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We study the continuity and robustness of the Bayesian equilibria of Tullock contests with
incomplete information. We show that the Bayesian equilibrium correspondence is upper
semicontinuous. We identify conditions under which the Bayesian equilibrium
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1 Introduction

In a contest, a group of individuals compete for a prize by exerting effort. In a Tullock
contest the probability that an individual wins the prize is a non-decreasing function
of the effort he exerts (see Tullock 1980). In many economic environments, Tullock
contests arise either naturally or by design. Baye and Hoppe (2003), for example,
have identified conditions under which a variety of rent-seeking contests, innovation
tournaments, and patent-race games are strategically equivalent to a Tullock contest.
Most of the extensive literature studying the outcomes generated by Tullock contests
focuses on the complete information case — see, for example, Nitzan (1994), Skaperdas
(1996), Clark and Riis (1998), Konrad (2008), Fu and Lu (2012), and Fu et al
(2015). Recently, however, the literature has turned to study the equilibria of Tullock
contests with incomplete information, as well as the impact of changes in the players’
information endowments on equilibrium outcomes — see, for example, Wasser (2013),
Einy, Moreno, and Shitovitz (2017), and Aiche et al. (2018 and 2019).

A Tullock contest is identified by the players’ value for the prize, their cost of
effort, and the impact of effort on the probability of winning the prize. When play-
ers have complete information about these attributes, a Tullock contests defines a
complete information game. The Nash equilibria of this game are the equilibria of
the contest. Szidarovszky and Okuguchi (1997), Cornes and Hartley (2005), Ya-
mazaki (2008) and Chowdhury and Sheremeta (2009) have studied the existence and
uniqueness of equilibria in Tullock contests with complete information. When players
are uncertain about either of these attributes, a Tullock contests defines a Bayesian
game. The Bayesian(-Nash) equilibria of this game are the Bayesian equilibria of the
contest. Einy et al. (2015), Einy, Moreno, and Shitovitz (2017), and Ewerhart and
Quartieri (2018) have studied the existence and uniqueness of Bayesian equilibrium in
Tullock contests with incomplete information. The purpose of this paper is to study

the continuity and robustness of the equilibrium correspondence of Tullock contests.



Following this literature, we restrict attention to pure strategy equilibria.

We focus on the behavior of the Bayesian equilibrium correspondence of Tullock
contests with incomplete information. We describe players’ uncertainty by a probabil-
ity space and represent the information of each player about the state by a o-subfield
of the field describing players’ uncertainty. We study the equilibrium response to per-
turbations on the players’ information endowments, as well as their state-dependent
values, costs of effort, and probabilities of winning the prize. We use the Boylan
pseudometric to measure the distance between information fields. Einy et al. (2005
and 2008) have followed this approach to study the continuity properties of the core
of an economy with differential information, and those of the value of zero-sum games
under incomplete information, respectively.

It is well known that for general games with incomplete information the Bayesian
equilibrium correspondence is usually not continuous. For example, Milgrom and
Weber (1985) and Cotter (1991) have shown that it is not upper semicontinuous,
whereas Monderer and Samet (1985) have shown that it is not lower semicontinuous.
Moreover, even a strict Nash equilibrium of a game with complete information may
not be approachable by equilibria of variations of the game in which the players have
only minimal incomplete information — see Carlsson and Van Damme (1993). Further,
Kaji and Morris (1997) have shown that even the unique strict Nash equilibrium of
a complete information game may not be robust to incomplete information.

We show that the Bayesian equilibrium correspondence of Tullock contests is well
behaved. Specifically, if a sequence of Tullock contests converges to another Tullock
contest, then any limit point of a sequence formed by equilibria of this sequence of
contests must be an equilibrium of the limiting contest, i.e., that the Bayesian equilib-
rium correspondence of Tullock contests is upper semicontinous. When the limiting
contest has a unique equilibrium, we identify conditions that assure the existence of
subsequences of equilibria of the sequence of contests converging to the unique equi-

librium of the limiting contest, i.e., that the Bayesian equilibrium correspondence of
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Tullock contests with a unique equilibrium is lower semicontinous. Finally, we demon-
strate that if a Tullock contests has a unique Bayesian equilibrium, then any Tullock
contest sufficiently close (i.e, whose attributes as sufficiently similar) must have a
Bayesian equilibrium close to this unique equilibrium. In other words, we show that
the unique Bayesian equilibrium in Tullock contests with incomplete information is

necessarily robust.

2 Tullock Contests with Incomplete Information

In a Tullock contest, a group of players N = {1,...,n}, with n > 2, compete for a
prize by simultaneously choosing the effort they exert. Players are uncertain about
the realized state of nature. This uncertainty is described by a probability space
(Q, F, i), where Q is a countable set of states of nature, F is a o-field of subsets
of ©, and p is a probability measure on (2, F) representing the players’ common
prior belief. The private information of each player ¢ € N is described by a o-
subfield of F, which we denote by F;. Since () is countable, every o-subfield of F
is generated by the atoms of a countable partition of 2. Thus, player 7 observes the
atom containing the realized state of nature of the partition of {2 that generates F;.
The value for the prize of each player i € N is an F-measurable random variable
Vi : 2 — R, . The cost of effort of each player ¢ € N is given by a state-dependent
function ¢; : 2 x Ry — Ry, such that for each x € R, the function ¢;(-, z) is F-
measurable. The prize is awarded to the players in a probabilistic fashion, using a
contest success function p : @ x R? — A", where A" is the n-simplex, such that
for each z € R’ the function p(-,z) is F-measurable. Thus, a Tullock contest with

incomplete information is formally represented by a collection

T = (N,(Q,F, 1), {Fitien,{Vitien, {ci tien, p).



A Tullock contest T" defines a Bayesian game in which the set of actions of each player

i € N is Ry and his payoff for each w € 2 and z € R} is
ui(w7$) = pz(w7x)‘/l(w) o ci(c")?xi)'

In this game, a pure strategy for player i € N is an F;-measurable and integrable
function X; : 2 — R, which describes ¢’s choice of effort in each state of nature.
(The measurability restriction implies that player i can condition his effort only on
his private information.) We denote by S; the set of strategies of player i, and by
S = xI_,S; the set of strategy profiles. Given a strategy profile X = (Xi,..., X,,) € S
we denote by X _; the profile obtained from X by suppressing the strategy of player
i.

If Y is an F-measurable random variable and G is a o-subfield of F, we denote by
E[Y | G] a random variable which is (a version of) the conditional expectation of ¥’
with respect to G — see, e.g., Borkar (1995) for a formal definition. Also, for any two
random variables Y and Z, we write Y = Z, Y > Z or Y > Z when each of these
relations hold almost everywhere on 2.

A pure strategy Bayesian equilibrium of a Tullock contest T is a Bayesian Nash
equilibrium of the Bayesian game defined by the contest; that is, it is a strategy

profile X = (X1, ..., X,,) such that for every i € N and every X/ € S;,
Elui(-, X ()] 2 Elui(-, X (), Xi ()], (1)
or equivalently,
Elui(-, X (1)) | Fi] = Blui(-, X (1), X; (-)) | Fi] (2)
almost everywhere on ). We restrict attention to pure strategies.

Throughout the paper we consider Tullock contests satisfying the following as-

sumptions:

(A.1) For each i € N, V; € Loo(Q2, F, ).



(A.2) For each i € N and w € Q, ¢;(w,-) is continuous, strictly increasing and
conver on Ry, and satisfies c¢;(w,0) = 0. Moreover, for each x € Ry, the functions
ci(-,x) and c;*(-,x) are integrable on (0, F, 11).

(A.3) For every w € Q, p(w,-) is continuous on R}\{0}, and for each i € N and
r € RY, pj(w,x_;,-) is non-decreasing and concave, and satisfies p;(w,0,z;) = 1

whenever x; > 0.

The assumptions on the players’ cost of effort introduced in (A.2) are standard.
The properties of the function p assumed in (A.3) are satisfied by the contest success
functions studied in the literature on Tullock contests (see Skaperdas 1996, and Clark
and Riis 1998). The following result which establishes the existence of equilibrium in
every Tullock contest satisfying assumptions (A.1)-(A.3) follows from the existence

theorem of Einy et al. (2015).
Remark 1. Every Tullock contest satisfying (A.1)-(A.3) has a Bayesian equilibrium.

The following lemma will be useful for the proof of our main result. This proof is

mostly adapted from that of Remark 1 in Aiche et al (2019).

Lemma 1. If X is a Bayesian equilibrium of a Tullock contest, then X (w) # 0 for

almost all w € €.

Proof. Let X be a Bayesian equilibrium of a Tullock contest, and assume by way
of contradiction that u(A) > 0, where A = {w € Q | X(w) = 0}. Since V;(-) > 0 and

n > 2, there is ¢ € N such that
Elpi(-, X ()Vi() | A] < E[Vi(-) | A].

Since X is F;-measurable, there exits an A; € F; such that X; =0on A; and A C A;.
Then
Elu;(-, X (1)) | Ai] = Elp;(-. X ()Vi(+) | A] < E[Vi(+) | A
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For each € > 0, consider a strategy X7 = ¢ - 14, + X; - 1lo\4, € S; . Then for € > 0,

p;(w, X_;, X5) =1 on A;, and therefore
Elui(-, X7 (1), X2 () | Ai] = E[Vi() | Ai] = u(A) (Eles(-€) | Adl) -

Since ¢(+,0) = 0 and c¢ is continuous at 0, there exists an € > 0 sufficiently small such
that
EVi() | Ai] = n(Ai) (Elei(+ &) | Ai]) = Elpy (-, X (-)Vi() | Ai] > 0.

Thus,

Elui(-, X7 (), Xoi () [ Ad] > Elui(-, X (1)) [ Adl,

which contradicts that X is a Bayesian equilibrium. [

In order to precisely define convergence of contests with incomplete information,
we use Boylan’s (1971)’s pseudometric on the family F* of o-subfields of F, given for
G, H e F* by

D = sup inf p(AAB inf (AAB
(G, H) ilélfg)élelHM( )+;lég;‘r€1gu( ),

where AAB = (A\B) U (B\A) is the symmetric difference of A and B. This metric
has been studied and used extensively in the literature.

Definition 1. We say that the sequence of Tullock contests

{(Nv (Qv f7 :U“)a {‘Fik}iEN7 {Vz‘k}ieN, {Ci‘c}iGNy Pk)}iod

converges to the Tullock contest (N, (2, F, p),{Fi}tien,{Vitien,{¢itien, p) if:

(C.1) For all i € N, {FF}2, converges to F; in the Boylan metric.

(C.2) For all i € N, {VF}2° | converges uniformly to V; on Q.

(C.3) Forall i € N and w € Q, {cF(w, )}, converges uniformly to c;(w,-) on every
compact subset of R, .

(C.4) For all w € Q, {p*(w,)}32, converges uniformly to p(w,-) on every compact
subset of R \{0}.



Theorem 1 establishes that the Bayesian equilibrium correspondence is upper

semicontinuous on the class Tullock contests satisfying assumptions (A.1)-(A.3).

Theorem 1. For each positive integer k, let
Tk = <N7 (Q7 F? ,u)a {:’rik}iENa {V;'k}iENa {Ci'c}ieNa Pk)

be a Tullock contest, and let X* be a Bayesian equilibrium of T*. If {T*}%°, con-

verges to a Tullock contest

T = (N,(Q,F,u),{Fitien,{Vitien, {ci tien, p),

and {X*}2°, converges to X pointwise on ), then X is a Bayesian equilibrium of

T.

Proof. First we show that for all i € N, X, is F;-measurable. Since Vik,Vi S
Lo (2, F, ) for all (i, k),
0 < MF :=sup V¥(w) < oo,
weN
and

0 < M; :=sup V;(w) < 0.
weld

We now show that for all (i, k),
ci (- XF() < M.

almost everywhere in €. Suppose, by way of contradiction, that there is (i, k) and an
atom A of F such that

¢ (W, X (w) > M} = Vi (w) (3)

holds for every w € A. Since FF C F there exists an atom AF of FF such that
A C Ak, Since XF is FF-measurable, X is constant on A¥. Thus, (3) holds on A¥,
and therefore

ui(w, X*(w)) < VH(w) = ci(w, Xf(w)) < 0

8



for all w € AF. Define Y =0-1 Ak T+ XF 1o k- Then Y} is FF-measurable, and
ui(w, Y (w), X (w)) = Vi (w) > wi(w, XH(w))
for all w € A¥, whereas
a0, Y (@), XE,(@)) = s, X ()
for all w € Q\ A¥. Therefore
Elui(-, Y (), X)) > Blui(, X*()],

which contradicts that X* is a Bayesian equilibrium of T*.
Now, for all w € €,

ch(w, XF(w)) < M}

implies
XE(w) < ()7 (w, MP).

By (C.2), for k sufficiently large M} < 1+ M;. Then

2

XEw) < () (w, 14 M)

for sufficiently large k and all w € Q. Also, {cf(w, )}Zozl converges uniformly to

k

¢i(w,-) on every compact interval of R, by (C.3), and since ¢;(w,-) is continuous
and increasing, by Theorem 1 in Barbinek et al. (1991), {(Cf)*l(w,-)}zl con-
verges uniformly to (¢;)™!(w,-) on every compact interval of R,. In particular,
{(c)Mw, 14 M)}, converges to (¢;) ™ (w, 1+ M;). Since for all w € €,

Xi(w) < () Hw, 1+ M),
for sufficiently large k,
Xf(w) <1+ (e) " (w, 1+ M) (4)

Moreover, since the function c; (-, 1+ M;) is integrable and { XF}°, converges point-

wise to X; on €, by the dominated convergence theorem {X¥}2° converges to X;
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in the Li(Q, F, ) norm — see, e.g., Theorem 12.2 of Schilling (2005). Hence, since
XF is FF-measurable, and {F}°, converges to F; in the Boylan pseudometric, by
Lemma 1 in Einy et al. (2005), X; is F;-measurable.

We now show that X is a Bayesian equilibrium of 7' by distinguishing between
two cases:
Case I. Assume that X (w) # 0 almost everywhere in €.

Note first that for all k, since X* is a Bayesian equilibrium of T* X*(w) # 0
almost everywhere in 2 by Lemma 1. Also, p(w,-) is continuous at X (w) for almost

all w € Q by (A.3). Now, for all w € Q and for sufficiently large k
pi(w, X )V (w) < Vi (w) < MF <1+ M, (5)

and

(w, XF(w)) < MF <1+ M, (6)

Assume, by way of contradiction, that X is not a Bayesian equilibrium of T'. In that
case, there is © € N, a F;-measurable and integrable random variable Y; > 0, and an

atom A of F such that
Elui(+Y; (1), X () | Al > Elui (-, X (+)) [ AL

For all k, let Y = E|[Y; | FF]. Then Y} > 0 is a F/-measurable and Y}* € L,(Q, F, p1).
Since {FF}2°, converges to F;, by Theorem 4 in Boylan (1971), {Y*}2°, converges
in measure to E[Y; | F;] = Y;. Therefore, the sequence {Y;*}2°, has a subsequence
that converges pointwise to Y; on (2.

Without loss of generality, assume that {Y}*}2°, converges to Y; on Q. Now,
(C.2) — (C.4), the inequalities (5) and (6), and the dominated convergence theorem

together imply that

lim Elp; (-, X" ())ViE() | Al = Elp,(-, X ()Vi() | Al

k—oo
and

lim Elc;(, X () | Al = Elei(-, X () | A]

k—o0
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Hence

lim Euf (-, X* (1)) | A] = Elui(-, X (-)) | A].

k—oo
Since Y; is constant on A (because Y; is F-measurable), i.e., Y; = g; € R, for all

w € A, and {Y*}2° | converges pointwise to Y; on , for sufficiently large k& we have
Viw) <1+,

for all w € A. And since {cF(w, ) }$2, converges uniformly to ¢;(w, -) on every compact

subset of R, by (C.3), for sufficiently large k we have
A (w, Y (W) < (w14 4) <14 ci(w, 1+ 4).

for allw € A. Since ¢;(-, 1+7;) is integrable on €2, (C.3) and the dominated convergence

theorem imply that

lim Efef(-,Y;" (1) | A = Elei(-,Y; () | Al.

k—o0

Now,

pr(w, Y (W), XF, (w)VFw) <1+ M;

for all £ and all w € Q2. As Y; > 0, then (A.3), (C.2), (C.3), the last inequality, and

the dominated convergence theorem imply that

M Elpf (- Y (), X5, ()VEC) | Al = Elp( i (), Xo ()ViC) | Al

7

Hence
Jim Bt YF (). X5 () 4] = Bl Y (). X5 0) | 4]
> BElui (-, X () | A
— lim E[uf(, X*()) | 4],

which implies that there exists k such that
Blui (Y (), X5 () [ A] > Bluf (-, X (1) | 4],

contradicting that X* is a Bayesian equilibrium of 7%,
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Case II. Let A :={w € Q| X(w) = 0}, and assume that p(A4) > 0.

We show that this case contradicts the assumption that X* is a Bayesian equi-
librium of T* for all k, and thus cannot be satisfied. Since {p*(-, X*(-))} C (A™)%
for all k, and (A™)% is a compact and metrizable space with respect to the product
topology (because (2 is countable), the sequence {p*(-, X*(-))}22, has a subsequence
that converges pointwise to an F-measurable random variable p € (A™). Without
loss of generality, assume that {p*(-, X*(-))}22, itself converges to p. For all i € N

and w € ) let

aj(w) = pi(w)Vi(w) — ciw, Xi(w)).

As in case I, the dominated convergence theorem implies that

lim Eful (-, X* ()] = Elay].

k—o0
Let w* € A. Since 3y pj(w*) = 1, there exists ¢ € N such that p;(w*) < 1. For every

e > 0, let Y7 := max{e, X;}. Then Y7 is F;-measurable. Since {XF}?  converges

7

pointwise to X; on €, the inequality (4) established above implies that

Yi(w) < max{e, 1+ ¢; ' (w, 1+ M;)} (7)

)

for all w € Q. For all ¢ > 0 and w € Q, (Y7(-), X_i(:)) € R} \{0}, and since p(w, ) is

continuous at X (w) for all w € Q\ A, we have

lim p;(w, (Vi (w), X-i(w))) = pi(w, (X (w))) = Jim pf(w, (X*(w))) = ps(w),

and thus
dim [p;(w, (Y7 (w), Xos(w))Vilw) = ci(w, Y7 w))] = pi(@)Vilw) = ailw, Xi(w))

= a;(w).

For all w € A, since X (w) = 0, the assumption (A.3) implies that

i, (Y7 (@), X_i(w))) = pylw, (Y7 (), 0)) = 1

12



for every € > 0, and therefore

Jim [p;(w, (¥ (w), Xoi(w))Vi(w) = ci(w, Yi(w))] = Vilw) = ci(w,0)
= Vi(w)
> a;(w)

Let A(w*) be the atom of F containing w*. Since X is F-measurable and X (w*) =
0, A(w*) € A. Since for all z € R}\{0}, both p;(-,2) and Y are F-measurable,

(2

p; (-, (YE(+),0)) is constant on A(w*). As p is F-measurable, for all w € A(w*) we

)

have
pi(w) = pi(w*) < 1,

and hence V; > 0 implies that

lim [p, (w, (V7 (@), X_ (@))) Vi(w) — ca(w, Y7 (@))] = Vi(w) > pilw)Viw) = e (w)

e—0t t

for all w € A(w*). Therefore, the dominated convergence theorem implies that

lim Blui(-, (Y7 (), X-i(-)] > Ele()] = lim Blui (-, X*())].

e—0t k—oo
Hence, there exists £ > 0 sufficiently small such that

Elui(- (Y7 (), X=i()))] > lim Elui (-, X*(-))]

i
k—o0

Let Y = E[YF | FF]. Then Y}* is FF-measurable and, as in case I, {Y;*}°, converges
pointwise to E[Yf | F;] = Y on Q. The inequality (7) above, (C.2) — (C.4), and the

dominated convergence theorem imply that

lim Blui (-, (Y1), X5()))] = Elui (-, (V7 ()X=()] > lim Elu (-, X*())].

k—o0 ' k—oo

Hence, there exists k such that
Blui (-, (V(), XE())] > Bluf (-, X)),
contradicting that X* is a Bayesian equilibrium of T%. O
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Theorem 1 shows that the Bayesian equilibrium correspondence of Tullock con-
tests with incomplete information is upper semicontinuous. The following proposi-
tion shows that if the players’ costs of effort are state independent, then the Bayesian
equilibrium correspondence is also lower semicontinuous at contests with a unique
Bayesian equilibrium. Recall that by Remark 1, every Tullock contest has a Bayesian

equilibrium.
Proposition 1. For every positive integer k, let
Tk = (N7 (Q7 Fa M), {ink}iENa {v;‘k}iEN7 {Cf}ieN7 pk)

be a Tullock contest in which the players’ costs of effort are independent on the state of
nature (i.e., for all i € N and v € Ry, c¥(-,x) is constant). If the sequence {T*}2°,

converges to a Tullock contest

T =(N,(QF, pn),{Fitien,{Vi}ien,{ci }ien, p)

with a unique equilibrium X, then there exists a sequence { X% 1%, such that for all

r, Xk is a Bayesian equilibrium of T, and {X*}°, converges pointwise to X on

Q.

Proof. Assume that {T%}%° | converges to a Tullock contest 7' with a unique equilib-
rium X, and let {X*}2°, be a sequence such that each X* is a Bayesian equilibrium

of T*. As shown in the proof of Theorem 1, for all w € Q we have

XEw) < ¢ (14 M),

1

where M; = sup,cq Vi(w). (Since ¢; is state-independent, we omit w from its ar-
gument.) Therefore for sufficiently large k, the sequence {X*}* . is contained in

S = x2,[0,¢; (1 4+ M;)]®, which is a compact and metrizable space in the product

)
r=1

topology because (2 is countable. Consequently, { X*}2 | has a subsequence { X*r
that converges pointwise in €2 to some point in S. By Theorem 1, this point is a

Bayesian equilibrium of 7', and therefore can only be X. [J
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The proof of Proposition 1 applies without change to Tullock contests in which
the players’ costs of effort are state dependent, but the effort that each individual

can exert is uniformly bounded. We state this result in Proposition 2.

Proposition 2. For every positive integer k, let

Tk = (N7 (Q7 F? M)a {f‘z'k}iGNa {V;k}iEN7 {Cf}iEN7 pk)

be a Tullock contest in which the set of pure strategies of each player is contained in

[0, M]® for some M > 0. If the sequence {T*}2, converges to a Tullock contest

T = (N,(Q,F,u), {Fi}ien, {Vitien, {citien, p)

with a unique equilibrium X, then there exists a sequence { X% 1% such that for all
r, Xk is a Bayesian equilibrium of T*, and {X*}°, converges pointwise to X on

Q.

Next we show that when a Tullock contest has a unique equilibrium, the equilib-
rium is robust to small changes in the players’ information, values, and costs of effort,

as well as in the contest success function.

Definition 2. The Tullock contests T = (N, (2, F, 1), {Fi}tien, {Vitien, {¢i tien, p)
and T = (N, (Q,F,n), {.ﬁ}ieN, {V}}ieN, {¢:}ien, p) are d-neighbors, where § > 0, if
forall i € N:

(2.1) D(E,J’:"i) < 0, where D is the Boylan pseudometric;

(2.2) sup,cq [Vi(w) — Vi(w)| < &

(2.3) For all w € Q, and every compact subset C of R, sup,cc |ci(w,t) — é(w,t)] <

0; and

(2.4) For all w € Q, and every compact subset C' of R \{0}, sup,cc |ps(w,t) — p;(w, )] <
J.

In a Tullock contest, the set of (pure) strategy profiles S is a subset of the space

(R7%)%. Given an enumeration {w,ws,...} of 2, the metric d defined for all X,Y €

15



(R?)® by
w1 X (wy) = Y ()
AXY) =) Ty X ()~ Y]

j=1

where |-|| is the Euclidian norm on R, induces the product topology on (R")%.

Proposition 3. Let T = (N,(Q,F, 1), {F:}ien, {Vitien, {¢i}ien, p) be a Tullock
contest with a unique equilibrium X . If either the players’ costs of effort are indepen-
dent on the state of nature, or the set of pure strategies of each player is contained
in [0, M]? for some M > 0, then for every € > 0 there exists 0 > 0 such that if

X is a Bayesian equilibrium of a Tullock contest that is a d-neighbor of T, then

d(X,X) <e.

Proof. If Proposition 3 does not hold, then there exists ¢g > 0 such that for each
positive integer k there is a Tullock contest T" that is a (1/k)-neighbor of T', and
a Bayesian equilibrium X* of T% with d(X*, X) > &y. Since the sequence {T%}%,
converges to T', by Proposition 1 or Proposition 2 the sequence {X*}2°, has subse-
quence {X*r1%°  converging pointwise to X on €. Hence there is 7 such that for all
r > 7, d(X* X) < gy. However, by assumption d(X*, X) > g, for all r, which is a
contradiction. [

Szidarovszky and Okuguchi (1997), Einy, Moreno, and Shitovitz (2017), and Ew-
erhart and Quartieri (2018) provide conditions implying the uniqueness of equilibrium
in large classes of Tullock contests (see also Chowdhury and Sheremeta 2011). Propo-
sitions 1 to 3 imply that the unique Bayesian equilibrium of the Tullock contests in

these classes are robust.
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