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How CPUs and GPUs work
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How CPUs and GPUs work

I begin by providing an idea how GPUs work relative to CPUs to

facilitate the decision which GPU to buy.

understand which types of problems can be better solved by GPUs.

understand how to program these problems.
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The structures of CPUs and GPUs

CPUs and GPUs share similar features: they have cores that access
data from cache and from a global memory.

CPUs are designed to run a series of tasks quickly and many
transistors are used for cache management as cache bandwidth is
much more favorable than reading data from the global memory.

GPUs are designed to run many (limited) tasks in parallel and most
transistors are used for arithmetic operations leading to a large
number of computing cores.

The market provides different GPUs. NVIDIA has the big advantage
that it provides an easily implementable programming language,
CUDA, which I will be using.
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CPUs and GPUs

Source: NVIDIA programming guide
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An example to get excited

My desktop computer has an Intel i9-13000 processor and a NVIDIA
GeForce RTX 4090. In 2023, this was the upper end for a commercial
(gaming) computer.

The processor has 24 cores providing 845 GFLOPS (845 billion
operations per second) of computing power with single precision.

The graphic card has 16384 cores providing 82.6 TFLOPS of
computing power!

One may think that this ends any discussion, however, unfortunately,
FLOPS do not really matter any longer.
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The issue of memory bandwidth (CPU)

Loading data from the central memory is slow. My processor has a
maximum memory bandwidth of 89.6 GB/second of data. A
single-precision piece of data is 4 bytes leading to 22.4 GB of data
observations. To keep the CPU busy, you need to do

Required compute intensity =
FLOPs

Data rate
= 37.7 (1)

operations to each data point.
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The issue of memory bandwidth (GPU)

Things are worse with the GPU. My GPU has a maximum memory
bandwidth of 1008(!) GB/second of data leading to 252 GB data
observations. To keep the GPU busy, you need to do

Required compute intensity =
FLOPs

Data rate
= 329 (2)

operations to each data point.

Wellschmied (UC3M) GPU Computing 8 / 58



The issue of memory latency

The memory bandwidth is the maximum amount of data that can be
loaded from the central memory.

Most steps of an algorithm require much less than the maximum
bandwidth.

As memory needs to physically travel on the chip, there is a minimum
of time even a small memory transfers takes.

The time the processor is waiting for the data to arrive before it can
start working is called memory latency.
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An example of memory latency

Assume that the memory latency is 300ns and part of your algorithm is to
add a single-precision vector to another vector:

for (int i = 1;i < N; i++){
x [i ] = x [i ] + y [i ];

}

To perform each arithmetic, the processor reads 8 bytes in 300ns.

My memory bandwidth allows me to transfer 302400 bytes in 300ns.

I am using only 0.003% of my memory bandwidth at each stage of the
loop.
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Two ways to address the issue

CPU: have low latency and be very efficient in memory processing.

GPU: run a lot of arithmetic operations in parallel. In the before
example, running 38500 computations in parallel allows us to use the
entire memory bandwidth.
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What the CPU does

When x and y are sufficiently short, their size is small enough to copy
them at the beginning of the loop to the processor cache (I have 36
MB) from where latency is much shorter.

Moreover, your compiler is smart and performs so called loop
unrolling for you. Loop unrolling loads several elements of the loop at
once (if they can be handled independently) by altering their register
entries, then performs for those elements the calculations, and finally
stores the results. However, the CPU can only keep track of a few
concurrent calculations (it has a small register).

for (int i = 1;i < 5; i++){
x [i ] = x [i ] + y [i ];

}

is very efficient on the CPU.
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What the GPU does

The GPU schedules a large number of parallel threads that each do
the computation for one element of the vector independently.

A thread is scheduled and requests data, a second thread is scheduled
and requests data, ...

My GPU has 128 streaming multiprocessor units (SMU) each with
256kb of register, giving me 32.8 MB of outstanding load data.

for (int i = 1;i < 107; i++){
x [i ] = x [i ] + y [i ]; (3)

for (int i2 = 1;i2 < 30; i2++){
x [i ] = x [i ] + 5.0;

}
}

Wellschmied (UC3M) GPU Computing 13 / 58



Threads and SMUs

By design, a SMU always runs threads in blocks of 32 (in case of
NVIDIA) called a warp. The maximum number of threads per SMU is
for most GPUs 1024, i.e., 32 warps.

Threads within an SMU have access to some shared cache memory
(L1) which the user can manage.

There is further L2 cache available across SMUs as well as the global
memory.
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Where to get the data from

Source: How GPU computing works

Obviously, using data in the cache is most efficient. As the fastest
cache is only shared within SMUs, it will matters how you set up your
threads.

Transferring data from the CPU memory to the GPU memory is
extremely slow! You want to run your entire code (segment, e.g.,
value function iteration) on the GPU. My GPU has 24GB of memory.
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https://www.youtube.com/watch?v=3l10o0DYJXg


Threads in CUDA

Source: NVIDIA programming guide

In CUDA, you control how many SMUs are working and how many
threads they run.

Usually, the number of threads is defined in multiples of 32.

A block contains the threads and resides on a SMU, e.g., if you define
fewer blocks than you have SMUs, you waste resources.

Together, threads and blocks make up what is called a grid. Your
total number of threads is Nthreads ∗ Nblocks .
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Getting started with GPU
computing
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GPU programming in high-level languages

I will discuss how to use C++ to implement GPU computing.

However, higher-level languages have also introduced GPU computing
without the need to write C++ code.

I will briefly discuss the use of Matlab and Julia.
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GPU computing implemented in Matlab

Matlab allows you to do GPU computing without writing CUDA code.

You have to write the code such that a particular operation is done to
each element in an array. Matlab than solves the code for each array
element in parallel.

For me, there is not enough flexibility. As explained, you only gain
speed if an entire code section runs on the GPU, and I find it
impossible to write complex code in the way required by Matlab, e.g.,
you have to use a lot of meshgrids.

Also, this is somewhat a black box. E.g., I don’t know how Matlab
decides on the thread and block structure.

The VFI toolkit provides a standardized toolkit for some applications
of value function iteration.
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https://nl.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
https://www.vfitoolkit.com/


GPU computing implemented in Julia

Julia appears to provide an easily implementable way to use the GPU
and provides significantly more flexibility than Matlab without writing
CUDA/C++ code.

As I understand it, you can specify the thread and block structure as
with C++.

As I understand it, you can even use shared memory.

Here you can find an example for value function iteration.

Hence, if you already use Julia, you may prefer to forget about
CUDA. However, to me, the syntax does not appear significantly
simpler than the CUDA/C++ syntax. Moreover, you are restricted to
float instead of double precision.
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https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://cuda.juliagpu.org/stable/api/kernel/
https://floswald.github.io/html/vfi.html


Using Matlab as a wrapper

Personally, I like using Matlab as a wrapper. To me, having an
interpreted language helps me in debugging and looking at my results.
Hence, I will first explain how to imbed CUDA code into Matlab and
afterward how to write a self-contained CUDA/C++ program.

First, type gpuDevice into your Matlab command window. This
should list your available GPU(s).
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Requisites

Make sure you have the latest driver installed for your GPU.

All my descriptions use Windows as operating system, and you need
to have Visual studio installed. When installing, make sure to install
C++ for the desktop environment.

Next, install the latest CUDA environment that is suitable for your
GPU’s microarchitecture. For example, my GPU uses the Ada
Lovelance architecture.

CUDA is also available for Fortran instead of C++ but only on Linux.
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https://visualstudio.microsoft.com/es/downloads/
https://developer.nvidia.com/cuda-downloads
https://en.wikipedia.org/wiki/CUDA


A brief note on indexing

You may be accustomed to use multi-dimensional arrays in your codes.

If you think about the computer memory, this is just a very long line
of blocks, each with an index.

Basic C++ only knows one-dimensional arrays (there exist libraries
for multi-dimensional arrays) and linear indexing.

Matlab uses 1-indexing, meaning A(1) given you the first entry in an
array.

C++ uses 0-indexing meaning A[0] given you the first entry in an
array.
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A brief note on variable definitions

Matlab allows you to be “quick and dirty” with variable definitions,
e.g., a variable can starts as double precision and become an integer:

V = 5;
V = V * int32(1);

In C++ you have to be more specific and define your variables.

int V = 5;
float V = 5.0;
double V = 5.0;
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A brief note on pointers

When you pass a variable in Matlab to another function, you “pass it
by value”, e.g.,

V = 5; f = myFun(V )
tells your function the value of V . Within the function, Matlab will
make a copy of V on a free memory block. Hence, you can change
the value of V :

V = V + 1;
and, as long a you do not explicitly pass it back, once the function
has run, V has still its original value 5.

When we will pass variables to our CUDA code, we will usually “pass
them by pointer” meaning we just pass an index on the memory
where the variable begins. When our CUDA code changes the value
on that memory block, the value will change permanently.
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Setting up your first function

In Visual studio, open a new text file (no project needed) and call it
matmul .cu.

Usually, you want to include some math library. You do so by having
on top a: #include < math.h >.

Next, you want to write your main code on the GPU (the device)
which is called a kernel:

global void myFun(Some inputs){
Some code

}
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Threads and blocks

Let us say we want to compute C = A ∗ B.
The idea is to have for each element in C, cij , a thread that multiplies
the ith row of A with the jth column of B.

For that, you need to define the thread that does that operation. To
identify threads, CUDA uses 3 dimensional vectors taking the form

dim3 numBlocks(xdim, ydim, zdim);

dim3 threadsPerBlock(xdim2, ydim2, zdim2);

You can think of your threads and blocks as 3-dimensional objects.
For example,

dim3 numBlocks(3, 3, 3);

dim3 threadsPerBlock(2, 2, 2);

generates 8 threads per block and 27 blocks.
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Threads and blocks II

Source: NVIDIA programming guide

The picture shows a 2-dim example with blockdim [3, 2] and
threaddim [4, 3] (remember, 0-indexing).

Each block, has always the same thread structure.
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Threads and blocks III

This way of organizing things facilitates working with up to 3-dimensional
arrays (if you have more dimensions, you need to stack them). To identify
the threads, CUDA uses the build-in blockIdx , blockDim and threadIdx
variables and translates them to the linear memory grid with 0-indexing:

int COL = blockIdx .x ∗ blockDim.x + threadIdx .x ;

int ROW = blockIdx .y ∗ blockDim.y + threadIdx .y ;

int PAGE = blockIdx .z ∗ blockDim.z + threadIdx .z ;

Careful, in Matlab, the first dimension is the ROW dimension, and Matlab
vectorizes your arrays going down column by column.
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Threads and blocks IV

Here, I have 9 threads in each block (3x3).

I have for the x dimension of the block N x and for the y dimension
N y .

This is only for better understanding. Remember, everything will be
on a linear line.
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Three code examples

I will now discuss three code examples:

1 Matrix multiplication which has some nice features.

2 Value function iteration with on-grid-search.

3 Value function iteration with Golden section search.

I will always display only some code highlights. You can find the complete
codes on my homepage.
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Matrix multiplication CUDA code

Reading in data:

const tells the program that the value cannot be altered.

∗ means the variable is passed by pointer and not by value.

As we work with matrices, I use a 2-dimensional kernel.
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Matrix multiplication CUDA code II

We could launch more threads than points in the state space. The
first “if” condition makes sure that those threads remain idle.

COL ∗ row a+ ROW is the entry in the C vector. Again, pay
attention to the Matlab indexing. E.g., entry 2 in the vector (index 1)
has to be column 1, row 2.
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The Matlab code

Note, I convert the matrices into vectors.

For the indexes denoting matrix sizes, I have to explicitly tell Matlab
that these are integers, Otherwise, it initializes these as doubles.
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The Matlab code II

The command gpuArray copies the data from the CPU memory to
the GPU main memory.

We have to specify three things for our kernel:

The name of the CUDA file: matmul .cu.
The number of threads per block in each dimension: [4 3 1].
The number of blocks in each dimension: [1 1 1].

Matlab wants to know which variable(s) to read back: [C].

Wellschmied (UC3M) GPU Computing 35 / 58



Compiling your code

We still need to use Visual studio to compile our CUDA code.

For this, go to Tools → Command line → Developer PowerShell.

Using cd myDirectory, direct to the folder where you saved your .cu
file.

CUDA provides you with a compiler, nvcc. You have to locate it in
your Visual Studio. For VS22, I have it at
C:\ [...] \VC\Tools\MSVC\14.35.32215\bin\Hostx64\x64
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Compiling your code II

Matlab requires the parallel thread execution file .ptx , so you have to
tell your compiler to create it.

Finally, you copy your .cu and .ptx file into the folder with your
Matlab code.
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The C++ code

You can also write a self-contained C++ code.

In VS, open a new project and select a CUDA project. This will
generate a kernel .cu file which will be your main file.

In C++, you need to define all sub-programs first.

Then follows the main code which you can start with int main().
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The C++ code II

We first need to allocate memory on the GPU. For that we need to
determine the size of the matrices.

Next, we use cudaMemcpy to copy the matrix from the CPU to the
GPU memory.
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The C++ code III

Next we define the size of threads and blocks. Here, I use again a
two-dimensional grid.

Running the code uses <<< ... >>> to define the kernel size.

Finally, we copy the results back to the CPU memory and print them
to the screen.
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Programing with shared memory

Note, different threads read the same elements of A and B to
calculate C . E.g., to calculate C (2, 2) and C (2, 3), both threads read
the second row of A.

Loading that row from the global memory once to the L1 cache would
be much faster than reading it each time from the global memory.

In our case, all threads reside on the same SMU, and A and B are
small, hence, the compiler might well have copied those to the cache
automatically.

However, we can also explicitly ensure this. Moreover, with larger
matrices, we will need more than one block, and it will matter which
parts of C which block computes.
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Programing with shared memory II

Assume I set up a 16x16 thread block to compute a block of C , e.g.,
Csub.

As A has more rows than 16, I will have to partition the relevant parts
of A which I will call tiles.

The idea will be to loop over these tiles, and within the loop each
thread reads one piece of data from A and B to the shared memory.
Finally, each thread does the vector multiplication for that tile.
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Simple matrix multiplication III

Understanding the benefits of shared memory:

Each thread in a tile will read two data items from the global memory
to the shared memory. This happens basically in parallel.

It will then multiply two vectors of size 16. This is key, we have
increased the number of arithmetic operations relative to memory
load.

Finally, it will store the result in the global memory.
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Matlab code

A has dimension 512x512, and B has dimension 512x768. This
requires more threads than 1028.

I will use 16x16 thread blocks, meaning I petition A into 512
16 = 32

tiles.

To cover the entire problem, I need 1536 blocks which I also organize
in the x–y dimensions.
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CUDA code

I begin by reading in indexes.

I have to allocate memory space in the cache. The amount of
memory needed is 162 times the size of a double variable.

Unfortunately, I cannot figure out to pass in C++ an index (e.g., 16)
to a function that uses this index to initialize the size of an array.
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CUDA code II

i1 is the index for the number of tiles I have to loop over.

Within each loop, I load to a and b the relevant entries from A and B.

I have to make sure that all threads have loaded the data before using
it. syncthreads(); assures this.

Then I do matrix multiplication for tile i1.
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Value function iteration

Consider a simple household problem, where the household chooses assets
given an exogenous interest rate r :

V (a, ϵ) = max
c,a′

{
ln(c) + βEV (a′, ϵ′)

}
c + a′ = ϵ+ a(1 + r)

a′ ≥ a

πjk(ϵ
′ = ϵj |ϵ = ϵk)
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Value function iteration II

I solve the problem using on grid optimization.

I use only 330 asset states and 3 productivity states. This way, I can
use shared memory very efficiently.

I can have abs(Vnew − Vold) in shared memory, thus, the loop can be
inside the kernel.
I have Vold in shared memory making updating fast.

This serves expositional purposes to give an example of shared
memory. 330 asset states with on grid search are obviously very few.
With more grid points, I will have to use the global memory.
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CUDA code

Note, I declare distance and V as shared memory. Each thread writes
one element of the initial guess (Vold) into V .

To make sure that V is filled up before proceeding, I use
syncthreads();.
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CUDA code II

Now I simply compute for each thread one update of the value
function as well as the distance to the old value function.

Note, the utility of each choice (3rd dimension) given the states (util)
was already computed in Matlab.
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CUDA code III

After each thread finished, I have to evaluate for each thread whether
the overall value function has converged.

This may seem inefficient as all threads compute the same thing. As
it is in shared memory, it is not particularly costly.
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Golden Section Search

Another example where shared memory can be useful is Golden Section
Search:

The asset (capital) grid usually < 1024 making shared memory
feasible.

The algorithm accesses frequently the expected value function and
the asset grid.

Hence, the following preparatory steps are natural:

1 Use as number of threads the length of the asset grid. Use blocks to
fill out the other dimensions (my example has productivity).

2 Each thread computes the expected value function and reads it into
shared memory.

3 Each thread reads the asset grid into shared memory.
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CUDA code

My asset grid has 128 points, so I have to preallocate memory for this.

Each thread (here the ROW), computes the expected value function.
COL is given by the block. Moreover, it simply copies the agrid into
shared memory.

Note, the speed gain does not arise from pre-computing the expected
value function instead of having each thread compute it multiple times
in the algorithm. The gain comes from having faster memory access.

I obtain speed gains of about 20%.
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Matlab code

My value function has dimension assets x productivity (128x30).

The number of asset points is in the y–dimension of threads.

The number of productivity points is in the x–dimension of blocks.
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When is VFI fast on the GPU

In general, a large state space favors the GPU, as long as each states
takes about the same computing time, as all states can be solved in
parallel.

Algorithms that increase the arithmetic to memory load favor the
GPU. For example, Golden Section Search is much faster on the
GPU, particularly with non-linear interpolation.

Higher order interpolation, for example, when doing off-grid search in
multiple dimensions, also favors the GPU. A model with two dynamic
states can quickly become non-feasible on the CPU but may remain
feasible on the GPU.
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Splitting up your problem

Sometimes, even sequential problems can be split-up into parallel
problems. Take as example exploiting the monotonicity of the policy
function.

Assume we have an endogenous state a and an exogenous state X (X
could be multi dimensional) and we look for the policy a′ = f (a,X ).

If X is small, probably the best you can do is solve the optimal policy a
by solving it for each X separately on a CPU core.
If X is large, you can solve for a′(a(1),X ) using the GPU for each X
and then use the policy a′(a(1),X ) to do the same for a′(a(2),X ), i.e.,
loop over a.

Another obvious example are panel Monte Carlo simulations where for
each period, you can use the GPU to simulate individuals.
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So, when to use the GPU?

You have a problem that can be parallelized for many grid points!

For each grid point, the problem takes about the same time.

The arithmetic to memory load is relatively high.

You can avoid transfer between CPU and GPU memory.
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Obtaining optimal GPU performance is tedious

Linear indexing high-dimensional objects may be error prone and
tedious to debug. However, all my codes share those features:

In Matlab, I have to vectorize, stack, and reshape my arrays all the
time leading to errors and tedious debugging.
With Fortran (C(++)) .mex files, the gateway code between Matlab
and your Fortran code is annoying and debugging is terrible.
When doing everything in Fortran (or C++ with a matrix library), I
lose the advantages of interpreted code.
Julia may give the best mix as vectorization is not needed and
just-in-time compiling gives you the advantage of an interpreted
language. However, to obtain Fortran (C++) speed, you appear to
have to write code that looks very similar in complexity to C++ code.

In many problems, you can achieve speed gains even without deeply
thinking about memory access and, thus, making the C++ code
relatively easy to write.
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