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We characterize the dynamics of trading patterns and market composition when
trade is bilateral, finding a trading partner is costly, prices are determined by
bargaining, and preferences are private information. We show that equilibrium is
inefficient and exhibits delay as sellers price discriminate between buyers with
different values. As frictions vanish, transaction prices are asymptotically competitive
and the welfare loss of inefficient trading approaches zero, even though the trading
patterns continue to be inefficient and delay persists. Journal of Economic Literature
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1. INTRODUCTION

In many markets, when (or whether) an agent trades, and at what price,
depends on his own characteristics (his value, or the cost or quality of his
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good), as well as on the characteristics of the other traders. In the market
for new assistant professors of economics, for example, highly qualified job
candidates tend to leave the market (i.e., to accept job offers) earlier than
less well-qualified candidates. In the clothing market, high-value buyers
purchase the new fall fashions as soon as the clothes enter stores, whereas
low-value buyers purchase later in the season once the clothes go on sale.
The distribution of the characteristics of active traders also varies over
time: In the market for new assistant professors, for example, the propor-
tion of active candidates that are highly qualified is larger when the market
opens than when it closes. In these markets the ``trading pattern'' at
each date (i.e., which types of buyers and sellers trade), and the ``market
composition'' at each date (i.e., the characteristics of active traders) are
determined endogenously and vary over time.

In this paper we introduce a simple model of a nonstationary dynamic
market with heterogeneous traders in which trading patterns, market com-
positions, and transaction prices are determined endogenously. In the
market there are two types of buyers, whose values are either ``high'' or
``low,'' initially present in given proportions; all sellers can supply a unit of
the good at equal cost. After the market opens there is no entry. Each
period, active traders are randomly matched and bargain bilaterally. In
the bargaining game one of the traders is randomly selected to make a
take-it-or-leave-it price proposal. Bargaining is under incomplete informa-
tion, as a seller does not know whether his partner has a high or a low
value.

We first identify the trading patterns that arise in equilibrium and the
dynamics of market composition: When cost is high, i.e., above the value
of low-value buyers, but below the value of high-value buyers, the trading
pattern is always separating (high-value buyers trade, but low-value buyers
do not trade). When cost is low, i.e., below the values of both types of
buyers, the case of primary interest, at most three (pure) trading patterns
arise over the life of the market: in periods where high-value buyers
are abundant (i.e., when their proportion exceeds a critical threshold we
identify), the trading pattern is either separating or partially separating
(high-value buyers trade, and low-value buyers trade only when they
propose); in periods where high-value buyers are scarce, the trading pattern
is pooling (both types of buyers trade). Moreover, the transitions from one
trading pattern to the next are in a particular order: from separating to
partially separating to pooling. When the market transits from one pure
trading pattern to the next there may be a single intervening period in
which the trading pattern is ``mixed.'' In this case market equilibria are
asymmetric. We establish that the proportion of high-value buyers in the
market is decreasing over time, and that the trading pattern is eventually
pooling.
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Our analysis reveals properties of market equilibria that are in sharp
contrast with Walrasian equilibrium. Specifically, when cost is low and
high-value buyers are abundant, the trading pattern is either separating or
partially separating when the market opens. In this case, trading patterns
are (constrained) inefficient. (Under efficient trading every match ends with
trade��see below.) In addition, trade occurs only with delay: low-value
buyers and sellers remain in the market longer, in expected terms, than
they would if the trading patterns were efficient.

Inefficiency and delay arise as sellers price discriminate among
heterogeneous buyers, regardless of whether information is complete or
incomplete. Interestingly, as an example in Section 4 demonstrates, equi-
librium surplus may be lower when information is complete rather than
incomplete.

As frictions vanish, transaction prices converge to a competitive price,
even though the trading patterns continue to be inefficient and delay
persists. Nevertheless, since the length of delay is bounded, asymptotically
the welfare loss of inefficient trading is zero and each trader obtains his
competitive equilibrium utility.

Related Literature

Our results on trading patterns and their dynamics in nonstationary
markets with heterogenous traders are novel and have no counterpart in
the matching and bargaining literature. With the exceptions of Binmore
and Herrero [1] and Peters [7], who study markets with a single type
of buyer and a single type of seller, the matching and bargaining literature
has focused on stationary equilibria (see, for example, Rubinstein and
Wolinsky [8]).

Our findings that transaction prices are competitive as frictions vanish
relate to results already in the literature. Gale [2], for example, obtains
this result in a similar setting, except that information is complete. His
work, however, does not address equilibrium dynamics or the efficiency of
trading patterns, which are central issues in our work. In fact, markets
exhibit interesting dynamics even when information is complete (see
Section 4).

Serrano and Yosha [12] study whether transaction prices are com-
petitive in a model inspired by Wolinsky [14]��see also Samuelson [9]. In
their framework a trader may bargain either ``tough'' or ``soft.'' If both
traders in a match bargain tough, the outcome is no trade. Otherwise,
the pair of bargaining positions determines at which of one of three
exogenously given prices they trade. For the one-sided asymmetric informa-
tion case (they also study the ``two-sided'' asymmetric information case,
which we do not deal with here), they show that when cost is low and
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frictions are small, market equilibria are efficient and exhibit no delay.
Price restrictions appear to play an important role in these results, which
are at odds with those we obtain. In our model prices are fully endogenous;
i.e., buyers and sellers can make arbitrary price offers.

There are several papers studying the efficiency of decentralized markets;
see, e.g., Sattinger [10], Serrano and Yosha [11], and Jackson and Palfrey
[4]. In a framework similar to ours, Jackson and Palfrey [4] show that
there is a robust distribution of buyer and seller values for which equi-
librium is inefficient for every bargaining game in a general class. Using
Jackson and Palfrey's notion of efficiency, we show that although trading
patterns may be inefficient, as frictions vanish the welfare loss due to inef-
ficient trading vanishes. Thus, the simple bargaining game in which traders
make take-it-or-leave-it price offers yields asymptotically efficient outcomes
(despite the fact that trading patterns are inefficient). Hence Jackson and
Palfrey's result loses significance when frictions are small.

Our work also relates to a large literature studying price dispersion and
sales. Varian [13], for example, shows that sales provide a means for
sellers to price discriminate between informed and uninformed consumers.
In our model price discrimination arises as a consequence of the differential
willingness of high- and low-value buyers to endure delay. This yields a
remarkable parallel between seller behavior in our model and the behavior
of a durable good monopolist��see, e.g., Hart and Tirole [3].

2. THE MODEL

A market for a single indivisible commodity operates from period 0 to T,
where T may be finite or infinite. At period t=0 there is a continuum of
buyers and sellers, present in equal measures; no new traders enter the
market subsequently. Each seller is endowed with a single unit of the
indivisible good. Each buyer is endowed with one unit of money. Buyers
and sellers preferences are characterized by, respectively, their values and
costs: All sellers (S) have the same cost, c�0, whereas there are two types
of buyers, ``high-value'' (H) and ``low-value'' (L), whose values are, respec-
tively, uH and uL, where 1�uH>uL�0. We assume throughout that
uH>c. At date zero, high-value and low-value buyers are present in the
population of buyers in proportions bH

0 # (0, 1) and bL
0 =1&bH

0 , respec-
tively. If a buyer whose value is u{ trades with a seller at the price p in time
t, they obtain a utility of $t (u{& p) and $t ( p&c), respectively. Here
$ # (0, 1), the discount factor, expresses the traders' impatience.2 A buyer or
a seller who never trades obtains a utility of 0.
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Each period every buyer (seller) remaining in the market meets a
randomly selected seller (buyer) with probability :, where : # (0, 1).3 A
matched seller does not observe the buyer's value. When a buyer and a
seller meet, one of them is selected randomly (with probability 1

2) to
propose a price at which to trade. If the proposed price is accepted by the
other party, then the agents trade at that price and both leave the market.
Otherwise, the agents remain in the market at the next date and wait for
a new match. An agent who is not matched in the current period also
remains in the market at the next date. A trader observes only the outcome
of his own matches.

A strategy for a trader of type { # [H, L, S] is a pair ( p{, r{), where p{

is a sequence (of real numbers) indicating the price offers the trader would
make at each date if matched and selected to propose a price, and r{ is a
sequence of reservation prices specifying the maximum (minimum) price
that a buyer (seller) would accept at each date if responding to a price offer.
A strategy distribution is a triple ( p, r, *)=[( pHi, rHi, *Hi)nH

i=1 , ( pLi, rLi, *Li)nL

i=1 ,
( pSi, rSi, *Si)nS

i=1], where for each { # [H, L, S], *{k>0 is the proportion of
type { players using strategy ( p{k, r{k), and n{ is the (countable) number of
distinct strategies used by (a positive measure of) type { traders. Note that
�n{

k=1 *{k=1.
We do not restrict attention to symmetric strategy distributions (i.e.,

different agents of the same type may follow different strategies).
Indeed, allowing asymmetric strategy distributions is necessary to guarantee
existence of a market equilibrium��see the discussion on symmetry and the
example provided in Moreno and Wooders [5, Section 4]. We consider
only strategies in which a trader does not condition his actions in the
current match on the history of his prior matches, but this restriction is
inconsequential.4 For simplicity, we restrict attention to strategy distribu-
tions where only countably many distinct strategies are used. As we shall
see, however, for discount factors near or equal to one, in equilibrium at
most two different strategies are played by each type of trader.

2.1. Laws of Motion

Given a strategy distribution ( p, r, *), for { # [H, L, S] and k�n{ let *{k
t

denote the proportion of agents following the kth type { strategy out of the

308 MORENO AND WOODERS

3 We rule out the case :=1 in order to ensure that a positive measure of each type of agent
is present at all times, so that the laws of motion described in Section 2.1 are well defined.

4 Since a trader only observes the outcomes of his own matches, his decision problem, and
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total measure of agents of type { who remain in the market at time t.
(Throughout, we use i, j, and k, respectively, to index the strategies of
buyers, sellers, and generic traders.) This proportion can be computed for
t # [0, ..., T], given *{k

0 =*{k, as

*{k
t+1=

*{k
t (1&:z{k

t )
�n{

l=1 *{l
t (1&:z{l

t )
,

where z{k
t denotes the probability that a trader who is matched at t and

who follows the strategy ( p{k
t , r{k

t ) trades at t. (We shall also sometimes
interpret *{k

t as a probability; e.g., *Sj
t is the probability that a buyer

matched at t is matched with a seller following the jth seller strategy.) The
probability z{k

t is computed as follows: For x, y # R denote by I(x, y) the
indicator function, whose value is 1 if x� y, and 0 otherwise. Writing
B=[H, L] for the set of buyer types, then for { # B we have

z{i
t = 1

2 :
nS

j=1

*Sj
t I( p{i

t , rSj
t )+ 1

2 :
nS

j=1

*Sj
t I(r{i

t , pSj
t ).

For sellers, this probability is given by

zSj
t = 1

2 :
{ # B

b{
t :

n{

i=1

*{i
t I(r{i

t , pSj
t )+ 1

2 :
{ # B

b{
t :

n{

i=1

*{i
t I( p{i

t , rSj
t ),

where b{
t , the proportion of the buyers of type { out of the total measure

of buyers remaining in the market at time t, can be computed for t>0,
given b{

0 , as

b{
t =

(1&:z{
t&1) b{

t&1

(1&:zH
t&1) bH

t&1+(1&:zL
t&1) bL

t&1

,

and z{
t =�n{

i=1 *{i
t z{i

t is the probability that a randomly selected type
{ # [H, L, S] trader who is matched at t trades at t. Since there is a con-
tinuum of traders, the market evolves deterministically, even though a
trader's own market experience is stochastic.

2.2. Value Functions

Given a strategy distribution ( p, r, *), the expected utility at time t of an
agent of type { # [H, L, S] who is using strategy {k is

V {k
t =

:
2

(P{k
t +R{k

t )+(1&:) $V {k
t+1 .
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In this expression, P{k
t (R{k

t ) is the expected utility to a trader of type {
following the k th type { strategy who is matched at t and selected to
propose (respond to) a price offer. These expected utilities can be
calculated for { # B as

P{i
t =(u{& p{i

t ) :
nS

j=1

*Sj
t I( p{i

t , rSj
t )+\1& :

nS

j=1

*Sj
t I( p{i

t , rSj
t )+ $V {i

t+1 ,

and

R{i
t = :

nS

j=1

*Sj
t (u{& pSj

t ) I(r{i
t , pSj

t )+\1& :
nS

j=1

*Sj
t I(r{i

t , pSj
t )+ $V {i

t+1 .

For sellers we have

PSj
t =( pSj

t &c) :
{ # B

b{
t :

n{

i=1

*{i
t I(r{i

t , pSj
t )

+\1& :
{ # B

b{
t :

n{

i=1

*{i
t I(r{i

t , pSj
t )+ $V Sj

t+1 ,

and

RSj
t = :

{ # B

b{
t :

n{

i=1

*{i
t ( p{i

t &c) I( p{i
t , rSj

t )

+\1& :
{ # B

b{
t :

n{

i=1

*{i
t I( p{i

t , rSj
t )+ $V Sj

t+1 .

When T is finite, these expected utilities are calculated using V {k
T+1=0 for

{ # [H, L, S] and k�n{.

2.3. Equilibrium

A strategy distribution ( p, r, *) is a market equilibrium if for each t #
[0, ..., T], each { # B and i # [1, ..., n{], and each j # [1, ..., nS]

u{&r{i
t =$V {i

t+1 ,
(E.1)

rSj
t &c=$V Sj

t+1 ,
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and

p{i
t # arg max

x
(u{&x) :

nS

j=1

*Sj
t I(x, rSj

t )+\1& :
nS

j=1

*Sj
t I(x, rSj

t )+ $V {i
t+1 ,

pSj
t # arg max

x
(x&c) :

{ # B

b{
t :

n{

i=1

*{i
t I(r{i

t , x) (E.2)

+\1& :
{ # B

b{
t :

n{

i=1

*{i
t I(r{i

t , x)+ $V Sj
t+1 .

Condition (E.1) requires that at each date a trader's reservation price
makes him indifferent between accepting or rejecting an offer of his reserva-
tion price. Condition (E.1) builds perfection into our equilibrium notion by
requiring that an agent accepts any price offer which gives him a higher
utility that he would obtain by rejecting the offer. Condition (E.2) ensures
that price offers are optimal. Given the recursive nature of our setting,
in a market equilibrium traders' strategies are globally optimal; i.e., no
trader can do better by changing his reservation prices or price offers
simultaneously at more than one date.

In a market equilibrium, traders form their expectations of the propor-
tion of buyers of each type remaining in the market (b{

t ), and the propor-
tion of traders following each of the strategies being played (*{k

t ), on
the basis of the strategy distribution being played. Moreover, each trader
maximizes his expected utility at each of his information sets. Thus, the
notion of market equilibrium is in the spirit of sequential (or Bayes perfect)
equilibrium.

Existence of market equilibria under general conditions is established in
Moreno and Wooders [5] by means of a fixed point argument. It might
seem that if T were finite one could calculate a market equilibrium via
backward induction. Computing a traders' reservation price and optimal
price offer at a date t, however, requires knowing the market composition
(i.e., the proportion of traders of each type present in the market) at t, as
well as his expected utility if he remains in the market at t+1. Since the
market composition at date t is determined by the trading patterns (and
the traders' strategies) prior to t, a market equilibrium cannot be computed
by backward induction.

2.4. Trading Patterns and Efficiency

Characterizing market equilibria requires determining the ``trading pat-
terns'' that may arise. We classify the matches into four types, depending
upon the buyer's value and who proposes: (i) a high-value buyer proposes
(to a seller), (ii) a low-value buyer proposes, (iii) a seller proposes to a
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high-value buyer, and (iv) a seller proposes to a low-value buyer. A trading
pattern at a given date t specifies the proportion of each type of match that
ends with trade, and is represented by a vector zt=(zHS

t , zLS
t , zSH

t , zSL
t ) #

[0, 1]4. Given a strategy distribution, these proportions are

z{S
t = :

n{

i=1

*{i
t :

nS

j=1

*Sj
t I( p{i

t , rSj
t ),

and

zS{
t = :

nS

j=1

*Sj
t :

n{

i=1

*{i
t I(r{i

t , pSj
t ).

Note that z{
t =(z{S

t +zS{
t )�2 (see Section 2.1 above). Also note that the set

of possible trading patterns does not depend upon whether values are
private information. In a ``pure'' trading pattern every match of the same
type has the same outcome (either trade or no trade); i.e., the pure trading
patterns are the elements of [0, 1]4 whose coordinates are either zeros or
ones. (Hence there are 16 possible pure trading patterns.) All other trading
patterns are ``mixed.''

The surplus realized is determined by the sequence of trading patterns.
Given a sequence z=[zt]T

t=0 specifying the trading pattern at each date,
the surplus G($, T, z) is given by

G($, T, z)=bH
0 (uH&c) gH($, T, z)+bL

0 (uL&c) gL($, T, z), (S.1)

where for { # [H, L]

g{ ($, T, z)=:z{
0+$(1&:z{

0) :z{
1+ } } }

+$T (1&:z{
0)(1&:z{

1) } } } (1&:z{
T&1) :z{

T . (S.2)

In this expression, b{
0 (u{&c) g{ ($, T, z) is the surplus realized in matches

of type { buyers and sellers.
In order to evaluate the welfare properties of alternative market out-

comes, it is useful to have a notion of efficiency. Following Jackson and
Palfrey [4], we say that a sequence of trading patterns is (constrained )
efficient if it maximizes surplus on the set of all sequences of trading pat-
terns. In the high cost case (c>uL) the unique efficient sequence of trading
patterns is separating for each t; i.e., for each t, zHS

t =zSH
t =1 and zLS

t =
zSL

t =0, whereas in the low cost case (c<uL) the unique efficient sequence
of trading patterns is pooling; i.e., for each t, zHS

t =zSH
t =zLS

t =zSL
t =1.
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3. PROPERTIES OF MARKET EQUILIBRIA

In this section we identify the equilibrium trading patterns and their
dynamics, and study the properties of market equilibria as frictions vanish.
We begin with the high-cost case.

3.1. High Cost

Supply and demand schedules in this case are illustrated below in Fig. 1a
(c>uL). Beginning with this case allows us to discuss the workings of our
model in a simple environment and facilitates understanding the subtleties
that arise in the more interesting case where there are gains to trade
between sellers and both types of buyers.

FIG. 1. (a) Supply and demand in the high-cost case. (b) Supply and demand in the
low-cost case.
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Market equilibria in this case have a simple structure: at every date high-
value (low-value) buyers offer a price equal to (below) the seller reserva-
tion price, and sellers offer a price equal to the high-value-buyer reserva-
tion price. Thus, only high-value buyers, and the sellers they are matched
with, trade. Since the trading pattern is separating at each date, the market
equilibrium is constrained efficient. When traders are sufficiently patient
(i.e., $ is close to 1) and the time horizon is sufficiently long, transaction
prices are close to the competitive price (i.e., c), and surplus approaches the
competitive surplus��equal to bH

0 (uH&c). Intuitively this is because when
the time horizon is long, high-value buyers eventually become scarce and
the seller-reservation price approaches c. If high-value buyers are patient,
their reservation price (at early dates) is also close to c. These findings are
summarized in Proposition 1. We provide an informal discussion of these
results when T<�.

Let ( p, r, *) be a market equilibrium. As an agent who does not trade
while the market is open obtains a utility of zero (i.e., V {

T+1=0), by (E.1)
reservation prices at the last date are rH

T =uH, rL
T=uL, and rS

T=c. Hence
rH

T >rS
T>rL

T . It is easy to see that high-value (low-value) buyers offer at
date T a price equal to (below) the seller-reservation price: A high-value
(low-value) buyer obtains a utility of uH&rS

T=uH&c>0 (uL&rS
T=

uL&c<0) offering rS
T , the lowest price accepted by sellers, and obtains

$V H
T+1=0 ($V L

T+1=0) with a lower price offer. Thus, pH
T =rS

T ( pL
T<rS

T).
Sellers offer at date T the high-value-buyer reservation price (i.e., the
highest price accepted by high-value buyers): a seller who offers rH

T obtains
an expected utility of bH

T (rH
T &c)=bH

T (uH&c)>0, whereas he obtains
rL

T&c=uL&c<0 offering rL
T . Note that bH

T >0 since a measure
(1&:)T bH

0 >0 of high-value buyers has never been matched before T.5

Thus, pS
T=rH

T . Hence the pattern of trade at date T is separating.
Traders' expected utilities at T are V H

T = 1
2:(uH&c), V L

T=0, and V S
T=

1
2:bH

T (uH&c). Using (E.1) again we calculate traders' reservation prices at
T&1 to obtain rH

T&1=uH&$1
2:(uH&c), rS

T&1=c+$1
2 :bH

T (uH&c), and
rL

T&1=uL. Thus rH
T&1>rS

T&1>rL
T&1 , regardless of the value of bH

T , and the
same pattern of trade arises at date T&1. In fact, it can be shown by induc-
tion that reservation prices satisfy this inequality at every date t, independently
of bH

t , and therefore that the pattern of trade is separating at every date.
Given the initial proportion of high-value buyers in the market and knowing
the pattern of trade at each date, we can compute the entire evolution of
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the market composition (i.e., the sequence [bH
t ]T

t=0). Knowing the trading
pattern and the market composition at each date, the vector of reservation
prices is computed recursively. Transaction prices are the seller-reservation
price when high-value buyers propose, and the high-value-buyer reserva-
tion price when sellers propose.

For each $ # (0, 1), T, and { # [H, S], let r{ ($, T ) be a sequence of
equilibrium reservation prices.

Proposition 1. Assume that c>uL. Let ( p, r, *) be a market equi-
librium, and let t� # [0, ..., T].

Reservation prices:

(P1.1.1) r{i
t� =r{

t� for every { # [H, L, S] and i�n{.

(P1.1.2) rH
t� >rS

t� >rL
t� .

Price offers:

(P1.2) pHi
t� =rS

t� for i�nH, pLi
t� <rS

t� for i�nL, and pSj
t� =rH

t� for j�nS.

Market composition:

(P1.3) bH
t� +1=

(1&:) bH
t�

(1&:) bH
t� +1&b H

t�
<bH

t� .

Equilibrium surplus:

(P1.4) G($, T )=bH
0 (uH&c) :(1&$T+1(1&:)T+1)

1&$(1&:) .

Transaction prices and surplus as frictions vanish:

(P1.5) If T<�, then

(P1.5.1) lim$�1 limT�� r{
t� ($, T )=limT�� lim$�1 r{

t� ($, T )=c, for { # [H, S].

(P1.5.2) lim$ � 1 limT � � G($, T ) = limT � � lim$ � 1 G($, T ) =bH
0 (uH&c).

(P1.6) If T=�, then

(P1.6.1) lim$ � 1 r{
t� ($, T )=c, for { # [H, S].

(P1.6.2) lim$ � 1 G($, T )=bH
0 (uH&c).

Figure 2 below shows equilibrium transaction prices for a market in
which cost is high. The mean transaction price (weighted by the volume of
trade) is 0.4308, which is near reservation prices in the first few periods
since most trade occurs within the first few periods. In the competitive
equilibrium of this market the price is 0.2 and the entire surplus of 0.7520
goes to high-value buyers. In contrast, in the market equilibrium sellers
capture 290 of the total (discounted) surplus of 0.6834, despite the fact
that frictions are relatively small (the probability that an agent is never
matched is :T+1= 1

1024). Even as $ approaches one sellers capture 150 of
the total surplus of 0.7513.
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FIG. 2. Equilibrium in the high-cost case (bH
0 =0.94, uH=1, uL=0.1, c=0.2, $=0.9,

:=0.5).

3.2 Low Cost

Figure 1b illustrates the supply and demand schedules for the low-cost
case (c<uL). To discuss the difficulties that arise in the analysis, assume
that in a market equilibrium (i) traders of the same type have the same
reservation price, (ii) sellers offer either the high-value-buyer reservation
price rH

t or the low-value-buyer reservation price rL
t and (iii) rH

t >
max[rL

t , rS
t ]. (See Proposition 2 below.) When a seller offers rH

t at date t,
he trades only with high-value buyers and obtains an expected utility of

bH
t (rH

t &c)+(1&bH
t )(rS

t &c).

(Recall that $V S
t+1=rS

t &c by (E.1).) A seller who offers rL
t at date t trades

with both types of buyers, and obtains rL
t &c. Therefore it is optimal for a

seller to offer the high-value-buyer reservation price if

bH
t (rH

t &rS
t )�rL

t &rS
t .

In other words, sellers offer the high-value-buyer reservation price if the
probability that the current partner is a high-value buyer times the gains
to trade with high-value buyers is greater than the gains to trade with low-
value buyers. (In both cases, the gains are calculated relative to the reserva-
tion prices, rather than the actual values or costs.) Writing ?t for the ratio
(rL

t &rS
t )�(rH

t &rS
t ), which measures the relative gains to trade of sellers
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with low-value buyers versus high-value buyers, the inequality above can
be written as

bH
t �?t .

Hence, in contrast to the low cost case where the trading pattern is separat-
ing regardless of the market composition, in the present case the trading
pattern at date t depends on the market composition. Further, the market
composition at date t is determined in turn by the trading patterns prior
to t. Thus, the entire sequence of trading patterns and market compositions
must be determined simultaneously.

Trading Patterns and Their Dynamics

Proposition 2 establishes some basic facts about equilibrium price offers
and reservation prices. Using these facts we identify the trading patterns
that arise in equilibrium, as well as their dynamics.

Proposition 2. Assume that c<uL. Let ( p, r, *) be a market equilibrium
and let t� # [0, ..., T].

Reservation prices:

(P2.1.1) r{i
t� =r{

t� for every { # [H, L, S] and i�n{.

(P2.1.2) rH
t� >max[rL

t� , rS
t� ].

High-value-buyer price offers:

(P2.2) pHi
t� =rS

t� , for every i�nH.

Low-value-buyer price offers:

(P2.3.1) pLi
t� �rS

t� for every i�nL.

(P2.3.2) Assume T<�; there is =(:, T )>0 such that if $>1&=(:, T ),
then

(i) pLi
t� <rS

t� for some i�nL implies pLi
t <rS

t for every t<t� and i�nL.

(ii) pLi
t� =rS

t� for some i�nL implies pLi
t =rS

t for every t>t� and i�nL.

Seller price offers:

(P2.4.1) pSj
t� # [rL

t� , rH
t� ] for every j�nS.

(P2.4.2) If pSj
t� =rL

t� for some j�nS, then pSj
t =rL

t for every t>t� and j�nS.

(P2.4.3) If pSj
t� =rH

t� for some j�nS, then pSj
t =rH

t for every t<t� and j�nS.
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Seller and low-value-buyer price offers:

(P2.5) If pSj
t� =rL

t� for some j�nS, then pLi
t� =rS

t� for every i�nL.

Proposition 2 implies that at most three pure trading patterns may arise
in equilibrium: by (P2.2) every match where a high-value buyer proposes
ends with trade (i.e., zHS

t =1 for all t), and by (P2.1.2) and (P2.4.1) every
match where a seller proposes to a high-value buyer also ends with trade
(i.e., zSH

t =1 for all t). In addition, (P2.5) rules out the trading patterns in
which matches between sellers and low-value buyers end with trade when
the seller proposes, but end without trade when the buyer proposes (i.e.,
zSL

t =1 implies zLS
t =1). Thus, only three pure trading patterns may arise

in equilibrium: separating (S), that is, all matches between high-value
buyers and sellers end with trade, whereas all matches between low-value
buyers and sellers end without trade (i.e., zHS

t =zSH
t =1, and zLS

t =zSL
t =0);

partially separating (PS), that is, all matches between high-value buyers
and sellers end with trade and matches between low-value buyers and
sellers end with trade only if the buyer proposes (i.e., zHS

t =zSH
t =zLS

t =1,
and zSL

t =0); and pooling (P), that is, all matches end with trade (i.e.,
zHS

t =zSH
t =zLS

t =zSL
t =1). The relation between price offers and reserva-

tion prices in each of these trading patterns are summarized in Table I.
Mixed trading patterns are not ruled out by Proposition 2. Since all

matches between high-value buyers and sellers end with trade, if two
matches of the same type have different outcomes, they must be matches of
a low-value buyer and a seller. Moreover, by (P2.5) if a positive proportion
of matches where a seller proposes to a low-value buyer end with trade,
then all matches where a low-value buyer proposes end with trade (i.e.,
zSL

t >0 implies zLS
t =1). Hence only mixed trading patterns of the form

zHS
t =zSH

t =1, zLS
t # (0, 1) and zSL

t =0, referred to as ``S�PS,'' and
zHS

t =zSH
t =zLS

t =1, zSL
t # (0, 1), referred to as ``PS�P,'' may arise in equi-

librium. Proposition 2 ensures that a PS�P trading pattern arises in at
most one period (P2.4.3). Moreover, when T is finite and the discount fac-
tor is sufficiently high, a S�PS trading pattern arises in at most one period,

TABLE I

Equilibrium Pure Trading Patterns when c<uL

Trading patterns Price offers

Sellers High value Low value

Separating pS
t =rH

t pH
t =rS

t pL
t <rS

t

Partially separating pS
t =rH

t pH
t =rS

t pL
t =rS

t

Pooling pS
t =rL

t pH
t =rS

t pL
t =rS

t
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since by (P2.3.2) once a positive proportion of low-value buyers offer the
seller reservation price, at subsequent periods all low-value buyers offer this
price.

Proposition 2 also yields conclusions concerning the order in which trad-
ing patterns arise. (P2.4.2) establishes that if at date t a positive proportion
of sellers offer the low-value-buyer reservation price, then at every subse-
quent date all sellers offer this price (i.e., zSL

t >0 implies zSL
t+1=1). Hence

the S, S�PS, and PS trading patterns (when they arise) precede the PS�P
and P trading patterns. Then (P2.3.2) implies that the S trading pattern
precedes all the other trading patterns (because zLS

t >0 implies zLS
t+1=1),

and that the S�PS mixed trading pattern precedes PS. (P2.4.2) implies that the
PS�P mixed trading pattern precedes P. Hence, trading patterns arise in the
following order: S, S�PS, PS, PS�P, and P. Of course, an equilibrium may
exhibit only some of these patterns. In particular, the mixed trading patterns
may be skipped (although the subset of the parameter space where all market
equilibria exhibit mixed trading patterns is not negligible).

Market Composition
The market composition and the trading patterns intertwine. In both the

S and the PS trading patterns, as well as in mixed trading patterns S�PS
and PS�P the proportion of high-value buyers in the market is falling: in
S, each period a fraction : of high-value buyers exits the market, while no
low-value buyer exits; in PS a fraction : of high-value buyers and a frac-
tion :

2 of low-value buyers exit the market each period. In the trading pat-
terns P the same fraction : of each type of buyer exits the market at each
date, and hence the proportion of high-value buyers in the market remains
constant. Thus, the proportion of high-value buyers in the market
decreases (quickly in S, and more slowly in PS), but once P is reached, it
becomes stationary. Proposition 3 establishes that trading patterns and the
dynamics of market composition are governed by the relation of the
proportion of high-value buyers in the market to the critical threshold
?*=(uL&c)�(uH&c)

Proposition 3. Assume that c<uL. Let ( p, r, *) be a market equilibrium
and let t� # [0, ..., T].

The critical threshold (?*):

(P3.1.1) If bH
t� <?*, then pSj

t� =rL
t� for every j�nS and bH

t� +1=bH
t� .

(P3.1.2) If bH
t� =?*, then pLi

t� =rS
t� for every i�nL, and either

(i) bH
t� +1<bH

t� , or
(ii) bH

t� +1=bH
t� , and pSj

t =rL
t for every j�nS and t�t� .

(P3.1.3) If bH
t� >?*, then pSj

t� =rH
t� for every j�nS, and bH

t� +1<bH
t� .
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The critical threshold is eventually reached:

(P3.2) There is T� =T� (bH
0 , :, ?*) such that if T>T� , then bH

t �?* for t�T� .

Proposition 3 establishes that if bH
t <?*, then the trading pattern at t

and subsequent periods is P (P3.1.1). If bH
t >?*, then zSL

t =0, and there-
fore the trading pattern at t (and prior to t) is either S, a S�PS, or PS
(P3.1.3). When bH

t =?* the trading pattern at t is either PS, a PS�P, or P
but it is P at every subsequent period (P3.1.2). If the time horizon is suf-
ficiently long, then the proportion of high-value buyers in the market is
eventually less than or equal to ?* (P3.2), and therefore by (P3.1.1) and
(P3.1.2) the trading pattern is eventually P and remains P.

Efficiency and Delay

In the low-cost case the unique efficient sequence of trading patterns is
P at every date; i.e., zHS

t =zSH
t =zLS

t =zSL
t =1 for all t. Hence, by (P3.1.1)

the sequence of equilibrium trading patterns is efficient whenever bH
0 <?*.

If bH
0 >?*, however, the trading pattern at date 0, and possibly afterward,

is either S or PS, and therefore the sequence of equilibrium trading patterns
is inefficient. Furthermore, since the critical threshold ?* does not depend
on either the discount factor or the time horizon, if bH

0 >?* the sequence
of equilibrium trading patterns is inefficient even as frictions vanish.
(Proposition 4 below, however, establishes that the welfare loss due to
inefficient trading approaches zero as frictions vanish.)

Figure 3 shows an equilibrium for a market that opens for 10 periods
and whose parameter values are those specified. In this equilibrium all
three pure trading patterns arise. The top graph in Fig. 3 shows transaction
prices. The trading pattern is S for periods 0 to 2. It is PS for periods 3 to
7. In period 8 and 9 the good goes on ``sale'' (as sellers switch from offering
the high-value-buyer reservation price to the low-value-buyer reservation
price) and the trading pattern is P. The bottom graph shows the evolution
of the market composition and the ratio ?t .

The set of competitive prices for the market in Fig. 3 is the interval
[0.2, 0.4]. We focus on the competitive price of 0.3, since in a market equi-
librium all transactions are at this price as frictions vanish (see Proposi-
tion 4). Table II shows the distribution of the surplus in four different set-
tings: (i) at the (static) competitive equilibrium when price is 0.3; (ii) under
efficient trading when price is 0.3; (iii) in the market equilibrium displayed
in Fig. 3; and (iv) in the market equilibrium when information is complete
(we comment on this last example in Section 4). Interestingly, in the
market equilibrium displayed in Fig. 3 sellers capture more than twice the
surplus than they capture in the competitive equilibrium. The market equi-
librium is not efficient, since low-value buyers do not trade when matched
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FIG. 3. Equilibrium in the low-cost case (bH
0 =0.94, uH=1, uL=0.4, c=0.2, $=0.9, :=0.5).

in periods 0 through 2 and trade only if they propose in periods 3 through 7.
The efficiency loss is small (0.0042=0.6943&0.6901) since only 60 of the
buyers are low-value at the market open. In this example, low-value buyers and
sellers experience delay. Conditional on trading, a low-value buyer remains in
the market an average of 6.18 periods in equilibrium, whereas he would remain
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TABLE II

The Division of Surplus

Surplus

Trading High value Low value Seller Total

Competitive 0.6580 (860) 0.0060 (0.70) 0.1000 (130) 0.7640
Efficient 0.5980 (860) 0.0055 (0.70) 0.0909 (130) 0.6943
Incomp. info. 0.4740 (690) 0.0033 (0.40) 0.2128 (300) 0.6901
Comp. info. 0.4353 (630) 0.0018 (0.20) 0.2526 (360) 0.6897

in the market an average of only 1.99 periods under efficient trading. The
length of the delay experienced by sellers is small because high-value buyers
are abundant (bH

0 =0.96) and they trade with no delay.

Market Equilibria as Friction Vanish
Proposition 4 below establishes that as frictions vanish (i) transaction

prices converge to the competitive equilibrium price p*=(uL+c)�2,
(ii) each trader receives his competitive equilibrium utility, and (iii) the
surplus approaches the unconstrained surplus (equal to bH

0 (uH&c)+
(1&bH

0 )(uL&c) in this case). For each $ # (0, 1) and T, denote by r($, T )
the set of all sequences of equilibrium reservation prices, and by V($, T )
the set of all sequences of equilibrium expected utilities. (Since a market
equilibrium always exists, these sets are nonempty.) Also denote by G($, T )
the set of all possible surpluses realized in equilibrium (i.e., the set of
surpluses associated with the equilibrium trading patterns).

Proposition 4. Assume that c<uL.

(P4.1) If T<�, then for every t� # [0, ..., T]:

(P4.1.1) lim$ � 1 limT � � r{
t� ($, T )=limT � � lim$ � 1 r{

t� ($, T )=p* for { #
[H, L, S].

(P4.1.2) lim$ � 1 limT � � V {
t� ($, T )=limT � � lim$ � 1 V {

t� ($, T )=u{&p*
for { # [H, L]; lim$ � 1 limT � � V S

t� ($, T )=limT � � lim$ � 1 V S
t� ($, T )=

p*&c.

(P4.1.3) lim$ � 1 limT � � G($, T )=limT � � lim$ � 1 G($, T )=bH
0 (uH&c)

+bL
0 (uL&c).

(P4.2) If T=�, then for every t� # [0, ..., T]:

(P4.2.1) lim$ � 1 r{
t� ($, T )= p* for { # [H, L, S].

(P4.2.2) lim$ � 1 V {
t� ($, T )=u{& p*, for { # [H, L], and lim$ � 1 V S

t� ($, T )
=p*&c.

(P4.2.3) lim$ � 1 G($, T )=bH
0 (uH&c)+bL

0 (uL&c).
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Although transaction prices converge to a competitive price, delay per-
sists even as market frictions vanish and, in this sense, the market outcome
is not competitive. Consider a market in which bH

0 >?* and let ( p, r, *) be
a market equilibrium. By Proposition 3 the trading pattern is either S,
S�PS, or PS at the market open. Define the sequence [b

�
H
t ] as b

�
H
0 =bH

0 and,
for t�0

b
�

H
t+1=

(1&:) b
�

H
t

(1&:) b
�

H
t +1&b

�
H
t

.

The sequence [b
�

H
t ] describes the evolution of the market composition as

though the trading pattern is always S. Since the proportion of high-value
buyers in the market falls more quickly in S than in the other trading pat-
terns, then bH

t �b
�

H
t for all t�0. Therefore, if t

�
is the smallest integer such

that b
�

H
t
�

�?*, then we have bH
t >?* for t<t

�
; hence the trading pattern is

either S, an S�PS, or PS for periods 0 through t
�
&1. Thus, low-value

buyers and sellers experience delay.
Since t

�
is independent of the time horizon and the discount factor, delay

persists even as frictions vanish. The surplus, however, approaches the
unconstrained surplus, and therefore the welfare loss of inefficient trading
approaches zero as friction vanish. This is a consequence of the fact that
the length of delay is bounded (because the number of periods before the
trading pattern is always pooling is bounded above, see (P3.2)), and
therefore the cost of delay approaches zero as frictions vanish.

4. MODELING ISSUES AND EXTENSIONS

We analyze a market with one-sided incomplete information and equal
measures of buyers and sellers. Our setup, however, can accommodate
other markets. In this section we discussion some interesting extensions.

4.1. Complete Information

Under complete information (i.e., when sellers observe buyers' values)
sellers may condition their price offers on the buyer's value. Our model can
be readily modified to accommodate this possibility. It is easy to show that
in the high-cost case the analog of Proposition 1 holds. In the low-cost
case, the main difference is that the PS trading pattern never arises; low-
value buyers and sellers trade whenever rL

t >rS
t , because sellers can dis-

criminate between high- and low-value buyers. As the example in Fig. 4
shows, the S, the P, and the even mixed trading patterns (when rL

t =rS
t ) may
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FIG. 4. Equilibrium in the low-cost case��complete information (bH
0 =0.94, uH=1,

uL=0.4, c=0.2, $=0.9, :=0.5).

arise in equilibrium. In Fig. 4 seller price offers to high-value and low-value
buyers are denoted by pSL

t and pSH
t respectively.

The parameter values for this market are the same as in Fig. 3, but infor-
mation is now complete. The trading pattern is S in periods 0�4, it is mixed
at period 5, and it is P thereafter. High-value buyers are worse off when infor-
mation is complete than when it is incomplete (see Table II) because they no
longer trade at ``sale'' prices (i.e., at the low-value buyer reservation price).
Sellers are better off because even in the pooling trading pattern they trade
at the high-value buyer reservation price when proposing to high-value
buyers, and because they trade with no delay with low-value buyers whenever
rL

t >rS
t . Low-value buyers are worse off because, except in the last period,

sellers have higher reservation prices. Perhaps surprisingly, the surplus
realized in equilibrium is less when information is complete (0.6897) than
when it is incomplete (0.6901). It is easy to construct examples in which the
opposite inequality holds. Hence, whereas heterogeneity is clearly a source of
inefficiency, the presence of asymmetric information may enhance efficiency.

4.2. Unequal Measures

Our assumption that buyers and sellers are present in the market in
equal measures does not seem to be a significant restriction as unequal
measures can be equalized by introducing a positive measure of a nontrading
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FIG. 5. (a) Two-sided uncertainty (cH>uH). (b) Two-sided uncertainty (cH<uH).

type. For example, the low-cost case in which there is a measure 1 of
buyers and a measure sL of sellers, with sL<1, can be modelled by intro-
ducing a measure 1&sL of sellers, each with unit cost cH, where cH is
greater than uH, so that supply and demand are as given in Fig. 5a. By the
same reasoning, our model of the high-cost case can be interpreted as a
model of the situation where (high-value) buyers are present in the market
in smaller measure than sellers (and low-value buyers are a nontrading
type introduced to equalize measures). Introducing new types, however,
renders the analysis more cumbersome when it makes the information
uncertainty ``two-sided.''

4.3. Two-Sided Incomplete Information

When uncertainty is two-sided as in Figs. 5a and 5b, the evolution of
the market composition at each date is described by the proportion of
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high-value buyers (bH
t ) and low-cost sellers (sL

t ), which are determined
endogenously by the trading patterns. In addition, the number of feasible
(pure) trading patterns increases significantly (a trading pattern now is
represented by an 8-dimensional vector).

The example in Fig. 6 suggests the features of market equilibrium when un-
certainty is two-sided. In the example, supply and demand are qualitatively the
same as in Fig. 5b. For simplicity, the example is developed for the case :=1
and $=1, so that the only friction present is the finite horizon. We denote by
pHB

t (rHB
t ) the price offer (reservation price) of high-value buyers at time t. Price

offers and reservation prices for low-value buyers (LB), high-cost sellers
(HS) and low-cost sellers (LS) are denoted analogously.

The graph in Fig. 6 shows transaction prices. The table below the graph
gives bH

t , sL
t , ?b

t and ?s
t for periods 0 through 9, where ?b

t =
(rLB

t &rLS
t )�(rHB

t &rLS
t ) and ?s

t=(rHB
t &rHS

t )�(rHB
t &rLS

t ). The vertical lines
in Fig. 6 separate distinct trading patterns. Equilibrium price offers depend
upon the relation of bH

t to ?b
t , sL

t to ?s
t , and the sign of ?s

t and ?b
t . For

example, whether a high-value buyer offers the high or low-cost seller reser-
vation price depends on the relation of sL

t to ?s
t . Since rHS

t >rLS
t , a high-

value buyer obtains rHB
t &rHS

t if he offers rHS
t (this offer is accepted by both

types of sellers); he obtains the expected gain of sL
t (rHB

t &rLS
t ) if he offers

rLS
t (this offer is accepted only by low-cost sellers). Hence high-value buyers

offer rLS
t if sL

t >?s
t and offer rHS

t if sL
t <?s

t . In the example, high-value
buyers offer rLS

t in periods 0 to 4 and offer rHS
t in periods 5 to 9. Whether

low-value buyers offer rLS
t or make a smaller (rejected) price offer depends

on the sign of ?b
t . If ?b

t >0 then rLB
t >rLS

t , and low-value buyers offer rLS
t ;

otherwise they make price offers which are rejected. In the example, low-
value buyers make price offers which are rejected in periods 0 to 2, but
offer the low-cost seller reservation price thereafter. Similarly, low-cost
sellers offer rHB

t if bH
t >?b

t , and rLB
t if bH

t <?b
t ; high-cost sellers offer rHB

t if
?s

t>0, and make rejected offers otherwise.
Qualitatively, the trading patterns of this example are similar to the low-

cost case: high-value buyers and low-cost sellers always trade; in periods 0
to 2 there is no other trade; from period 3 on, low-value buyers trade when
they propose to low-cost sellers; from period 4 on, high-cost sellers trade
when they propose to high-value buyers; from periods 5 to 9 all matches
(except those between low-value buyers and high-cost sellers) end with
trade. In equilibrium the average price received by sellers is 0.4164, which
is close to 0.4, the competitive price. Note that in period 4 low-cost sellers
trade with both types of buyers, and hence in later periods only high-cost
sellers remain (i.e., sL

t =0). In period 5 high-value buyers trade with both
types of sellers, and hence in later periods only low-value buyers remain.
Thus, after period 5 there is no trade, since only low-value buyers and
high-cost sellers remain in the market.
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FIG. 6. Equilibrium with two-sided uncertainty (bH
0 =0.94, sL

0 =0.98, uH=1, uL=0.4,
cH=0.6, cL=0.2, $=:=1).

As this example illustrates, our model is easily modified to accommodate
the two-sided incomplete information case. However, the introduction of new
endogenous variables and the enlargement of the set of possible trading
patterns makes the study of this case considerable more complex. An analysis
of the trading patterns, dynamics, efficiency, and the asymptotic properties of
market equilibria for this case is an important topic for future research.

APPENDIX: PROOFS OF PROPOSITIONS 1 TO 4

We begin stating a number of lemmas��see Moreno and Wooders [5]
for proofs. Throughout assume that ( p, r, *) is a market equilibrium.
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Lemmata. \t # [0, ..., T]:

1. \{ # [H, L, S], \k, k$ # [1, ..., n{]:

(L1.1) r{k
t =r{k$

t ;

(L1.2) R{k
t =R{k$

t ;

(L1.3) P{k
t =P{k$

t ;

(L1.4) V {k
t =V {k$

t .

2. \{ # [H, L], \i�n{:

(L2.1) p{i
t �rS

t ;

(L2.2) r{
t >rS

t O p{i
t =rS

t ;

(L2.3) r{
t <rS

t O p{i
t <rS

t .

3. If rH
t >max[rL

t , rS
t ] then \j�nS:

(L3.1) pSj
t # [rL

t , rH
t ];

(L3.2) bH
t <?t O pSj

t =rL
t ;

(L3.3) bH
t =?t O PS

t (rH
t )=PS

t (rL
t );

(L3.4) bH
t >?t O pSj

t =rH
t .

4. (L4.1) rH
t >rL

t ;

(L4.2) V H
t &V L

t �:(uH&uL) 1&$T&t+1(1&:)T&t+1

1&$(1&:) .

5. (L5.1) rH
t >rS

t ;

(L5.2) V H
t +V S

t �:(uH&c) 1&$T&t+1(1&:)T&t+1

1&$(1&:) ;

(L5.3) bH
t V H

t +bL
t V L

t +V S
t �:(bH

t uH+bL
t uL&c) 1&$T&t+1(1&:)T&t+1

1&$(1&:) .

6. (L6.1) pHi
t =rS

t , \i�nH;

(L6.2) zHi
t =1, \i�nH;

(L6.3) PH
t =uH&rS

t ;

(L6.4) RL
t =uL&rL

t ;

(L6.5) RS
t =rS

t &c.

7. The sequence [bH
t ]T+1

t=0 is decreasing.

For 8 to 12 assume that c<uL.

8. (L8.1) pSj
t =rL

t \j�nS and ?t=?* O ?t&1=?*;

(L8.2) pSj
t =rL

t \j�nS and ?t<?* O ?t&1<?*.
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9. (L9.1) bH
t �?*�?t O ?*�?t&1 ;

(L9.2) bH
t >?*�?t O ?*>?t&1 ;

(L9.3) bH
t �?*�?t and pSj

t =rH
t for some j�nS O ?*>?t&1 .

10. Assume that there is T� �T such that ?*=?t for t # [T� , ..., T]:

(L10.1) bH
t <?* O ?*=?s for s�t;

(L10.2) bH
t =?* O either bH

t+1<?* or bH
s =?* for s�t;

(L10.3) bH
t >?* O ?*�?s for s�t.

11. Assume T<�. There is =(:, T )>0 such that if $ # [1&=(:, T ), 1],
then rL

t &rS
t �0 O rL

t&1&rS
t&1<0.

12. Assume T=�. There is T� <� such that for t�T� : zHS
t =zSH

t =zLS
t =

zSL
t =1 (i.e., the trading pattern is pooling), r{

t =r{ \{ # [H, L, S], and
?t=?*.

We are now ready to prove Propositions 1 to 4.

Proof of Proposition 1. (P1.1.1) holds by (L1.1), and (P1.1.2) follows
from (L5.1) and the fact that rS

t �c>uL�rL
t for t # [0, ..., T]. Also (P1.2)

is implied by (P1.1.2), (L2.2), (L2.3), and (L3.4). In order to prove (P1.3),
note that (P1.2) implies I( pLi

t , rS
t )=I(rL

t , pSj
t )=0 for i�nL, j�nS and

t # [0, ..., T]; therefore zLi
t =0 for i�nL and t # [0, ..., T]. Also since zHi

t =1
for i�nH and t # [0, ..., T] by (L6.2), we have

bH
t =

bH
t&1 (1&:zH

t&1)
bH

t&1 (1&:zH
t&1)+bL

t&1 (1&:zL
t&1)

=
(1&:) bH

t&1

(1&:) bH
t&1+1&bH

t&1

<bH
t&1 .

As for (P1.4), the surplus realized in equilibrium can be readily calculated
from (S.1)�(S.2). Note that (P1.2) implies that the equilibrium trading
patterns, z� , satisfy z� HS

t =z� SH
t =z� H

t =1 and z� LS
t =z� SL

t =z� L
t =0. Hence (S.2)

yields gL ($, T, z� )=0, and

gH($, T, z� )=:+$(1&:) :+ } } } +$T (1&:)T :

=
:(1&$T+1 (1&:)T+1)

1&$(1&:)
.
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Substituting in (S.1) yields

G($, T )=G($, T, z� )=bH
0 (uH&c)

:(1&$T+1 (1&:)T+1)
1&$(1&:)

,

which establishes (P1.4). (P1.5.2) and (P1.6.2) follow immediately.
We prove (P1.5.1). All transactions are at either the high-value-buyer or

the seller reservation price. These prices are determined, for t<T, by the
system of difference equations

_rH
t

rS
t &=(1&$) _uH

c &+$ _
1&

:
2

:
2

bH
t+1

:
2

1&
:
2

bH
t+1& _rH

t+1

rS
t+1& (RH)

Thus, since 1& :
2 (1+bH

k )�1& :
2 for each k, we have

rH
t &rS

t =(1&$)(uH&c)+_1&
:
2

(1&bH
t+1)& (rH

t+1&rS
t+1)

�(uH&c) _(1&$)
1&$T&t \1&

:
2+

T&t

1&$ \1&
:
2+

+$T&t \1&
:
2+

T&t& .

Also from above we have for each t

bH
t =

(1&:) bH
t&1

(1&:) bH
t&1+1&bH

t&1

=
(1&:)t bH

0

1&[1&(1&:)t] bH
0

.

Since �T&t
k=0 $k� 1

1&$ , 1

1&[1&(1&:)k] b
0
H< 1

1&b
0
H , and (1&:)k<(1& :

2)k for
k>0,

rS
t =(1&$) c+$ _rS

t+1+
:
2

bH
t+1 (rH

t+1&rS
t+1)&

=c+
:
2

:
T

k=t+1

$k&tbH
k (rH

k &rS
k )

<c+
:
2

(uH&c)
bH

0

(1&bH
0 ) _1&$ \1&

:
2+&

't ($, T ),
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where

't ($, T )= :
T

k=t+1

$k&t \1&
:
2+

k

_1&$+
:
2

$T&k+1 \1&
:
2+

T&k

& .

If T<�, then

't ($, T )=(1&$) $ \1&
:
2+

t+1 1&$T&t \1&
:
2+

T&t

1&$ \1&
:
2+

+
:
2 \1&

:
2+

T

(T&t) $T&t+1,

and since limT � � (T&t)(1& :
2)T=0, we have

lim
T � �

lim
$ � 1

't ($, T )= lim
$ � 1

lim
T � �

't ($, T )=0.

If T=�, then

lim
$ � 1

't ($, T )= lim
$ � 1

(1&$) $ \1&
:
2+

t+1 1

1&$ \1&
:
2+

=0.

Since rS
t �c, if T<� we have

lim
T � �

lim
$ � 1

rS
t = lim

$ � 1
lim

T � �
rS

t =c;

and if T=� we have lim$ � 1 rS
t =c. Also, the above inequality and

(P1.1.2) imply

rS
t <rH

t �(uH&c) _(1&$)
1&$T&t \1&

:
2+

T&t

1&$ \1&
:
2+

+$T&t \1&
:
2+

T&t&+rS
t .
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Hence if T<� we have

lim
T � �

lim
$ � 1

rH
t = lim

$ � 1
lim

T � �
rH

t =c;

and if T=� we have lim$ � 1 rH
t =c. Therefore, (P1.5.1) and (P1.6.1)

hold. K

Proof of Proposition 2. (P2.1.1) is (L1.1); (P2.1.2) is implied by (L4.1)
and (L5.1); (P2.2) is (L6.1); (P2.3.1) is contained in (L2.1); (P2.4.1) is
implied by (P2.1.2) and (L3.1).

We prove (P2.3.2). Assume that T<�. As V H
T+1=V L

T+1=V S
T+1=0,

by Lemma 11 there is =(:, T )>0 such that if $>1&=(:, T ), then rL
t �rS

t

implies rL
t&1<rS

t&1 . Suppose that $ # [1&=(:, T ), 1]. If pLi
t� <rS

t� for some
i�nL, then (L2.2) implies rL

t� �rS
t� ; hence rL

t� &1<rS
t� &1 , and by induction

rL
t <rS

t for t<t� ; therefore (L2.3) implies pLi
t <rS

t for every t<t� and i�nL.
This establishes (i) of (P2.3.2). Now assume that pLi $

t� =rS
t� for some i $�nL,

and suppose by way of contradiction that pLi "
t� {rS

t� for some i"�nL and
t̂>t� . Then pLi "

t� <rS
t� by (L2.1). The previous argument implies pLi

t <rS
t for

every t< t̂ and i�nL; in particular, pLi $
t� <rS

t� , which is a contradiction.
We now prove (P2.4.2). If T<�, since V H

T+1=V L
T+1=V S

T+1=0, we
have rH

T =uH, rL
T=uL, and rS

T=c; therefore ?T=?*, and hence Lemma 10
applies. Assume that pSj

t� =rL
t� for some j�nS. Then we have bH

t� �?*, for if
bH

t� >?* then bH
t� >?t� by (L10.3), and therefore we would have pSj

t� =rH
t� for

each j�nS by (L3.4) and (P2.1.2), which is a contradiction. Suppose that
bH

t� <?*; then ?t=?* for each t�t� by (L10.1), and therefore Lemma 7
implies bH

t <?t for each t�t� . Thus pSj
t =rL

t for every t�t� and j�nS by
(L3.2). Suppose that bH

t� =?*; then either bH
t� +1<?* or bH

t =?* for t�t� by
(L10.2). If bH

t� +1<?*, then (L10.1) again implies bH
t <?t for each t�t� +1

and therefore pSj
t =rL

t for every t�t� +1 and j�nS, by (L3.2). If bH
t =?* for

t�t� , since high-value buyers always trade when they are matched (by P2.2,
P2.1.2, and P2.4.1), then low-value buyers must also trade when matched;
hence pSj

t =rL
t for every t�t� +1 and j�nS. If T=�, then there is T� such

that ?T� =?* by (L12.4), and therefore the same arguments apply.
We establish (P2.4.3). Suppose by way of contradiction that pSj $

t� =rH
t� for

some j $�nS, and pSj "
t̂ =rL

t̂ for some j"�nS and t̂<t� . Then (P2.4.2) implies
pSj

t =rL
t for every t> t̂ and j�nS. In particular, pSj $

t� =rL
t� , which is a con-

tradiction.
Finally, we prove (P2.5). If pSj

t� =rL
t� for some j�nS then (L3.4) implies

bH
t� �?t� , and since bH

t� >0 and rH
t� &rS

t� >0, by (L5.1), we have rL
t� &rS

t� >0.
Hence pLi

t� =rS
t� for every i�nL by (L2.2). K

Proof of Proposition 3. If T<�, since V H
T+1=V L

T+1=V S
T+1=0, we

have ?T=?*. If T=�, then by Lemma 12 there is T� such that ?t=?* for
t�T� . Hence the assumptions of Lemma 10 hold.
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We prove (P3.1.1). Assume bH
t� <?*; then bH

t� <?t� by (L10.1), and there-
fore pSj

t� =rL
t� for j�nS by (L3.2); hence pLi

t� =rS
t� by (P2.5) for every i�nL.

Thus I( pLi
t� , rS

t� )=I(rL
t� , pSj

t� )=1, and therefore

zLi
t� = 1

2 :
nS

j=1

*Sj
t� I( pLi

t� , rS
t� )+ 1

2 :
nS

j=1

*Sj
t� I(rL

t� , pSj
t� )=1.

Since zHi
t� =1 for each i�nH by (L6.2), we have

bH
t� +1=

(1&:) bH
t�

(1&:) bH
t� +(1&:) bL

t�
=bH

t� .

We establish (P3.1.2). Assume bH
t� =?*. Then by (L10.2) either bH

t� +1<?*
or bH

t� = } } } =bH
T =?*. If bH

t� +1<?*=bH
t� , then bH

t� +1<?t� +1 (by (L10.1)),
and pSj

t� +1=rL
t� +1 for every j�nS by (L3.2). Hence ?t� =?*>0 by (L8.1),

and therefore rL
t� >rS

t� (because rH
t� >rS

t� by (P2.1.2)), and (L2.1) implies
pLi

t� =rS
t� for every i�nL. If bH

t� = } } } =bH
T =?*, since zH

t =1, then zLi
t =1 for

i�nL and t�t� ; hence for t�t� we have pLi
t =rS

t for i�nL, and pSj
t =rL

t for
j�nS.

We show that (P3.1.3) holds. Suppose that bH
t� >?*; then bH

t� >?t� by
Lemma (L10.3), and therefore pSj

t� =rH
t� for each j�nS by (L3.4). Since

rH
t� >rL

t� by (L4.1), then I(rL
t� , pSj

t� )=0 for each j�nS, and therefore for each
i�nL we have

zLi
t� = 1

2 :
nS

j=1

*Sj
t� I( pL

t� , rSj
t� )� 1

2 .

Thus, since zH
t� =1 by (L6.2), we get

bH
t� +1=

(1&:) bH
t�

(1&:) bH
t� +bL

t� (1&:zL
t� )

�
(1&:) bH

t�

(1&:) bH
t� +(1& :

2)(1&bH
t� )

<bH
t� .

Finally, we establish (P3.2). Since [bH
t ] is a decreasing sequence by

Lemma 7, it suffices to show that there is T� such that bH
T� �?*. If bH

0 �?*,
take T� =0. Assume that bH

0 >?*; w show that there is T� =T� (bH
0 , :, ?*)

such that bH
T� <?*. Define the sequence [b

� t] by b
� 0=bH

0 , and for t>0

b
� t+1 =

(1&:) b
� t

(1&:) b
� t+(1& :

2)(1&b
� t)

=
(1&:)t+1 bH

0

(1&:)t+1 bH
0 +(1& :

2)t+1 (1&bH
0 )

.
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We show that bH
t >?* implies bH

t+1�b
� t+1 . Assume bH

t >?*; we show by
induction that bH

k �b
� k for k�t+1. By construction bH

0 �b
� 0 . Assume that

bH
k �b

� k for k�t; we show that bH
k+1�b

� k+1 . Since [bH
t ] is nonincreasing

by Lemma 7 and k�t, then bH
k �bH

t >?*. Therefore (P3.1.3) implies
pSj

k =rH
k , and hence I(rL

k , pSj
k )=0, for every j�nS. Therefore zLi

k � 1
2 for

every i�nL. Since zH
k =1, we have

bH
k+1 =

(1&:) bH
k

(1&:) bH
k +bL

k (1&:zL
k )

�
(1&:) b

� k

(1&:) b
� k+(1& :

2)(1&b
� k)

=b
� k+1 .

Let T� =T� (bH
0 , :, ?*) be the first integer such that b

� T� <?*. (Such an integer
exists since [b

� t] converges to zero.) We show that bH
T� �?*. Suppose bH

T� >
?*; then bH

T� &1>?* by Lemma 7, and hence bH
T� �b

� T� <?*, which is a con-
tradiction. Hence (P3.2) holds. K

Proof of Proposition 4. For each $ # (0, 1) and T, let r # r($, T ) be a
sequence of equilibrium reservation prices and let V be the corresponding
sequence of expected utilities. By (P3.2) there is T� =T� (bH

0 , :, ?*) such that
if T>T� , then bH

t �?* for t�T� . Assume that T>T� . Thus, (P3.1.1) and
(P3.1.2) imply pSj

t =rL
t <rH

t for every j�nS and t�T� +1, and therefore
pLi

t =rS
t for every i�nL and t�T� +1 by (P2.5). Also pHi

t =rS
t for every

i�nH and t by (P2.2). Hence for t�T� +1 the trading pattern is pooling
(i.e., zL

t =1 for t�T� +1), and therefore traders' reservation prices for
t�T� +1 are given by the system of difference equations

V H
t 2uH&uL&c

1&:
:
2

&
:
2

V H
t+1

_V L
t &=

:
2 _ uL&c &+$ _ 0 1&

:
2

&
:
2 & _V L

t+1& .
V S

t uL&c
0 &

:
2

1&
:
2

V S
t+1

The solution of this system, whether T is finite, and therefore VH
T+1=

VL
T+1=V S

T+1=0, or T is infinite, is

V {
t =

:
2

(uL&c)
1&[$(1&:)]T&t+1

1&$(1&:)
,
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for { # [L, S], and

VH
t =

:
2

(2uH&uL&c)
1&[$(1&:)]T&t+1

1&$(1&:)
.

Hence if T<�, for t�T� +1 we have

lim
$ � 1

lim
T � �

V S
t = lim

T � �
lim
$ � 1

V S
t =

uL&c
2

= lim
$ � 1

lim
T � �

V L
t = lim

T � �
lim
$ � 1

VL
t ,

and

lim
$ � 1

lim
T � �

V H
t = lim

T � �
lim
$ � 1

V H
t =uH&

uL+c
2

.

If T=�, for t�T� +1 we have

lim
$ � 1

V S
t =

uL&c
2

= lim
$ � 1

V L
t ,

and

lim
$ � 1

V H
t =uH&

uL+c
2

.

Now let t<T� +1. A trader of type { who is in the market at date t
obtains an expected utility of V {

t by following his equilibrium strategy; thus
the expected utility to a trader who remains in the market at t must satisfy
V {

t �$T� +1&tV {
T� +1 , for otherwise he benefits from a deviation where he

makes unacceptable offers and rejects any offers until date T� +1, following
his equilibrium strategy thereafter. Also V H

t +V S
t �uH&c by (L5.2). Thus

$T� +1&tV S
T� +1�V S

t �uH&c&V H
t �uH&c&$T� +1&tV H

T� +1 .

Also

$T� +1&tV H
T� +1�V H

t �uH&c&V S
t �uH&c&$T� +1&tV S

T� +1 ;

Therefore if T<� we have

lim
$ � 1

lim
T � �

V S
t = lim

T � �
lim
$ � 1

V S
t =

uL&c
2

,
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and

lim
$ � 1

lim
T � �

V H
t = lim

T � �
lim
$ � 1

V H
t =uH&

uL+c
2

.

Similarly, if T=� we have

lim
$ � 1

V S
t =

uL&c
2

,

and

lim
$ � 1

V H
t =uH&

uL+c
2

.

For low-value buyers, we can write the expected utility at time t of a
low-value buyer who follows the i th low-value buyer strategy as

V L
t =

:
2

[(uL& pLi
t ) I( pLi

t , rS
t )+$V L

t+1 (1&I( pLi
t , rS

t ))]

+
:
2

:
nS

j=1

*Sj
t [(uL& pSj

t ) I(rL
t , pSj

t )+$V L
t+1 (1&I(rL

t , pSj
t ))]

+(1&:) $V L
t+1 .

Further, (P2.4.1) and (E.1) imply (uL& pSj
t ) I(rL

t , pSj
t )+$V L

t+1(1&
I(rL

t , pSj
t ))=$V L

t+1 ; and therefore

V L
t =

:
2

[(uL&rL
t +rL

t & pLi
t ) I( pLi

t , rS
t )+$V L

t+1 (1&I( pLi
t , rS

t ))]

+\1&
:
2+ $V L

t+1

=
:
2

(rL
t & pLi

t ) I( pLi
t , rS

t )+$V L
t+1 .

Thus, by (L2.1)��(L2.3) and (E.1) this can be rewritten as

V L
t =

:
2

max[rL
t &rS

t , 0]+$V L
t+1

=
:
2

max[uL&c&$(V L
t+1+V S

t+1), 0]+$V L
t+1 .
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Assume T<�. If

lim
$ � 1

lim
T � �

V L
t+1= lim

T � �
lim
$ � 1

V L
t+1=

uL&c
2

,

then

lim
$ � 1

lim
T � �

V L
t =

:
2

max[uL&c& lim
$ � 1

lim
T � �

$V L
t+1& lim

$ � 1
lim

T � �
$V S

t+1 , 0]

+ lim
$ � 1

lim
T � �

$V L
t+1

=
uL&c

2
,

and

lim
T � �

lim
$ � 1

V L
t =

:
2

max[uL&c& lim
T � �

lim
$ � 1

$V L
t+1& lim

T � �
lim
$ � 1

$V S
t+1 , 0]

+ lim
T � �

lim
$ � 1

$V L
t+1

=
uL&c

2
.

Since

lim
$ � 1

lim
T � �

V L
T� +1 = lim

$ � 1
lim

T � �

:
2

(uL&c)
1&[$(1&:)]T&T�

1&$(1&:)

=
uL&c

2
= lim

T � �
lim
$ � 1

V L
T� +1 ,

induction yields

lim
$ � 1

lim
T � �

V L
t = lim

T � �
lim
$ � 1

V L
t =

uL&c
2

,

for t<T� +1. An analogous argument shows that if T=�, then

lim
$ � 1

V L
t =

uL&c
2

,

for t<T� +1. Hence (P4.1.2) and (P4.2.2) hold.

337PRICES, DELAY, AND TRADE DYNAMICS



Now we prove (P4.1.1) and (P4.2.1). By (E.1) we have rS
t =c+$V S

t+1

and r{
t =u{&$V {

t+1 for { # [H, L]. Therefore if T<� the above limits
imply

lim
$ � 1

lim
T � �

r{
t = lim

T � �
lim
$ � 1

r{
t =

uL+c
2

,

for { # [H, L, S] and t # [0, ..., T]. If T=�, then

lim
$ � 1

r{
t =

uL+c
2

for { # [H, L, S], and t # [0, ..., T].
Finally, given a sequence of equilibrium trading patterns, z, the surplus

realized can be calculated from Eqs. (S.1) and (S.2) in Section 2. Since
zH

t =1 by (L6.2), we have

gH($, T, z)=
:(1&$T+1 (1&:)T+1)

1&$(1&:)
.

Also for t>T� =T� (bH
0 , :, ?*) the trading pattern is pooling, i.e., zL

t =1, and
hence for T>T� we have

gL($, T, z)=:zL
0 +$(1&:zL

0 ) :zL
1 + } } }

+$T� (1&:zL
0 )(1&:zL

1 ) } } } (1&:zL
T� &1) :zL

T�

+$T� +1 (1&:zL
0 )(1&:zL

1 ) } } }

_(1&:zL
T� )

:(1&$T&T� (1&:)T&T� )
1&$(1&:)

.

Hence if T<� we have

lim
$ � 1

lim
T � �

g{ ($, T, z)= lim
T � �

lim
$ � 1

g{ ($, T, z)=1,

for { # [H, L], and therefore

lim
$ � 1

lim
T � �

G($, T, z)= lim
T � �

lim
$ � 1

G($, T, z)=bH
0 (uH&c)+bL

0 (uL&c).

If T=�, then

lim
$ � 1

gL ($, T, z)= lim
$ � 1

gH($, T, z)=1,
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and therefore

lim
$ � 1

G($, T, z)=bH
0 (uH&c)+bL

0 (uL&c).

Therefore (P4.1.3) and (P4.2.3) hold. K
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