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Motivation

1 Unlike RA models, HA macro models are computationally challeng-
ing since the aggregate state vector contains infite-dimensional objects
(distribution of agents).

2 Different numerical algorithms have been developed to overcome this
challenge (value function or policy function iteration, gold search, etc).

3 However, none of them are as general, efficient, or easy-to-apply as
the standard perturbation methods (typically employed for soving RA
models).

4 Thus, is it possible to apply perturbation methods to solve het-
erogeneous agent models?
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Motivation

1 Yes, it is! But, how to do this?

2 Two important basis:

• Approximates the cross-sectional distribution using a parametric family.
For instance, Algan, Allais and Haan (2008) use a globally accurate
projection technique to solve Krusell-Smith (KS) model (but, this is
computationally slow).

• Usage of globally accurate and locally accurate approximations to solve
for the dynamics of HA models. For example, Reiter (2009) employs
locally accurate approximation with respect to state vector for solving
KS model; however, his method relies on a fine histogram approximation,
which requires many parameters to achieve aceptable accuracy.
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Motivation

1 Based on these computation techniques, the developed method employs
between 30-50 seconds to solve the model.

2 Besides, to illustrate the power of the method, this is used to estimate
a HA model with full-information Bayesian techniques.

3 Another feature of this method is that it could be applied to a wide
range of of HA model. In these slides, it will be discussed the HA
model of Khan and Thomas (2008) (KT).

4 Finally, the computational method is implemented in Dynare.
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Benchmark Model: KT Model
Households

1 It is assumed a representative infinite-lived household, whose prefer-
ences are defined by:

E
[ ∞∑

t=0
βt
(

C1−σ
t − 1
1− σ − χN1+ψ

t
1 + ψ

)]
(1)

where Ct is consumption, Nt is labor supplied to the market. β the
discount factor, σ the relative risk aversion coefficient, χ governs the
disutility of labor, and 1ψ is the Frish elasticity of labor supply.

2 The representative househod is endowed with a unit of time (Nt ∈
[0, 1]). The household owns all the firms in the economy. Markets are
complete.
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Benchmark Model: KT Model
Firms

1 There exist a continuum of firms with a total unit mass, j ∈ [0, 1],
which produce output yjt according to:

yjt = ezt eεjt kθjt lνjt , θ + ν < 1 (2)

where zt is an aggregate productivity shock, εjt , a idiosyncratic one.
kjt the capital input, ljt is labor input. θ the elasticity of output respect
to capital, and ν the elasticity of output respect to labor.

2 Law of motions:

• Aggregate shock, zt , evolves as follows:

zt+1 = ρzzt + ηzω
z
t+1, with ωz

t+1 ∼ N(0, 1) (3)

• Idiosyncratic shock, εjt , evolves as follows:

εjt+1 = ρεεjt + ηεω
ε
t+1, with εjt+1 ∼ N(0, 1) (4)
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Benchmark Model: KT Model
Firms: Decision and Timing

1 Each period, firm j inherits its capital stock from previous periods’
investments.

2 After observing the two productivity shocks, each firm hires labor from
a perfect competitive labor market, and produces output.

3 After production, the firm invests in capital for the next period. Gross
investment, ijt , yields:

kjt+1 = (1− δ)kjt + ijt (5)

where δ is the depreciation rate of capital (which is assumed to be
homogeneous among the firms).
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Benchmark Model: KT Model
Firms: Investment Decision

1 If ijt
kjt
∈ [−a,a], the firm does not pay any fixed adjustment cost.

2 On the contrary, when ijt
kjt

/∈ [−a,a], the firm must pay a fixed ad-
justment cost, ξjt , measured in labor units.

3 Hence, the parameter a governs a region around zero investment,
within which firms do not incur the fixed cost.

4 ξjt is uniformly distributed in the interval [0, ξ], and is i.i.d over firms
and time.
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Benchmark Model: KT Model
Firms: Optimization Problem

1 Following KT, the Bellman equation for the firm is:

v(ε, k, ξ; s) = λ(s) max
l
{ezeεkθlν −w(s)l}

+ max{va(ε, k; s)− ξλ(s)w(s), vn(ε, k; s)} (6)

where s is the aggregate state vector, λ(s) = C(s)−σ.

2 Besides:

va(ε, k; s) = max
k′∈R

[
−λ(s)(k ′ − (1− δ)k) + β E[v̂(ε′ , k ′ ; s′(z ′ , s))|ε, k; s]

]
(7)

vn(ε, k; s) = max
k′∈A

[
−λ(s)(k ′ − (1− δ)k) + β E[v̂(ε′ , k ′ ; s′(z ′ , s))]|ε, k; s

]
(8)

with A = [(1− δ −a)k, (1− δ + a)k], v̂(ε, k; s) = Eξ[v(ε, k, ξ; s)].
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Benchmark Model: KT Model
Firms: Optimization Problem

1 Let ka(ε, k; s) denotes the capital choice from 7, and kn(ε, k; s) the
optimal choice from 8.

2 The firm will pay the fixed cost iff:

va(ε, k; s)− ξλ(s)w(s) ≥ vn(ε, k; s) (9)

3 Hence, there exists a unique value of the fixed cost ξ which makes the
firm indifferent between the two options:

ξ̃(ε, k; s) = va(ε, k; s)− vn(ε, k; s)
λ(s)w(s) (10)

4 To prevent values that could be outside the support of ξ, let define:

ξ̂(ε, k; s) = min{max{0, ξ̃(ε, k; s)}, ξ} (11)
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Benchmark Model: KT Model
Firms: Characterization of v̂(ε, k; s) = Eξ[v(ε, k, ξ; s)]

1 Since the extensive margin decision is characterized by the cutoff 10,
it is possible to compute analytically v̂(ε, k; s):

v̂(ε, k; s) = λ(s) max
l
{ezeεkθlν −w(s)l}+ va(ε, k; s)P(i/k /∈ [−a,a])

−λ(s)w(s)E[ξ1(ξ ≤ ξ̂(ε, k; s))] + vn(ε, k; s)(1− P(i/k /∈ [−a,a]))

2 Note that:

P(i/k /∈ [−a,a]) =
∫ ξ̂(ε,k;s)

0
dF (ξ) = ξ̂(ε, k; s)

ξ
(12)

E[ξ1(ξ ≤ ξ̂(ε, k; s))] =
∫ ξ̂(ε,k;s)

0
ξdF (ξ) = ξ̂(ε, k; s)2

2ξ (13)
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Benchmark Model: KT Model
Recursive Competitive Equilibrium (RCE)

1 The aggregate vector s contains the current draw of the aggregate
productivity shock, z , and the distribution (density) of firms over (ε, k)-
space, g(ε, k).

2 The RCE for KT model consists in a set of functions: (i) v̂, l , ka, kn, ξ̂
depending on (ε, k; s), (ii) λ, w depending on s, and (iii) s′(z ′ ; s) =(
z ′ ; g ′(z , g)

)
such that:

• (Firm opt.) Taking λ, w and s′ as given: l , ka, kn, ξ̂ solve the firm’s
optimization problem (6).

• (Household opt.) For all s:
λ(s) = C(s)−σ, with

C(s) = Eε,k
[
ezeεkθl(ε, k; s)ν − ka(ε, k; s) ξ̂(ε,k;s)

ξ − kn(ε, k; s)
(

1− ξ̂(ε,k;s)
ξ

)]
w(s) satisfies Eε,k

[
l(ε, k; s) + ξ̂(ε,k;s)2

2ξ

]
=
(

w(s)λ(s)
χ

)1/ψ
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Benchmark Model: KT Model
Recursive Competitive Equilibrium (RCE) - Cont.

3

• (Law of motion for distribution) For all (ε′ , k ′):

g
′
(ε
′
, k
′
; z ,m) =

∫ ∫ ∫ 1(ρεε + ηεω
′
ε = ε

′)
×
[
ξ̂(ε,k;s)
ξ

1

(
ka(ε, k; z,m) = k

′)
..

... +
(

1− ξ̂(ε,k;s)
ξ

)
1

(
kn(ε, k; z,m) = k

′)]


×p(ω
′

ε)g(ε, k; m)dω
′

εdεdk
)

(15)

where p is the p.d.f of idiosyncratic productivity shock.

• (Law of motion for aggregate shocks)

z
′

= ρzz + ηzω
′

z (16)
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Computational Method

1 Winberry’s method involves three main steps:
1. Approximation of Infinite-dimensional objects.
2. Computation of Stationary Equilibrium.
3. Local accurate approximation around the stationary equilibrium.

2 Note that steps 2 and 3 are the typical ones when a RA model is solved
using perturbation techniques.

3 In step 1, the two infinite-dimensional objects to approximate are: (i)
firm’s value function v̂(ε, k; m), and (ii) distribution g(ε, k).
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3 In step 1, the two infinite-dimensional objects to approximate are: (i)
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Approximation of infinite-dimensional objects
Cross-section distribution

1 Following Algan, Allais and Haan (2008), Winberry approximates g(ε, k)
using the following parametric family:

g(ε, k) ≈ g0exp{g1
1 (ε−m1

1) + g2
1 (log(k)−m2

1)...

...+
ng∑

i=2

i∑
j=0

g j
i

[
(ε−m1

1)i−j(log(k)−m2
1)j −mj

i

]
} (17)

where ng is the degree of approximation, {g0, g1
1 , g2

1 , 〈{g
j
i }ij=0〉

ng
i=2} are

parameters, and {m1
1,m2

1, 〈{m
j
i}ij=0〉

ng
i=2} are centralized moments of

the distribution.

2 When ng = 2, the approximate function lies in the family of multivariate
Normal distributions.
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Approximation of infinite-dimensional objects
Cross-section distribution

1 The parameter vector g =
{

g0 . . . gng
ng

}
, and the moment vector

m =
{

m1
1 . . . mng

ng

}
have to be consistent with each other. That is,

moments should be implied by the parameters. Thus:

m1
1 =

∫ ∫
εg(ε, k)dεdk

m2
1 =

∫ ∫
log(k)g(ε, k)dεdk (18)

mj
i =

∫ ∫
(ε−m1

1)i−j(log(k)−m2
1)jg(ε, k)dεdk

for i = 1, . . . , ng , j = 0, . . . , i

2 Plugging in the approximate functional form 17 in system 18 results in
a non-linear system on m and g. But, Algan, Allais and Haan (2008)
develop a robust method for solving g given a vector m. Thus, m
completely characterizes the approximated density.
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Approximation of infinite-dimensional objects
Cross-section distribution

1 Using the law of motions 3, 4 and 15, and the approximated density
g(ε, k; m), one can get:

m1′
1 (z ,m) =

∫ ∫ ∫
(ρεε+ ωε

′)p(ωε′)g(ε, k; m)dω′εdεdk

m2′
1 (z ,m) =

∫ ∫ ∫
log(k ′)p(ω′ε)g(ε, k; m)dω′εdεdk (19)

mj′
i (z ,m) =

∫ ∫ ∫
(ρεε+ ωε

′ −m1′
1 )i−jκjp(ω′ε)g(ε, k; m)dω′εdεdk

where
log(k ′) = ξ̂(ε,k;s)

ξ log(ka(ε, k; z ,m)) +
(

1− ξ̂(ε,k;s)
ξ

)
log(kn(ε, k; z ,m))

κj = ξ̂(ε,k;s)
ξ

[
log(ka(ε, k; z ,m))−m2′

1

]j
+
(

1− ξ̂(ε,k;s)
ξ

) [
log(kn(ε, k; z ,m))−m2′

1

]j
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Approximation of infinite-dimensional objects
Cross-section distribution

1 System 19 represents a mapping from the current aggregate state
(z ,m) into the next period moments m′(z ,m).

2 Besides, one can iterate system 19 in order to find the steady-state
values of moment vector, m?.

3 Even though, theoretically, there is no guarantee for the convergence
of a non-linear system like 19, Winberry shows that, in practice, con-
vergence happens.
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Approximation of infinite-dimensional objects
Firm Value Function

1 Winberry approximates firm’s value function with respect to individual
states (ε, k) using orthogonal polynomials. Hence:

v̂(ε, k; z ,m) ≈
nε∑

i=1

nk∑
j=1

ϑij(z ,m)Ti (ε)Tj(k) (20)

where nε and nk are the degree of approximation of individual states ε
and k, respectively. Ti (ε) and Tj(k) are Chebyshev polynomials, and
ϑij(z ,m) are coefficients on those polynomials.
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Approximation of infinite-dimensional objects
Firm Value Function

1 With this approximation, we can obtain a numerical approximation of
Bellman equation (6) using collocation. Let define a set of grid points
{〈εi〉nεi=1, 〈kj〉nk

j=1}.

2 First, equation (7) it is approximated:

va(εi , kj ; z ,m) ≈ −λ(z ,m)(ka(εi , kj ; z ,m)− (1− δ)kj)...
+ β Ez ′|z

[
Eω′ε

(
v̂(ρεε+ ηεω

′
ε, ka(εi , kj ; z ,m); z ′,m′(z ,m))

)]
(21)

3 Now, equation (8):

vn(εi , kj ; z ,m) ≈ −λ(z ,m)(kn(εi , kj ; z ,m)− (1− δ)kj)...
+ β Ez ′|z

[
Eω′ε

(
v̂(ρεε+ ηεω

′
ε, kn(εi , kj ; z ,m); z ′,m′(z ,m))

)]
(22)
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Approximation of infinite-dimensional objects
Firm Value Function

1 Thus, the numerical approximation of equation (14) is:

v̂(εi , kj ; z ,m) = λ(z ,m) max
l
{ezeεi kθj lν −w(z ,m)l}...

+ ξ̂(εi , kj ; z ,m)
ξ

(
ṽa(εi , kj ; z ,m)− λ(z ,m)w(z ,m) ξ̂(εi , kj ; z ,m)

2

)

+ṽn(εi , kj ; z ,m)
(

1− ξ̂(εi , kj ; z ,m)
ξ

)
(23)

where ṽa(.) and ṽn(.) are the right-hand side of equations (21, 22),
respectively.
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Approximation of infinite-dimensional objects
Approximated Equilibrium Conditions

1 The last step of first stage is to approximate the equilibrium conditions.
Winberry shows that these approximated eq. conditions may be written
as a system of 2nεnk + ng + 2 + ng + 1 equations.

2 Let {τ εi , ωεi }
mε
i=1 denote the weights and nodes of the one-dimensional

Gauss-Hermite quadrature used to approximate:
Eω′ε (v̂(ρεε+ ηεω

′
ε, kq(εi , kj ; z ,m); z ′,m′(z ,m))) for q = a, n.

3 Hence:

Eω′ε
(
v̂(ρεε+ ηεω

′
ε, kq(εi , kj ; z ,m); z ′,m′(z ,m))

)
= ...

...
mε∑

o=1
τ εo

nε∑
p′=1

nk∑
r ′=1

ϑ
′
p′r ′Tp′(ρεεi + ηεω

ε
o)Tr ′(kq(εi , kj))

(24)

where ϑ′p′r ′ = ϑp′r ′(z ′,m′(z ,m)).
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Approximation of infinite-dimensional objects
Approximated Equilibrium Conditions

1 Thus, equation (23) can be written as follows:

E

 nε∑
p=1

nk∑
r=1

ϑpr Tp(εi )Tr (kj)− λ(ezeεi kθj l(εi , kj)ν −wl(εi , kj) + (1− δ)kj)...

+ ξ̂(εi , kj)
ξ

(λ(ka(εi , kj)−w
ξ̂(εi , kj)

2 )) +
(

1− ξ̂(εi , kj)
ξ

)
λkn(εi , kj)...

− β ξ̂(εi , kj)
ξ

mε∑
o=1

τ εo

nε∑
p′=1

nk∑
r ′=1

ϑ
′
p′r ′Tp′(ρεεi + ηεω

ε
o)Tr ′(ka(εi , kj))...

−β
(

1− ξ̂(εi , kj)
ξ

) mε∑
o=1

τ εo

nε∑
p′=1

nk∑
r ′=1

ϑ
′
p′r ′Tp′(ρεεi + ηεω

ε
o)Tr ′(kn(εi , kj))

 = 0

(25)

for the collocation nodes i = 1, ..., nε and j = 1, ..., nk .
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Approximation of infinite-dimensional objects
Approximated Equilibrium Conditions

1 The optimal labor demand is given by the FOC:

νezeεkθlν−1 −w(s) = 0

Its numerical version, for the grid {εi , kj}, is:

l(εi , kj) =
(
νezeεi kθj

w

) 1
1−ν

(26)
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Approximation of infinite-dimensional objects
Approximated Equilibrium Conditions

1 The optimal capital decision in case the firm assumes the fix cost is
given by the FOC:

−λ(s) + β
∂

∂k ′ E[v̂(ε′ , k ′ ; s′(z ′ , s))|ε, k; s] = 0

Its numerical version, for the grid {εi , kj}, is:

E

λ− β mε∑
o=1

τ εo

nε∑
p′=1

nk∑
r ′=1

ϑ
′
p′r ′Tp′(ρεεi + ηεω

ε
o)T ′r ′(ka(εi , kj))

 = 0

(27)
where T ′r ′(ka(εi , kj)) = ∂

∂ka Tr ′(ka(εi , kj))
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Approximation of infinite-dimensional objects
Approximated Equilibrium Conditions

1 The optimal capital decision in case the firm does not assume the fix
cost is:

kn(εi , kj) =


(1− δ + a)kj , if ka(εi , kj) > (1− δ + a)kj

ka(εi , kj), if ka(εi , kj) ∈ [(1− δ −a)kj , (1− δ + a)kj ]
(1− δ −a)kj , if ka(εi , kj) < (1− δ −a)kj

(28)

Perturbation and HA Models 28 / 84



Approximation of infinite-dimensional objects
Approximated Equilibrium Conditions

1 The numerical version of optimal threshold ξ̃(εi , kj ; z ,m) is:

ξ̃(εi , kj) = 1
wλ

[−λ(ka(εi , kj)− kn(εi , kj))...

+β
mε∑

o=1
τ εo

nε∑
p′=1

nk∑
r ′=1

ϑ
′
p′r ′Tp′(ρεεi + ηεω

ε
o) (Tr ′(ka(εi , kj))− Tr ′(kn(εi , kj)))


(29)

2 And, the numerical version of the bounded threshold is defined:

ξ̂(εi , kj) = min{max{0, ξ̃(εi , kj)}, ξ} (30)
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Approximation of infinite-dimensional objects
Approximated Equilibrium Conditions

1 Now, let {τg
i , 〈εi , ki〉}

mg
i=1 denote the weights and nodes of the two-

dimensional Gauss-Legendre quadrature used to approximate the inte-
gral with respect to the distribution.

2 Then, household optimization condition may be written as follows:

λ−
( mg∑

h=1
τg

h

[
ezeεhkθh l(εh, kh) + (1− δ)kh ...

− ξ̂(εh, kh)
ξ

ka(εh, kh)−
(

1− ξ̂(εh, kh)
ξ

)
kn(εh, kh)

]
g(εh, kh|m)

)−σ
= 0

(31)
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Approximation of infinite-dimensional objects
Approximated Equilibrium Conditions

1 And, the numerical version of optimal labor supply choice is:
(
wλ

χ

) 1
ψ

−
mg∑
h=1

τg
h

[
l(εh, kh) + ξ̂(εh, kh)2

2ξ

]
g(εh, kh|m) = 0 (32)

with

g(εi , kj |m) = g0exp{g1
1 (ε−m1

1) + g2
1 (log(k)−m2

1)...

...+
ng∑

iε=2

iε∑
jk=0

g jk
iε

[
(εi −m1

1)iε−jk (log(kj)−m2
1)jk −mjk

iε

]
}
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Approximation of infinite-dimensional objects
Approximated Equilibrium Conditions

1 The approximated law of motion for the distribution, based on equation
(19), will be:

0 = m1′
1 −

mg∑
h=1

τ
g
h

mε∑
o=1

τ
ε
o (ρεεh + ηεω

ε
o )g(εh, kh|m)

0 = m2′
1 −

mg∑
h=1

τ
g
h

mε∑
o=1

τ
ε
o

[
ξ̂(εh, kh)

ξ
log(ka(εh, kh)) +

(
1−

ξ̂(εh, kh)
ξ

)
log(kn(εh, kh))

]
g(εh, kh|m) (33)

0 = mj′
i −

mg∑
h=1

τ
g
h

mε∑
o=1

τ
ε
o

[
(ρεεh + ω

ε
o − m1′

1 )i−j
κ̃j
]

g(εh, kh|m)

where

κ̃j =
ξ̂(εh, kh)

ξ

[
log(ka(εh, kh))− m2′

1

]j
+
(

1−
ξ̂(εh, kh)

ξ

)[
log(kn(εh, kh))− m2′

1

]j
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Approximation of infinite-dimensional objects
Approximated Equilibrium Conditions

1 And, the approximated moment consistency system, based on equation
(18), will be:

0 = m1
1 −

mg∑
h=1

τ g
h εhg(εh, kh|m)

0 = m2
1 −

mg∑
h=1

τ g
h log(kh)g(εh, kh|m) (34)

0 = mj
i −

mg∑
h=1

τ g
h

[
(εh −m1

1)i−j (log(kh)−m2
1
)j] g(εh, kh|m)

for i = 2, ..., ng ; j = 0, ..., i

2 Finally, the law of motion for the aggregate productivity shock is:

E[z ′ − ρzz ] = 0 (35)
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Approximation of infinite-dimensional objects
Approximated Equilibrium Conditions

1 Therefore, it is straightforward to see that equations (23), (27), (31),
(32), (33), (34) and (35) defines a system of 2nεnk + ng + 2 + ng + 1
equations.

2 All these equation can be defined as a mapping f (y′, y, x′, x; η) such
that:

E[f (y′, y, x′, x; η)] = 0 (36)

where y =
{
ϑ, ka, g, λ,w

}
is the control variables vector and x ={

z ,m
}

, the state variables vector. η represents the perturbation pa-
rameter, and ka denotes the target capital stock along the collocation
grid.
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grid.
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Computation of Stationary Equilibrium

1 It can be noted that equation (36) has the canonical form studied by
Schmitt-Grohe and Uribe (2004).

2 Then, stationary equilibrium can be computed from:

f (y?, y?, x?, x?; 0) = 0

3 In principle, the above non-linear system can be solved using some
root-finding algorithm. However, in practice, such system is quite large
that numerical solvers fail to converge usually.

4 Winberry’s method for solving the stationary equilibrium is similar to
the developed by Hopenhayn and Rogerson (1993).
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Computation of Stationary Equilibrium
Algorithm

1 Winberry’s algorithm solves for w? which clears labor market. Labor
demand can be computed in the following way:

1 Guess a value for equilibrium wage, w0.

2 Given w0, compute firm’s value function ϑ0 by iterating on Bellan equa-
tion (23).

3 Using firm’s decision rules, compute invariant distribuion m? by iterating
on (33).

4 Finally, aggregate individual firms’ labor demand:

LD =
∫ (

l(ε, k) + ξ̂(ε, k)2

2ξ

)
g(ε, k)dεdk

2 Labor supply can be computed from: LS =
(
w0λ0

χ

)1/ψ

where λ0 may be computed using C0 = Y 0 − I0
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Local accurate approximation around the stationary
equilibrium

1 Once steady state vector, (y?, x?), is computed, it may be applied a
Taylor expansion around such value in order to compute the aggregate
Dynamics.

2 Like Schmitt-Grohe and Uribe (2004), it is assumed a solution of the
form:

y = g(x; η)
x′ = h(x; η) + η × φω′z

where φ = (1, 0ng×1)′.
3 Then, a first order Taylor approximation around steady-stat yields:

g(x; 1) ≈ gx(x?; 0)(x− x?) + gη(x?; 0)
h(x; 1) ≈ hx(x?; 0)(x− x?) + hη(x?; 0)(1− 0) + φω′z (37)
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