM = R(h)LP = R(h)∗ = R(h) ∀h.

If the shock is serially correlated, then the response functions identified by DLMs and LPs

are different for all h > 0:

If γ ̸= 0 and h = 0, then R(h)DLM = R(h)LP = R(h)∗ = R(h).

If γ ̸= 0 and h ≥ 1, then R(h)DLM = R(h)∗ ̸= R(h)LP = R(h).

Proof. See Appendix A.1.

Following the above proposition, when γ ̸= 0, LPs recover a dynamic response that

includes three dynamic effects: (i) the effect that xt has directly on yt+h (due to a lagged

impact of the shock), (ii) the effect that xt has through the persistence of yt, and (iii) the

effect that xt has on yt+h through xt+h (since cov(xt, xt+h) ̸= 0 when γ ̸= 0). The last

effect (the persistence effect of xt) drives the difference between R(h)DLM and R(h)LP . In

particular, R(h)LP = R(h) =
∑h

j=0 αjγ
h−j, where αj = δ0ρ

j + δ1ρ
j−1, while R(h)DLM =

R(h)∗ = δ0ρ
h + δ1ρ

h−1 for all h ≥ 1.

To understand why LPs, unlike DLMs, incorporate this third effect, consider the LP from

equation (6) when h = 1 under the special case of ρ = δ1 = 0 in system (2) (and, therefore,

ρh = δ1,h = 0 equation (6)) :

yt+1 = δ0,1xt + ξt+1, (7)

where δ0,1 = R(1)LP . The direct effect of xt on yt+1 is 0. If xt had no persistence, then γ

would be 0. However, when γ ̸= 0, we can use system (2) to express yt+1 as a function of xt

ξt+h. This is usually corrected by computing autocorrelation-robust standard errors (Jordà (2005)). See
Montiel Olea and Plagborg-Møller (2021) for a recent contribution on inference in LPs.

16



(still maintaining ρ = δ1 = 0):

yt+1 = δ0xt+1 + ut+1

= δ0 (γxt + εt+1) + ut+1

= δ0γxt + u∗
t+1,

where u∗
t+1 = δ0εt+1 + ut+1. This shows that the coefficient δ0,1 in equation (7) will also

recover the persistence effect of xt: δ0,1 = δ0γ. The intuition is that between period t and

period t + 1, xt affects xt+1 when γ ̸= 0. Since xt+1 is not a regressor in equation (7), then

this effect is absorbed by δ0,1.16

When impulse responses are identified using DLMs, the treatment of the persistence of

xt is different. Consider a version of equation (5) expressed in terms of t+ 1:

yt+1 = θ0xt+1 + θ1xt + θ2xt−1 + θ3xt−2 + θ4xt−3 + . . .+ et+1. (8)

As noted earlier, the sequence of coefficients θh determines the response function. Consider

the response when h = 1, i.e., R(1)DLM = θ1. Note that, while we know from system (2) that
∂yt+1

∂xt
= δ0

∂xt+1

∂xt
= δ0γ, the coefficient recovered by θ1 is indeed ∂yt+1

∂xt

∣∣∣
(xt+1)

= δ0
∂xt+1

∂xt

∣∣∣
(xt+1)

= 0.

That is, since the DLM controls for xt+1, the persistence effect of xt is accounted for.

In other words, DLMs identify:

R(h)DLM = E [yt+h|xt = 1,Ωt−1, xt+h−1 = 0, ..., xt+1=0]−E [yt+h|xt = 0,Ωt−1, xt+h−1 = 0, ..., xt+1 = 0] ,

while LPs identify:

R(h)LP = E [yt+h|xt = 1,Ωt−1]− E [yt+h|xt = 0,Ωt−1] .

16This omitted variables problem is also briefly mentioned in Alesina et al. (2015) in the particular context
of fiscal consolidation plans.
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Note that the difference between RLP and RDLM is positive (negative) when γ > 0

(γ < 0). In empirical applications, γ may be positive or negative.17

3.4 Reestablishing the equivalence between DLMs and LPs

In this subsection we lay out two methods that can render the responses from DLMs and

LPs identical, even under the presence of persistence.

3.4.1 Adapting LPs to exclude the effect of serial correlation

As discussed in Section 3.2, a researcher may be interested in recovering responses as if the

shock were serially uncorrelated (R(h)∗). However, we have shown that RLP (h) ̸= R(h)∗ if

γ ̸= 0 and h ≥ 1.

Two apparent methods to avoid LPs picking up the effect of persistence in xt are: (i) to

include lags in the regression (6), or (ii) to replace xt with the error term that purges out

the persistence:

εt = xt − γxt−1. (9)

However, neither of these methods yields R∗(h). The reason is that replacing xt with εt does

not include any further information between t and t + h, so the responses of the dependent

variable will still be affected by xt+h. This point is further developed in Appendix B.3.

A third potential method to exclude the effect of persistence would be recasting system (2)

as a VAR that includes the shock as an endogenous variable. However, since in this case

LPs and a VAR would identify the same impulse responses (see Plagborg-Møller and Wolf

(2021)) the VAR responses would also include an effect due to the persistence of the shock—

we explore this in more detail in Section 3.6.

Instead, we propose a method based on the inclusion of leads of the persistent shock

variable. In particular, given that the DGP of system (2) poses an AR(1) for xt, one should
17For example, γ seems to be positive in Ramey and Zubairy (2018), and negative in Romer and Romer

(2004).
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regress:

yt+h = ρhyt−1 + δ0,hxt + δ1,hxt−1 + δ1+,hxt+1 + ξt+h, (10)

where δ0,h is the h-horizon response identified by LPs that include leads of the shock xt, which

we denote as RF (h). In more general processes, in which the autocorrelation of the shock

may be of an order larger than one, the optimal choice of leads can be derived adapting the

procedure from Choi and Kurozumi (2012).18 The most conservative procedure would be to

include h leads of the shock in each period h. This is the choice implemented in Section 4,

when considering empirical applications.

Proposition 2. Given the data generating process described by system (2), the response

function identified by modified LPs to a shock xt as described in equation (10) is equal to the

response as if the shock had no persistence (and to the response obtained from DLMs as in

equation (5)), that is:

R(h)F = R(h)∗ = R(h)DLM ∀ γ and h.

Proof. See Appendix A.2.

Intuitively, leads of xt in equation (10) act as controls for the persistence of the shock

throughout the response horizon, so that the parameter δ0,h reflects the dynamic response to

a counterfactual serially-uncorrelated shock, that is, controlling for the effect due to ∂xt+1

∂xt
̸= 0

built in system (2) when γ ̸= 0.

3.4.2 Adapting DLMs to include the effect of persistence

As noted earlier, R(h)DLM = R(h)∗ regardless of the value of γ. However, in some instances,

the researcher may be interested in the response that includes the effect of persistence (R(h)).

In this subsection, we show how to adapt DLMs to recover these responses. Intuitively, the

idea is to compute the impulse responses in system (2) with respect to εt instead of xt.
18See also Lee (2020) for lag order selection in LPs.
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To see this intuitively, consider a recursive substitution of xt in system (2) while assuming

ρ = δ1 = 0:

yt = δ0γ
tx0 + δ0

t∑
i=0

γiεt−i + ut. (11)

The responses of yt to εt, which we denote by R(h)DLM−per, can be obtained from the

coefficients θ̃h in:

yt = θ̃0εt + θ̃1εt−1 + θ̃2εt−2 + θ̃3εt−3 + θ̃4εt−4 + . . .+ et. (12)

Proposition 3. Given the data generating process described by system (2), the response

function identified by DLMs of yt to the innovation εt as described in equation (12) is

equivalent to the response that includes the effects of persistence (and to the response obtained

from LPs as in equation (6)):

R(h)DLM−per = R(h) = R(h)LP ∀ γ and h.

Proof. See Appendix A.3.

Proposition 3 establishes a direct equivalence between the coefficients obtained from equa-

tion (12) and those obtained from LPs in equation (6): θ̃h = δ0,h ∀ h. The former are

also related to the coefficients estimated from the DLM in terms of xt, as in equation (5):

θ0 = θ̃0 = δ, θ1 = θ̃1 − γθ̃0, . . . , θh = θ̃h − γθ̃h−1. Intuitively, and assuming ρ = δ1 = 0: the

response of yt+1 to xt has an overall effect of δ0,1 = θ̃1, which includes (i) the direct effect

of xt on yt+1 (0, in this particular example) and (ii) the effect on yt+1 that is due to the

persistence in xt (given by γδ0). The standard DLM estimation from equation (5), since it

accounts for the evolution of xt over the response horizon, is implicitly subtracting the part

of the response that is given by the persistence of xt from the overall effect.

The Appendix presents simulated examples that complement the above theoretical results.

This serves i) to provide intuition and gain further insights (Appendix B.1), ii) show how

the results hold when using more empirically-relevant sources of persistence (Appendix B.2),

and iii) to show why the inclusions of lags is not sufficient to identify R(h)∗ (Appendix B.3).
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Table 2: Adapting LPs and DLMs when shocks are persistent

Object of interest / Method LPs DLMs

Response as if no persistence (R(h)∗) include leads no action needed

Response with persistence (R(h)) no action needed replace xt with εt

3.5 Summary: A guide to practitioners

Here we summarize the lessons from this section, indicating the adjustments required in

LPs and DLMs depending on the object of interest. In the presence of a persistent shock,

the researcher has to determine what object to identify: the response as if the shock were

uncorrelated (R(h)∗) or the response that includes the effect of persistence (R(h)). As

discussed in Section 3.2, deciding for one or the other should depend on what specific question

the researcher is trying to address. The researcher also has to decide on what estimation

method to use, LPs or DLMs. Table 2 summarizes what adjustments are required in LPs

and DLMs depending on the object of interest.

3.6 Generalization to a VAR setting

In this section we explore how the previous results generalize to a multivariate framework.

To do so, we follow the existing literature and distinguish two cases. We first consider a

VAR where the shock is included in the vector of endogenous variables, and then we turn

our attention to a VAR where the shock is included exogenously, as a distributed lag or

moving average structure.19 We show that while both methods yield identical results under

the assumption of no persistence in the shock, relaxing this assumption yields results that

mirror those obtained in the previous section: a VAR with a shock included as an endogenous

variable will identify dynamic effects that include the persistence of the shock as it was the
19Bloom (2009), Romer and Romer (2010), and Ramey (2011) are examples of studies that include shocks

as endogenous variables in a VAR. These specifications are also known as hybrid VARs (see Coibion (2012)).
Other papers have opted to include the shock as an exogenous variable in a VAR setting. See for example:
Mertens and Ravn (2012) or Favero and Giavazzi (2012))
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case with LPs20, while treating the shock as an exogenous variable will yield dynamic effects

that exclude the persistence of the shock.

To illustrate this result, we generalize the original DGP in system (2) by including an

additional endogenous variable (y2,t), which may have a lagged effect on the main variable of

interest (y1,t) through parameter A21:

y1,t = ρ1y1,t−1 + A21y2,t−1 + δ0xt + δ1xt−1 + εy1t

y2,t = ρ2y2,t−1 + C0xt + C1xt−1 + εy2t

xt = γxt−1 + εxt . (13)

First, we explore the case where the shock xt is included with the rest of the endogenous

variables in the VAR. Note that in that case the system (13) can be recast as a structural

VAR of the form A0Yt = B∗Yt−1 + εt, with:


1 0 0

−δ0 1 0

−C0 0 1



xt

y1,t

y2,t

 =


γ 0 0

δ1 ρ1 A21

C1 0 ρ2



xt−1

y1,t−1

y2,t−1

+


εxt

εy1t

εy2t

 . (14)

An econometrician would estimate the following reduced-form VAR:

Yt = BYt−1 + ut, (15)

where B = A−1
0 B∗; and ut = A−1

0 εt are reduced-form residuals. Since the DGP given by

equation (13) already incorporates restrictions on the contemporaneous behavior of the vari-

ables, a researcher may identify the structural impulse responses by computing the Choleski

decomposition (when xt is ordered first) of the variance-covariance matrix of reduced-form

residuals ut.
20This also follows from Plagborg-Møller and Wolf (2021), which formally show that VARs (with the shock

included in the set of endogenous variables) and LPs identify the same impulse responses.
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Figure 1: Responses in a VAR to εxt

Panel A) Response of y1,t to εxt Panel B) Response of xt to εxt
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The figure shows the VAR responses of yt (Panel A) and xt (Panel B) to εxt estimated from (15), under
different assumptions of the persistence parameter γ: dashed orange lines for responses when there is no
persistence (γ = 0) and dashed green lines for responses when there is persistence (γ = 0.2). For reference,
Panel A also displays responses from the same DGP estimated using LPs for the cases of γ = 0 (solid blue
line) and γ = 0.2 (solid red line).

Panel A of Figure 1 shows the dynamic response of y1,t to an innovation in εxt , when

assuming two different cases for the persistence of the shock: γ = 0 (dashed orange line) and

γ > 0 (dashed green line).21 Note that for comparison, we also plot the response estimated

by LPs of y1,t to a contemporaneous shock in xt considering the same two cases of persistence

of xt (solid blue and red lines, respectively).

The results show that when γ > 0, the variable xt accumulates over time the initial

innovation in εxt (see Panel B in Figure 1). In turn, this effect propagates to y1,t through i)

the lagged effect of xt on y1,t, ii) the effect that xt has through the persistence of y1,t, and

iii) the effect that y2,t has on y1,t. As it becomes explicit from system (14), the persistence of

the shock xt is endogenously estimated in the VAR and incorporated in the the responses of

the endogenous variables. Hence, the dynamic responses of y1,t becomes higher when there

is positive persistence in xt. Note that Panel A in Figure 1 also shows that the responses

obtained from a VAR with a shock treated as an endogenous variable mimic the results shown
21We consider a calibration of system (13) with ρ1 = 0.9, ρ2 = 0.7, δ0 = 1.5, δ1 = 1, C0 = 1, C1 = 0.5,

A21 = 0.3 and either γ = 0 or γ = 0.2.
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earlier in the section when considering the use of LPs.22

We now turn our attention to an alternative method to include the shock in the VAR. We

start again from system (13), but following Mertens and Ravn (2012) or Favero and Giavazzi

(2012), we instead consider xt as an exogenous element in the VAR (which is sometimes

referred to as VAR-X):

1 0

0 1


y1,t
y2,t

 =

ρ1 A21

0 ρ2


y1,t−1

y2,t−1

+

 δ0

C0

 xt +

 δ1

C1

 xt−1 +

εy1t
εy2t

 . (16)

The results of this estimation are presented in Figure 2. Note that when there is no

persistence in the variable xt, the response of y1,t is the same regardless of including the

shock as an exogenous variable (dashed orange line) or, as we did before, as an endogenous

one (solid blue line). However, this equivalence does not hold when γ ̸= 0, since the VAR

with the shock as an exogenous variable continues to recover the same response as if γ = 0

(dashed green line) while, as shown before, the VAR with the shock as an endogenous variable

includes the effect of the persistence of xt on the response of y1,t. To explain the difference,

note that when constructing impulse responses in this framework, we are shocking xt (not

εy1,t), and therefore we are constructing a different thought experiment than in the previous

case.

These simulations illustrate that the results shown in Proposition 1 generalize to a multi-

variate setting. Hence, the dynamic responses of a variable to a persistent shock will depend

on how this shock is included in the VAR.

Finally, it is worth noting that the representation of the DGP as a multivariate process

highlights the role that other variables can have in transmitting the effect of a shock. Hence,

parallel to what was described earlier in this section, introducing leads of y2,t yields coun-

terfactual responses R(h)∗ of y1,t, where the path of y2,t is held constant throughout the

response horizon, that is, the channel of propagation of the shock xt through y2,t is shut
22This is formally shown in Plagborg-Møller and Wolf (2021), which state that LPs and VARs (when the

shock is treated endogenously) identify the same impulse-responses.
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Figure 2: Responses when the shock is included as an endogenous or exogenous variable in
a VAR
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The figure shows the VAR responses of y1,t to εxt estimated from (15) under different assumptions of the
persistence parameter γ and two different specifications: solid lines display the responses when the shock is
included as an endogenous variable in the VAR (as in system (14)) and dashed line shows the responses when
the same shock is included as an exogenous variable in the VAR (as in system (16)) .
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down. The construction of this counterfactual is similar in spirit to that of Cloyne et al.

(2020) (where the authors use a Blinder-Oaxaca approach) and opens the possibility for an

heuristic exploration of the transmission mechanisms of shocks. This avenue could be par-

ticularly informative to understand which economic models can bring the dynamic responses

closer to the data. We explore its empirical relevance in the context of government spending

shocks at the end of Section 4.

3.7 Local projections with instrumental variables

There is increasing attention to the use of external sources of variation as instruments in

LPs.23 Intuitively, these variables can be included either as direct measures of shocks or

as instruments depending on the researcher’s judgment (see Gertler and Karadi (2015) and

Ottonello and Winberry (2020) for contrasting examples). When they are considered to

be instruments in local projections (LP-IV), the persistence in these variables may lead to

the violation of the lead/lag exogeneity condition (Stock and Watson (2018)), affecting the

identification of the object of interest.24

In a LP-IV setting it becomes relevant to understand what causes the serial correlation in

the instrument. While a full characterization lies beyond the scope of this paper, we briefly

discuss two cases to guide researchers in dealing with persistence in a instrument when using

LPs. We focus on the identification of R(h)∗, which is more likely to be the object of interest

in a LP-IV context.

First, if the source of persistence in the instrument is independent of the past and future

realizations of the shock in the system, then the lead/lag exogeneity assumption is not vio-

lated. This is the general case laid out by Stock and Watson (2018). In this regard, using
23See Ramey and Zubairy (2018) for an example. Related to this, Ramey (2016) discusses the distinction

between shock, innovation, and instrument. Barnichon and Mesters (2020) show how independently identified
shocks can be used as instruments to estimate the coefficients of structural forward looking macroeconomic
equations.

24Stock and Watson (2018) state that a valid instrument zt should be both relevant and contemporaneously
exogenous, that is, zt should not be correlated to any shock in the system except with the one that the
researcher is interested in. Also, the instrument should not be correlated with any lead or lag of any of the
shocks in the system (the lead/lag exogeneity restriction).
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narrative measures as instruments might not problematic when the researcher is interested

in R(h)∗.

Second, if the instrument inherits its persistence from the shock (that is, the underlying

shock is persistent and, in turn, this reflects on the instrument) the lead/lag exogeneity

can only be re-established by including leads of the shock. The intuition follows from the

results in the previous sections: when the instrument takes its persistence form the shock,

the inclusion of lags will not be sufficient to account for the intermediate behaviour of the

shock between time t and t + h. In this case, only the inclusion of leads would bring back

lead/lag exogeneity and allow identification of R(h)∗.

In sum, the implications of persistence in LP-IV settings are nuanced as they depend

on the source of persistence in the model. As mentioned in the above examples, sometimes

lags may be sufficient to identify R(h)∗ while other DGPs may imply that leads are needed.

Following from the previous results in the section, our insight is that when the researcher is

unsure of the nature of the serial correlation in the instrument, the inclusion of leads and the

computation of R(h) − R(h)∗ might help to detect to which extent the dynamic responses

depend on the serial correlation of the instrument.

This recommendation is further reassured by investigating an actual empirical application

in which the shock is not persistent. In Appendix C.2, we conduct a placebo test based on

Romer and Romer (2010), who investigate the output effects of legislated tax changes. We

find that the unnecessary inclusion of leads to recover R(h)∗ does not change the results and,

at the same time, does not impose a penalty in terms of inference.

4 Application

In this section we use the empirical work of Ramey and Zubairy (2018) to show the quanti-

tative relevance of serial correlation in an actual example. We do so by computing two types

of IRFs, R(h) and R(h)∗, as described above. As discussed before, the difference between
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both estimates, R(h)−R(h)∗, is the part of the dynamic response which is due to the effects

of persistence in the shock.25 In Appendix C we consider additional applications based on

Guajardo et al. (2014) and Romer and Romer (2010).

Ramey and Zubairy (2018), building on previous work by Ramey (2011) and Owyang

et al. (2013), produce a series of announces about future defense spending between 1890q1-

2014q1, scaled by previous quarter trend real GDP.26 This series, plotted in panel D of

Figure D2, has a positive autocorrelation of 18.4% (47.0% in the subsample after WWII).

Ramey and Zubairy (2018) use LPs to estimate the response of output and government

spending to a shock in future defense spending.27 We follow their same approach and sample

and estimate the following equations for output (yt) and government spending (gt):

yt+h = αY
h + βy

hshockt +
P∑

j=1

ρyj,hzt−j +
h∑

f=1

γy
f,hshockt+f + ξt+h

gt+h = αG
h + βg

hshockt +
P∑

j=1

ρgj,hzt−j +
h∑

f=1

γg
f,hshockt+f + εt+h, (17)

where zt includes P lags of yt, gt and shockt. Note that, following the discussion in previous

sections, we include h leads of the variable shockt. In particular, for each horizon h we include

h leads.

To replicate Ramey and Zubairy (2018)’s estimates, we set γy
f,h = γg

f,h = 0, ∀ f, h. The

black, solid line in Figure 3 represents the estimated responses of output (left panel) and

government spending (right panel) to the shock. As noted in Section 3, these dynamic

responses are the equivalent to the R(h) as defined in equation (3) (with the only difference

being that Ωt−1 includes now the past history of zt). The results closely resemble those in
25At the end of this section we show the results of an alternative decomposition of R(h), where we highlight

the part of the dynamic response which is attributable to the effect of a third variable.
26Ramey and Zubairy (2018) estimate trend GDP as sixth degree polynomial for the logarithm of GDP

and multiplier by the GDP deflator. In fact, it is the use of the GDP deflator and trend GDP as a way
to scale the shocks what seems to induce the persistence. The persistence is also present when the shock is
scaled by previous-quarter GDP, as in Owyang et al. (2013).

27See Gonçalves et al. (2021) for an alternative LP estimator in non-linear settings.
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Ramey and Zubairy (2018) (Figure 5 of their paper).28

Figure 3: Output and government spending responses, with and without leads
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Black lines show the results of estimating the system (17) without including any lead (as in Ramey and
Zubairy (2018)). Grey areas represent 68 and 95% Newey-West confidence intervals for these estimates. Red
solid lines represent the results of estimations when including h leads of the Ramey and Zubairy (2018) news
variable (with 95% Newey-West confidence intervals).

Next, we allow γy
f,h ̸= 0 and γg

f,h ̸= 0. As discussed in Section 3, this amounts to

estimating R(h)∗ as defined in equation (4). In the red lines in Figure 3, we observe that

the dynamic responses change considerably when the leads are included. For example, after

two years, output and government spending are 40% lower than in Ramey and Zubairy

(2018)’s estimates. The large observed difference between R(h) and R(h)∗ suggests that

the persistence of the news variable plays a non-negligible role in explaining the dynamic

transmission of the fiscal shock to output and government spending.

Whether to include leads or not also has implications for inference. The 95% confidence

intervals when leads are included (shown in dashed lines in Figure 3) are substantially nar-
28We drop the last h observations of the sample, so that the specifications with and without leads can be

fully comparable. This does not have any discernible effect when replicating the original results from Ramey
and Zubairy (2018).
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Figure 4: Government spending multiplier, with and without leads
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Black lines show the cumulative multiplier without including any lead. Red solid lines represent the estimates
of the cumulative multiplier when including a number of leads of the Ramey and Zubairy (2018)) news variable
that increase with the response horizon.

rower than when they are not (grey areas in Figure 3). The latter are around 50% broader

after two years, and more than twice as big after three years.

The dynamic responses of output and government spending are informative about the

expected path of these variables after a shock. To obtain a measure of the efficiency of fiscal

policy (i.e., the increase of output per each dollar increase in government spending), Ramey

and Zubairy (2018) use the cumulative multiplier, computed as:29

Mt,h =

∑h
i=1 β

y
h∑h

i=1 β
g
h

. (18)

We find that this statistic is not substantially affected by persistence of the shock (Fig-

ure 4). Given that both output and government spending react similarly when including

leads of the shock, taking the ratio of the two variables attenuates the differences between
29Ramey and Zubairy (2018) show that the cumulative multiplier can be obtained in one step yielding

identical results to those obtained combining equations (17) and (18).
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both specifications.

Note that, even though the multiplier does not change much when accounting for persis-

tence, the fact that the expected responses of output and government spending do change

substantially is very relevant from a policy-maker point of view. For example, a higher re-

sponse of government spending can affect other important variables such as public debt or

future changes in tax liabilities. Also note that it is just a feature of this concrete example

that the effects of persistence on the output and government spending cancel out: in terms

of equation (17), for the cumulative multiplier to cancel the effects of persistence, γy
f,h and

γg
f,h must have the same implications for the response of output and government spending,

respectively. In fact, the next paragraphs show an example when this is not the case—the

cumulative multiplier does change substantially in the non-linear case.

Non-linear effects. We now investigate whether the effect of persistence in the shock

can affect the responses in a non-linear setting, i.e., if government spending multipliers are

different in expansions and recessions.30 For this, we follow Ramey and Zubairy (2018) and

estimate a series of non-linear LPs:

xt+h = St−1

[
αA,h +

P∑
j=1

ρA,j,hzt−j + βA,hshockt +
h∑

f=1

δA,f,hshockt+f

]
+

(1− St−1)

[
αB,h +

P∑
j=1

ρB,j,hzt−j + βB,hshockt +
h∑

f=1

δB,f,hshockt+f

]
+ ξt+h, (19)

where xt is either output or government spending and St is a binary variable indicating the

state of the economy. When St = 1, the economy is booming and, when St = 0, the economy

is in recession, which is defined as when the unemployment rate is above the threshold of
30See Ramey (2019) for a recent summary of this debate. For example, an influential study by Auerbach

and Gorodnichenko (2012) finds that government spending multipliers are higher during recessions using a
non-linear VAR. Alloza (2022) highlights the role of the information used to define a period of recession, and
finds that output responds negatively to government spending shocks in a post-WWII sample under different
identification and estimation approaches.
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6.5. In this setting, all the variables (and the constant) are allowed to have differential effects

during expansions and recessions.

Note that, as highlighted by Gonçalves et al. (2024), non-linear models such as those in

system (19) might recover coefficients βA,h and βB,h that are compatible with a conditional

marginal response function (i.e. the effect of an infinitesimal-sized shock rather than a shock

of size one). In this section, we abstract from this issue and focus our attention on how the

persistence in the shock affects the estimated coefficients.

We first replicate the non-linear responses of output and government spending during

booms and recessions obtained by Ramey and Zubairy (2018). Hence, we estimate equa-

tion (19) setting δA,f,h = δB,f,h = 0 ∀f, h, which identifies R(h). Our results, shown in

Figure 5 in black lines, resemble very closely those from the authors. Next, we repeat the

experiment accounting for potential persistence, that is, including leads of the shock (iden-

tifying R(h)∗). The results are shown in red lines in Figure 5. While relatively similar in

the case of expansions, the responses are quantitatively different during recessions. The esti-

mates that include leads lie outside of the 95% confidence bands during much of the response

horizon. The results suggest that, if persistence is taken into account, responses 2-3 years

after recessions are half in size than if persistence were not taken into account. Or, in other

words, persistence in the shock is responsible for up to 50% of the dynamic transmission of

the shock during recessions.

In Figure 6, we show how these responses map into estimates of non-linear fiscal multi-

pliers. In the case of expansions, the results do not change much depending on whether the

persistence is accounted for (red solid line, R(h)∗) or not (black solid line, R(h)). In either

case, they resemble those in Ramey and Zubairy (2018) (see Figure 6 of their paper). In

recessions, however, the results change substantially depending on whether the persistence is

controlled for or not. If it is not (black solid line), the multiplier has a negative value upon

impact and substantially falls in the following quarter to a value of -2. It becomes positive

before the end of the first year, and fully converges to the value of the multiplier during
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Figure 5: Responses during expansions and recessions, with and without leads
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Black lines show the results from system of equations (19) without including any lead (as in Ramey and
Zubairy (2018)). Grey areas represent 68 and 95% Newey-West confidence intervals for these estimates. Red
solid lines represent the results of estimations when including h leads of the Ramey’s news variable. Red
dashed lines represent the 95% Newey-West confidence intervals for these estimates.
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Figure 6: Government spending multiplier during expansions and recessions, with and with-
out leads
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The black solid and dashed lines show the cumulative multiplier during periods of expansion and recession,
respectively, without including any lead (as in Ramey and Zubairy (2018)). The red solid and dashed lines
show the cumulative multiplier during periods of expansion and recession, respectively, when including leads
of the shock.

expansions after six quarters. If the persistence is excluded from the dynamic responses (red

dashed line), the cumulative multiplier is -1 (instead of -2) and becomes positive after the

first year. Furthermore, the multiplier during recessions remains lower than the multiplier

during expansions for a much longer period. When the persistence is not accounted for, this

convergence is achieved after 6 quarters, as mentioned above. However, when including leads

of the shock, this convergence is not fully reached during our considered response horizon.

These results suggest that during the short and medium-run the government spending mul-

tiplier could be lower during recessions than during expansions, and part of this difference

may be attributable to the presence of persistence in the shock.

One of the main advantages of LPs is that they allow to accommodate non-linear settings,

as those in equation (19). This is particularly useful since, contrary to threshold VARs, LPs

do not impose any restriction on the evolution of state St (while non-linear VARs that interact

34



the shock with a state dummy do assume that St remains fixed during the response horizon,

i.e. the state is always in a recession or in an expansion)31. The framework explained in

the previous section allows to consider additional macroeconomic experiments that can help

understand how restrictive this condition is. In particular, by including leads of the state

St in equation (19) we are identifying the counterfactual response to a fiscal shock when

the underlying state of the economy is not allowed to change (as in threshold VARs). We

perform this experiment and report the multipliers during booms and recessions in green

lines in Figure D3. We observe that, when the state is not allowed to change, the multiplier

during recessions is slightly higher in the short run, but essentially unchanged at medium

and longer horizons. This exercise allows us to illustrate how the use of leads of variables

in conjunction with LPs can help understand interesting counterfactual exercises and shed

light on the dynamic transmission of shocks.

Exploring the transmission of the shock Next, we empirically test the mechanism

mentioned at the end of Section 3.6. In particular, we are interested in exploring how much

of the (linear) response of output to a government spending shock is due to effects through

the labor market.32 To do so, we first re-estimate the effects of government spending as

described in equation (17) but including the unemployment rate as an additional control

variable. The resulting cumulative multiplier, which is roughly the same size of the linear

estimates in Ramey and Zubairy (2018), is shown in black in Figure 7.33

To explore how much of the transmission of the shock is lost when the unemployment

rate is not allowed to move, we include h leads of this variable in each of the LPs. This means

that while we allow for the unemployment rate to respond on impact, this variable is kept

constant throughout the rest of the response horizon. The cumulative multiplier, shown in
31An exception to this would be the inclusion of further assumptions regarding the evolution of the un-

derlying state St. In this case, a threshold VAR simulated through Monte Carlo Integration methods could
recover responses that allow for changes in the underlying state.

32Both the intensive and extensive margin of labor are key channels of transmission of fiscal policies. See,
for example, Baxter and King (1993).

33Appendix Figure D4 shows the response of all variables.
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Figure 7: Government spending multiplier including leads of the unemployment rate
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The black line shows the government spending cumulative multiplier (as in Ramey and Zubairy (2018)). The
red line shows the cumulative multiplier when including leads of the unemployment rate.

red in Figure 7 is greatly reduced: after two years, the multiplier is almost three times lower

when shutting down the transmission through the labor market.

5 Conclusions

We have shown that the presence of some degree of persistence in shocks leads to the estima-

tion of different responses when using LPs versus traditional methods based on DLMs. For

a researcher interested in the response as if the shock were not persistent, DLMs yield the

desired object, but LPs need to be adapted. The opposite is true if the object of interest is

the response to the shock “as it is”. Regardless of which is the thought experiment that the

researcher seeks to carry out, the difference between both types of responses is informative

about how much of the dynamic transmission of a shock is due to the presence of persistence.

As shown in the previous section, the use of leads can be generalized to other interesting

contexts, as it allows to shut down channels of transmission. For example, one may be
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interested in the effects of monetary policy shocks on output due to a particular instrument

while holding other variables (e.g., changes to fiscal policy) constant. In the context of LPs,

leads of a selected variable (e.g., tax changes) will deliver responses holding that variable

constant. This methodology allows to separate the direct (due to the impact through the

regressor of interest) and indirect effects (due to other variables in the regression). This

has often been used in the context of VARs, by imposing restrictions on the coefficients

of selected impulse responses. The inclusion of leads achieves a similar goal in LPs, hence

allowing to construct interesting macroeconomic experiments. We leave these questions for

future research.
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Online Appendices

A Proofs

A.1 Proof of Proposition 1

First, we derive the impulse-response functions identified by LPs. Consider the DGP (2)

(rewritten here for convenience):

yt = ρyt−1 + δ0xt + δ1xt−1 + ut

xt = γxt−1 + εt. (A.1)

Consider the LP:

yt+h = ρhyt−1 + δ0,hxt + δ1,hxt−1 + ξt+h,

where δ0,h = R(h)LP is the linear projection coefficient. By the Frisch-Waugh-Lovell

(FWL) theorem it becomes:

δ0,h =
Cov(yt+h, x̃t)

V ar(x̃t)
,

where x̃t = xt − E(xt|yt−1, xt−1). Note that by iterating in the DGP (A.1), yt+h can be

expressed as a function of xt and the m.d.s. εt and ut:

yt+h = [δ0γ
h + (δ0ρ+ δ1)γ

h−1 + (δ0ρ
2 + δ1ρ)γ

h−2 +

. . .+ (δ0ρ
h−1 + δ1ρ

h−2)γ + (δ0ρ
h + δ1ρ

h−1)]xt +

. . .+ f(ut, . . . , ut+h) + g(εt+1, . . . , εt+h),

1



where f(ut, . . . , ut+h) is a linear function of ut, . . . , ut+h, and g(εt+1, . . . , εt+h) is a linear

function of εt+1, . . . , εt+h.

Or, in a more compact form,

yt+h =
h∑

j=0

αjγ
h−jxt + f(ut, . . . , ut+h) + g(εt+1, . . . , εt+h),

where

αj = δ0 if j = 0

αj = δ0ρ
j + δ1ρ

j−1 if j > 0.

Plugging this into the LP estimator:

δ0,h =
Cov(

∑h
j=0 αjγ

h−jxt + f(ut, . . . , ut+h) + g(εt+1, . . . , εt+h), x̃t)

V ar(x̃t)
(A.2)

=
h∑

j=0

αjγ
h−jCov(xt, x̃t)

V ar(x̃t)
+

Cov(f(ut, . . . , ut+h), x̃t)

V ar(x̃t)
+

Cov(g(εt+1, . . . , εt+h), x̃t)

V ar(x̃t)
,

where the last two terms are equal to 0 because the errors are m.d.s. Note that Cov(xt, x̃t) =

Cov(x̃t + E(xt|yt−1, xt−1), x̃t) = V ar(x̃t). Hence,

δ0,h =
h∑

j=0

αjγ
h−j = R(h).

As a second step, we derive the dynamic responses identified by DLMs. Consider:

yt = θ0xt + θ1xt−1 + θ2xt−2 + . . .+ ut.

Forwarding this equation:

2



yt+h = θ0xt+h + θ1xt+h−1 + θ2xt+h−2 + . . .+ θhxt + . . .+ et+h.

We are interested in ∂yt+h

∂xt
|(xt+h,...,xt+1,...,xt−1) = θh = R(h)DLM .

Hence by the FWL theorem we have,

θh =
Cov(yt+h, ˜̃xt)

V ar(˜̃xt)
, (A.3)

where ˜̃xt = xt − E(xt|xt+h, . . . , xt+1, . . . , xt−1, . . .). Now, note that the DGP given by

equation (A.1) can be expressed as:

yt+h = α0xt+h + α1xt+h−1 + . . .+ αhxt + αh+1xt−1 + . . .+ vt+h,

where

vt+h = ut+h + ρut+h−1 + ρ2ut+h−2 + . . .

Plugging this into (A.3):

θh =
Cov(α0xt+h + α1xt+h−1 + . . .+ αh−1xt+1, ˜̃xt)

V ar(˜̃xt)
+

Cov(αhxt, ˜̃xt)

V ar(˜̃xt)

+
Cov(αh+1xt−1 + αh+2xt−2 + . . . , ˜̃xt)

V ar(˜̃xt)
+

Cov(vt+h, ˜̃xt)

V ar(˜̃xt),

where the first, third and last terms are zero.

Note that Cov(αhxt, ˜̃xt) = αhCov(˜̃xt + E(xt|xt+h, . . . , xt+1, . . . , xt−1, . . .), ˜̃xt), hence,

θh = αh
Cov(˜̃xt, ˜̃xt)

V ar(˜̃xt)
= δ0 = R(h)∗ if h = 0

and θh = δ0ρ
h + δ1ρ

h−1 = R(h)∗ if h > 0.
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■

A.2 Proof of Proposition 2

Consider the LP:

yt+h = ρhyt−1 + δ0,hxt + δ1,hxt−1 + δ1+,hxt+1 + ξt+h.

We are interested in the projection coefficient δ0,h. By the FWL theorem it becomes:

δ0,h =
Cov(yt+h, x̃

F
t )

V ar(x̃F
t )

,

where x̃F
t = xt − E(xt|yt−1, xt+1, xt−1)

Note that, from the DGP given by equation (A.1), yt+h can be written as a function of

xt+1, xt, past values of xt, εt, and ut:

yt+h = α0γ
h−1 +

h−1∑
j=1

αjγ
h−jxt+1 +

αhxt +
t+1∑
j=1

αjxt−j + f̄(u0, . . . , ut+h) + ḡ(εt+2, . . . , εt+h),

where

α0 = δ0 (A.4)

αj = δ0ρ
j + δ1ρ

j−1 if j > 0,

f̄(u0, . . . , ut+h) is a linear function of u0, . . . , ut+h, and ḡ(εt+2, . . . , εt+h) is a linear function

of εt+2, . . . , εt+h.

Note that, from the DGP, we have:
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xt+h = γhxt +
h−1∑
j=0

γjεt+h−j,

so we can substitute for the past values of xt in the previous equation:

yt+h = α0γ
h−1 +

h−1∑
j=1

αjγ
h−jxt+1

+αhxt + γtx0 +
t−1∑
j=0

γjεt−j + f̄(u0, . . . , ut+h) + ḡ(εt+2, . . . , εt+h),

so that

yt+h = α0γ
h−1 +

h−1∑
j=1

αjγ
h−jxt+1

+αhxt + γtx0 + f̄(u0, . . . , ut+h) + ¯̄g(ε0, . . . , εt+h),

where ¯̄g(ε0, . . . , εt+h) is a linear function of ε0, . . . , εt+h.

Plugging this back into the LP estimator:

δ0,h =
Cov(α0γ

h−1, x̃F
t )

V ar(x̃F
t )

+
Cov(

∑h−1
j=1 αjγ

h−jxt+1, x̃
F
t )

V ar(x̃F
t )

+αh
Cov(xt, x̃

F
t )

V ar(x̃F
t )

+
Cov(γx0, x̃

F
t )

V ar(x̃F
t )

+
Cov(f̄(u0, . . . , ut+h), x̃

F
t )

V ar(x̃F
t )

+
Cov(¯̄g(ε0, . . . , εt+h), x̃

F
t )

V ar(x̃F
t )

,

where the first, second, fourth, and last two terms equal zero. Since Cov(xt, x̃
F
t ) =

Cov(x̃F
t , x̃

F
t ) we have that:
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δ0,h = R(h)F = αh = δ0ρ
h + δ1ρ

h−1 = R(h)DLM = R(h)∗,

where the last equality was shown in Proof A.1. ■

A.3 Proof of Proposition 3

Consider the DLM regression:

yt = θ̃0εt + θ̃1εt−1 + θ̃2εt−2 + . . .+ ηt,

in t+ h:

yt+h = θ̃0εt+h + θ̃1εt+h−1 + . . .+ θ̃hεt + θ̃h+1εt−1 + . . .+ ηt+h.

We are interested in the projection coefficient θ̃h. Since εt is a m.d.s., θ̃h can be expressed

as :

θ̃h =
Cov(yt+h, εt)

V ar(εt)
.

Using expression (A.2),

θ̃h =
Cov(

∑h
j=0 αjγ

h−jxt +
¯̄f(ut, . . . , ut+h) + ¯̄̄g(εt+1, . . . , εt+h), εt)

V ar(εt)
,

where

α0 = δ0

αj = δ0ρ
j + δ1ρ

j−1 if j > 0,
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¯̄f(ut, . . . , ut+h) is a linear function of ut, . . . , ut+h, and ¯̄̄g(εt+1, . . . , εt+h) is a linear function

of εt+1, . . . , εt+h.

Since the error terms are m.d.s. and independent from each other:

Cov( ¯̄f(ut, . . . , ut+H), εt) = Cov(¯̄̄g(εt+1, . . . , εt+H), εt) = 0.

Hence,

θ̃h =
h∑

j=0

αjγ
h−jCov(xt, εt)

V ar(εt)
,

Note that since, as mentioned before,

xt+h = γhxt +
h−1∑
j=0

γjεt+h−j,

then

xt = γtx0 +
t∑

j=0

γjεt−j.

Hence,

θ̃h =
h∑

j=0

αjγ
h−j γ

hCov(x0, εt) + Cov(εt + γεt−1 + γ2εt−2 + . . . , εt)

V ar(εt)
=

=
h∑

j=0

αjγ
h−jCov(εt, εt)

V ar(εt)
=

h∑
j=0

αjγ
h−j = R(h)DLM−per.

This, combined with the result from Proposition 1, yields:

R(h)DLM−per = R(h)LP = R(h).

■
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B Examples and additional results

B.1 Main examples

In this subsection, we perform stochastic simulations of the asymptotic behavior of the im-

pulse response functions using both LPs and DLMs. We simulate system (2) for 100 million

periods, setting δ0 = 1.5, δ1 = 1 and ρ = 0.9. We recover the dynamic responses of yt to the

shock xt using LPs as in equation (10).

We consider three cases: (i) no persistence (γ = 0), without including leads in the

estimation (i.e., setting δ1+,h = 0); (ii) some persistence (γ = 0.2) and still δ1+,h = 0; (iii)

some persistence (γ = 0.2) and including a lead of the explanatory variable (i.e., allowing

δ1+,h ̸= 0).1

Note that equation (10) must include a lag of shock xt to capture the effect of δ1 in

system (2). However, this does not control for the potential persistence of shock xt, as will

be apparent in the simulations.

Figure B1 shows the results of our simulations. In case (i) (dark-blue solid line), the

response has a contemporaneous effect of δ̂0,0 = 1.5 and peaks at the following period due to

the the fact that both ρ and δ1 have positive values. Using the language from Section 3, the

impulse response function estimated by LPs with no persistence is asymptotically equivalent

to the one obtained directly from equation (10), that is, R̂(h)LP → R(h)∗.

In case (ii) (red solid line), the introduction of persistence in the shock xt results in a larger

effect on yt on all horizons after impact. This has potentially important implications: if a

macroeconomist is interested in the effects of a serially-uncorrelated shock (as in most general

equilibrium models), but naively sets δ1+,h = 0, then the dynamic response is upwardly biased

due to the persistence of the shock, i.e., R̂(h)LP > R(h)∗ for h > 0. Given the assumptions on

the autocorrelation of the process xt, the bias is particularly large in the short and medium

run. Higher values of the persistence parameters γ and ρ would increase the difference
1The choice of γ = 0.2 is based on an empirical application presented in Section 4. Of course, larger values

of γ would yield higher biases due to the persistence of the process.

8



Figure B1: Simulated responses using LPs
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This figure shows the response of a simulated outcome variable to a shock with different degrees of persistence,
using LPs. The dark blue line shows the results of estimating equation (10) assuming γ = 0 in equation (2).
The red line shows the same estimation when γ = 0.2. The dashed grey line shows the response after including
leads of the shock as in equation (10) and still assuming γ = 0.2.

between both responses (blue and red lines in Figure B1).

In case (iii) (dashed grey line in Figure B1), we see that the inclusion of leads of xt renders

the response of the outcome variable to a persistent shock identical to the one obtained when

considering a shock without persistence, i.e., R̂(h)F → R(h)∗. In Appendix B.2 we provide

an alternative simulation where the shock xt in (2) is not assumed to follow an AR(1) process

but it is instead taken from actual data.

Next, we use these simulations to show that the computation of impulse responses us-

ing DLMs always yields the same estimates regardless of the persistence in xt, that is,

R̂DLM (h) → R∗(h) for any value of γ.

First, note that, since ρ < 1, system (2) can be inverted and re-written as:

yt = (1− ρL)−1 (D0 +D1L) xt + (1− ρL)−1 ut, (B.1)
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Figure B2: Simulated responses using DLMs
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This figure shows the response of a simulated outcome variable to a shock with different degrees of persistence,
using DLMs . The dark blue line shows the results of estimating equation (5) assuming γ = 0 in system (2).
The dashed grey line shows the same estimation when γ = 0.2. The red line shows the response when
substituting xt in equation (5) by ε̂t, an OLS estimate of εt (see equation (9)), where serial correlation has
been removed.

where L represents the lag operator.

Given the independence of ut and xt, the representation from equation (B.1) suggests that

the dynamic responses of yt from xt can be obtained from the coefficients ϑh in equation (5).2

We estimate equation (5) fo three different cases: (i) assuming that γ = 0 in the DGP

described in system (2), (ii) assuming that γ = 0.2 and (iii) replacing xt with ε̂t in equation (5)

(i.e., following equation (12)).

The results are shown in Figure B2. Cases (i) and (ii) are displayed in blue and dashed

grey lines, respectively. As argued earlier, since equation (5) controls for all potential dynamic

effects of xt, including its persistence, the coefficients ϑh reflect the responses to a shock as

if the variable xt showed no persistence, regardless of the value of γ. Hence, we have that

R̂(h)DLM → R(h)∗ for any γ. Note that these impulse response functions are the same as
2Baek and Lee (2020) show that for autoregressive distributed lag models, setting the lag order to H is a

necessary condition to achieve consistency.
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those obtained with LPs (R̂(h)LP ) when γ = 0, or when we include leads in the LPs (R̂(h)F ).

Case (iii) is shown in the red line in Figure B2. As argued in the previous subsection,

when computing the impulse response with respect to εt, we are allowing the DLMs to pick

up the effect that is due to the persistence in xt. In other words, since we do not implicitly

control for the leads of xt but for those of εt in the DLM, we are not taking into account

the persistence of xt. In this case, the responses are equal to those obtained from LPs when

γ ̸= 0: R̂(h)DLM−per = R̂(h)LP → R(h).

B.2 Alternative example: using the persistence from an actual

shock

In this subsection we compute the impulse response of a simulated variable yt to a shock xt

with the following DGP:

yt = ρyt−1 +B0xt +B1xt−1 + ut, (B.2)

where xt is the actual government spending shock from Ramey and Zubairy (2018) as shown

in Panel D of Figure D2. ut is a random variable following ut ∼ N (0, 1). We set ρ = 0.9,

B0 = 1.5, and B0 = 1.

Equation (B.2) is simulated for 497 periods (the length of Ramey and Zubairy (2018)’s

shock), and we then compute the relevant IRFs. We repeat this process 10,000 times, and

compute the average impulse responses across all repetitions. The results are shown in

Figure B3.

When computing the dynamic response with standard LPs (i.e., without including any

lead), the estimates diverge from the expected response when the shock has no persistence

(distance between red and dark blue lines in Figure B3). Adding one lead improves the esti-

mates, bringing the impulse-response into line with the theoretical response in the first period

(green line). The accuracy of the impulse-response converges to the theoretical response when

more leads are included. When we include as many leads as periods in the response horizon

11



Figure B3: Simulated responses using LPs with persistence from an actual shock
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This figure shows the response of a simulated outcome variable to the government spending shock from
Ramey and Zubairy (2018). The dark blue line is the theoretical impulse-response to a shock that shows
no persistence. The red line shows the LPs estimation of the impulse-response to the Ramey and Zubairy
(2018) without including any lead. Green line repeats the same estimation adding one lead. Dashed grey
line shows the response when including 20 leads.

(20), the dynamic response estimated from LPs using the actual shock (with persistence) is

equivalent to the response to a non-serially correlated shock (dashed grey line).

B.3 Responses in local projections using variables adjusted for se-

rial correlation

An apparent potential alternative to the use of leads proposed in the main text might be to

adjust the shock xt so that it does not display persistence (e.g., by regressing xt on its own

lags and using the resulting residual). Once the persistence is removed, one may expect the

dynamic responses not to include the effect due to the persistence of the shock. However,

this is not the case in a LPs setting, as we show next.

Consider the case where we obtain a variable adjusted for serial correlation: εt = xt −

γxt−1, as shown in equation (9). Then, εt can be used as substitute of the original shock xt.
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Assuming δ1 = 0 in system (2) (for simplicity) consider the following series of LPs:

yt+h = ρhyt−1 + λhεt + ξt+h. (B.3)

To obtain the dynamic responses of yt to the shock εt (adjusted for persistence), we

rewrite the first equation in system (2) as a function of εt and compute the relevant partial

derivatives. For the cases of h = 0 and h = 1 these are:

λ0 =
∂yt+1

∂εt
= δ0

λ1 =
∂yt+1

∂εt
= ρ

∂yt
∂εt

+ δ0
∂xt+1

∂εt
= ρδ0 + δ0γ = δ0(γ + ρ). (B.4)

That is, even after correcting for the persistence in shock xt, conventional LPs yield

responses R(h), i.e., still containing the effect of persistence of the shock.

While this result may seem counter-intuitive, it arises from the fact that LPs do not have

an explicit dynamic structure as a DLM. Hence, removing the persistence from xt does not

eliminate its effect on yt+1, yt+2, etc.

To empirically show this point, we simulate series of yt and xt following system (2) and

the calibration used in Section B.1 (we now allow δ1 ̸= 0). We then obtain the residuals ε̂t

as an estimate of εt described above and estimate the following equation:

yt+h = ρyt−1 + λh,0ε̂t + λh,1ε̂t−1 + ξt+h. (B.5)

Results are shown in Figure B4. The simulations corroborate the above results and we

find that the use of a variable adjusted for serial correlation as ε̂t in equation (B.3) fails to

retrieve an impulse response as the one obtained when γ = 0 in equation (2).
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Figure B4: Simulated responses using ε̂t
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This figure shows the response of a simulated outcome variable to a shock with different degrees of persistence.
The dark blue line shows the results of estimating equation (B.5) assuming γ = 0 in equation (2). The red
line shows the same estimation when γ = 0.2. The dashed grey line shows the response when including a
predicted regressor where persistence has been removed as explanatory variable (as in equation (B.3)).
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C Additional empirical applications

C.1 Guajardo et al. (2014)

In this subsection we explore the relevance of our results in the context of episodes of fiscal

consolidation, as produced in Guajardo et al. (2014). The authors employ a panel of OECD

economies to analyze the response of economic activity to discretionary changes in fiscal

policy motivated by a desire to reduce the budget deficit and not correlated with the short-

term economic outlook.1 As mentioned in Table 1, this measure of fiscal changes exhibits

some degree of persistence.2

To explore the effects of persistence in this context, we compute the responses estimating

a series of LPs:3

yi,t+h = µh,i + λh,t + βh,0shocki,t +
h∑

f=1

βh,fshocki,t+f + βh,sXi,t + ξi,t+h, (C.1)

where yi,t is a measure of economic activity (either private consumption or real GDP), µh,i

and λh,t represent country and time fixed effects, respectively, and Xit is a vector of variables

that includes a lag of the shock, output, and private consumption, and a deterministic trend.

In our setting, responses to the fiscal shocks are given by the estimates of coefficients βh,0 for

different horizons h.

We first estimate equation (C.1) by setting βh,f = 0 ∀h, f . The results, shown in black

solid lines in Figure C1 qualitatively replicate the benchmark results of Guajardo et al. (2014),

with a fiscal consolidation shock significantly reducing output during the first 6 years.4

1A detailed description of these shocks can be found in Devries et al. (2011).
2Regressions of the fiscal consolidations measure (expressed as % of GDP) on its own lags and including

time and country fixed effects reveal persistence in the previous two or three years (depending on the number
of lags included). Intuitively, some degree of persistence is expected in these series since they often involved
multi-year plans, as noted in Alesina et al. (2015) and Alesina et al. (2017).

3Note that Guajardo et al. (2014) do not construct responses using LPs and hence their computed re-
sponses do not show the effect of persistence, as noted in the previous section. There are, however, a number
of studies that employ their fiscal consolidations dataset with LPs (see, for example, Barnichon et al. (2022)
or Goujard (2017)).

4Guajardo et al. (2014) focus on the dynamic effects of output and private consumption during 6 years
after the shock. We also compute results for private consumption, shown in Figure D5 in Appendix D. As
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Figure C1: Output response to a fiscal consolidation shock, with and without leads
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Black lines show the results from equation (C.1) with output as dependent variable and setting βh,f = 0 ∀h, f ,
i.e., without including any leads of the shock. Grey areas represent 90% Newey-West confidence intervals
for these estimates (as in Guajardo et al. (2014)). Red solid lines represent the results of estimations when
allowing βh,f ̸= 0 and including h leads of the consolidations variable.
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Next, we estimate equation (C.1) but allow βh,f ̸= 0 (red lines in Figure C1). Three

points are worth noting regarding these results. First, when accounting for the effects of

persistence, the point estimates are smaller in absolute value. On average, the new responses

are 35% lower during the first six years after the shock. Two years after a fiscal consolidation,

output is almost 60% smaller when accounting for persistence (-0.2 vs -0.5).

Second, when including leads of the shock, the estimates are more precise, which translates

into smaller confidence intervals (set at 90% as in the original paper of Guajardo et al.

(2014)). During the first six years, these intervals are about 20% smaller on average in the

specifications that include leads of the shock.

Third, these narrower intervals now include zero for most of the response horizon. Ignoring

the persistence of the shock would lead to the conclusion that the output contraction after

a fiscal consolidation is significant throughout the six years after the shock. However, when

accounting for persistence, the effect of the shock is significant only during the first year after

the shock, while it seems less plausible to conclude that the effect is statistically different

from zero during the rest of the response horizon.

This exercise suggests that the policy implications from fiscal consolidations may be

different when estimating R(h) vs. R(h)∗.

C.2 Romer and Romer (2010)

What happens when including leads of non-persistent shocks? In this section we conduct

a placebo test based on Romer and Romer (2010), who investigate the output effects of

legislated tax changes. Romer and Romer (2010) identify exogenous changes in tax revenues

by classifying fiscal reforms according to their motivation (i.e., whether or not they are the

response to changing macroeconomic conditions). As discussed in Section 2, it is the only

shock considered here for which we unambiguously fail to reject the null hypothesis of no

persistence. Hence, the inclusion of leads of the shock should not have a discernible impact

in the original paper, we also find a significant reduction in this variable during the first 6 years after a
consolidation shock.
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on the estimation of dynamic responses. Beyond corroborating the previous statement, this

subsection shows that the unnecessary inclusion of leads does not negatively affect inference

in this application.

We estimate the response of output to exogenous tax changes following Romer and Romer

(2010). We adapt the original estimation from the authors to the LPs setting:5

yt+h − yt−1

yt−1

= βh,0shockt +
h∑

f=1

βh,fshockt+f + ξt+h. (C.2)

In our first exercise, we set βh,f = 0 ∀h, f in equation (C.2) to replicate the results from

Romer and Romer (2010). The results are shown Figure C2 (black lines). The response of

output is similar to that in Romer and Romer (2010): it falls persistently after a tax hike of

1% of GDP, with a peak effect reached in the 10th quarter.6

Next, we allow for βh,f ̸= 0. The results, shown in Figure C2 (red lines), suggest that

the inclusion of leads does not significantly affect the results. The point estimations with

and without leads of the shock overlap each other for most of the response horizon and only

diverge slightly during the quarters 8 to 11th.

While, given the results of Table 1 we should not expect a change in the point esti-

mates (which we have corroborated) the same cannot be say about issues regarding infer-

ence. However, Figure C2 shows that confidence bands are not distinguishable between both

specifications during the first seven quarters and differ only slightly afterwards.

In sum, this placebo exercise is reassuring in that the inclusion of leads only matters when

the explanatory variable displays some persistence. These results suggest that including leads

in LPs is a conservative way to address the effects of persistence when there is a suspicion

that the shock is persistent and the researcher wants to identify R(h)∗.7

5Adding controls such as lags of output or the own shock do not affect the obtained results shown next.
6The difference with the original estimations from Romer and Romer (2010) are only quantitative: the

peak tax multiplier is about 3 in the 10th quarter. Our estimations suggest a peak multiplier of 2.25 also
reached in the same quarter.

7See Alloza and Sanz (2021) for another example that adds leads to LPs using a non-persistent shock.
Similarly to the evidence provided in this section, they also show that adding leads does not affect inference.
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Figure C2: Response of output to Romer and Romer (2010) tax shocks, with and without
leads
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Black solid line shows the responses to a tax shock estimated from equation(C.2) with βh,f = 0, i.e., without
including any lead. Grey areas represent 68 and 95% Newey-West confidence intervals for these estimates.
Red solid line shows the responses to a tax shock estimated from equation (C.2) with βh,f ̸= 0 and including
h leads of the shock. Red dashed lines represent 95% Newey-West confidence intervals for these estimates.
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D Additional Tables and Figures

Table D.1: Robustness: different lag structures for tests

5 lags 10 lags 20 lags 40 lags 60 lags

Arezki et al. (2017) 175.944 175.953 176.049 177.903 177.907
(0.000) (0.000) (0.000) (0.000) (0.000)

Cloyne (2013) 11.365 21.521 40.041 98.751 120.270
(0.045) (0.018) (0.005) (0.000) (0.000)

Cloyne and Hürtgen (2016) 17.723 20.771 47.357 84.422 103.001
(0.003) (0.023) (0.001) (0.000) (0.001)

Gertler and Karadi (2015) 53.802 84.284 106.133 124.568 131.030
(0.000) (0.000) (0.000) (0.000) (0.000)

Guajardo et al. (2014) 160.740 173.315 182.866 185.810 185.810
(0.000) (0.000) (0.000) (0.000) (0.000)

Ramey and Zubairy (2018) 79.298 89.916 104.414 182.950 190.974
(0.000) (0.000) (0.000) (0.000) (0.000)

Romer and Romer (2004) 15.536 23.965 43.824 53.758 64.576
(0.008) (0.008) (0.002) (0.072) (0.320)

Romer and Romer (2010) 1.578 3.080 6.562 19.023 24.783
(0.904) (0.980) (0.998) (0.998) (1.000)

The columns report the values of a Box and Pierce (1970) test (with Ljung and Box (1978) correction)
including different lags. P-values are shown in brackets. in Arezki et al. (2017) and Guajardo et al. (2014)
is tested using a generalized version of the autocorrelation test proposed by Arellano and Bond (1991) that
specifies the null hypothesis of no autocorrelation at a given lag order.
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Figure D1: Autocorrelograms

Panel A: Cloyne (2013) Panel B: Cloyne and Hürtgen (2016)
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Panel C: Gertler and Karadi (2015) Panel D: Ramey and Zubairy (2018)
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Red lines denote 95% confidence intervals.
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Figure D2: Time series of shocks

Panel A: Cloyne (2013) Panel B: Cloyne and Hürtgen (2016)
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Figure D3: Government spending multiplier during expansions and recessions, with and
without leads
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The black solid and dashed lines show the cumulative multiplier during periods of expansion and recession,
respectively, without including any lead (as in Ramey and Zubairy (2018)). The red solid and dashed lines
show the cumulative multiplier during periods of expansion and recession, respectively, when including leads
of the shocks and the state. Green solid and dashed lines refer to estimates of the expansion and recession
multipliers, respectively, when including leads of the shock and the regime.
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Figure D4: Output and government spending responses, with and without leads of the un-
employment rate
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Black lines show the results of estimating the system (17) without including any lead (as in Ramey and
Zubairy (2018)), with 95% confidence intervals. Red solid lines represent the results of estimations when
including h leads of the unemployment rate .
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Figure D5: Private consumption response to a fiscal consolidation shock, with and without
leads
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Black lines show the results from equation (C.1) with private consumption as dependent variable and setting
βh,f = 0, i.e., without including any lead of the shock. Grey areas represent 90% Newey-West confidence
intervals for these estimates (same interval as reported in Guajardo et al. (2014)). Red solid lines represent
the results of estimations when allowing βh,f ̸= 0 and including h leads of the consolidations variable.
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