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1 Introduction

The simplest form of Tullock contest is a lottery in which each player�s probability of

winning the prize is the ratio of the e¤ort he exerts and the total e¤ort exerted by

all players. Tullock (1980) also considers a more general class of contests, in which

the probability of success is taken to be the ratio between the individual and total

�productivities� of e¤orts, where the productivity of e¤ort is linked to the e¤ort

by a power function with a positive exponent that determines the returns to scale.

Baye and Hoppe (2003) have identi�ed a variety of economic settings (rent-seeking,

innovation tournaments, patent races), which are strategically equivalent to Tullock

contests. In addition, Tullock contests arise by design, e.g., in sport competition,

internal labor markets �axiomatic justi�cations for this class of contests are o¤ered

by, e.g., Skaperdas (1996) and Clark and Riis (1998).

Existence of pure strategy Nash equilibria in Tullock contests with complete in-

formation has long been known � see, e.g., Perez-Castrillo and Verdier (1992) for

symmetric contests, and Cornes and Hartly (2005) for asymmetric contests. Szi-

darovszky and Okuguchi (1997) established existence and uniqueness of equilibrium

for a general class of Tullock contests (henceforth referred to as Tullock SO-contests),

for which the �production function for lotteries�of each player is twice continuously

di¤erentiable, strictly increasing, concave, and vanishes at zero.

More recently, there has been a growing interest in studying the conditions under

which a Tullock contests with incomplete information has a pure strategy Bayesian

Nash equilibrium. In the private values two-player setting, Hurley and Shogren (1998)

consider Tullock lotteries with one-sided asymmetric information, while Malueg and

Yates (2004) and Fey (2008) study Tullock lotteries with ex ante symmetric players

and two-sided private information represented by a binary type set. Fey (2008) also

establishes existence of symmetric equilibrium when players�constant marginal costs

of e¤ort are independently and uniformly distributed; Ryvkin (2010) extends Fey

(2008)�s results to more general multi-player symmetric contests. Warneryd (2003)

studies two-player SO-Tullock contests in which players have a common value drawn

from a continuous distribution and a common constant marginal cost of e¤ort, and

in which each player either observes the value or only knows the distribution from

which the value is drawn; Warneryd (2012) extends this study to a multi-player

setting. Wasser (2013a) considers modi�ed, continuous versions of Tullock lotteries
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(see also Wasser (2013b), who establishes existence of equilibrium in private-value

imperfectly discriminating contests with everywhere continuous success function).

We prove the existence of pure strategy Bayesian Nash equilibria in a class of

incomplete information Tullock contests with several general features. In our setting,

the contest success function as well as each player�s value for the prize and cost of

e¤ort may depend on the state of nature. Moreover, players�information about the

realized state of nature is described by a (countable) partition of the set of states of

nature, which allows for a broad class of asymmetric information structures.

The class of (generalized) Tullock contests that we consider is characterized by

the following three properties of the success function. At each state of nature, each

player�s probability of winning the prize is: (i) continuous with respect to the e¤orts

of all players whenever the total e¤ort is positive, (ii) non-decreasing and concave in

his own e¤ort, and (iii) equal to 1 if he is the only player who exerts positive e¤ort.

Tullock lotteries, and more generally Tullock SO-contests, satisfy these properties.

But our class of contests is broader, and admits success functions that may be neither

di¤erentiable, nor additively separable in aggregating players�productivities, as well

as success functions that are state-dependent. (However, when the set of states of

nature is uncountable we introduce an assumption that limits the variability of the

success function with the state of nature.) As for the players� cost functions, we

assume that they are continuous, strictly increasing and convex, and vanish at zero.

Considering state-dependent success and cost functions, as well as non-linear cost

functions, enhances the scope of applications of our result. Situations in which the

marginal cost of e¤ort is state-dependent and/or increasing are common; e.g., the

opportunity cost of investing in an R&D project is likely to be state-dependent and

increasing in the size of the investment if the available funds are limited. Moreover,

as we allow a broad class of information structures, we in particular admit those in

which some players are completely informed and others completely uninformed, as

well as others, in which players may have partial and/or complementary information.

With the value for the prize being a general function of the state of nature, our result

would apply in the appropriate pure private value and common value settings.

Our proof of existence of pure strategy Bayesian Nash equilibrium in Tullock con-

tests builds on Reny (1999)�s equilibrium existence result for games with discontinu-

ous payo¤ functions. Payo¤s in contests satisfying the properties (i) �(iii) described

above are discontinuous at strategies prescribing zero e¤ort at some states of nature,
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and hence Reny (1999)�s theorem provides a continuity-bypassing tool. (The hint

of the usefulness of such an approach is present already in Baye et al. (1993), who

include an application of their equilibrium existence result for games with disconti-

nuities to proportional Tullock contests with complete information.) The main step

of our proof shows that a contest in this class is a better-reply-secure game, which

is one of the main premises of Reny (1999)�s theorem. Better reply security of the

expected payo¤ functions is a weakening of the usual continuity requirement.

It is worth noting that Nash�s existence theorem remains a viable alternative to

establishing existence of equilibrium in Tullock contests. Following this approach Einy

et al. (2013), the discussion paper upon which the current work is based, provides

a proof that considers �truncated� contests in which players choose e¤orts from a

compact interval with a positive lower bound, in which the expected payo¤ functions

are continuous and therefore existence of equilibrium is assured by Nash�s theorem.

(The idea to bound the e¤ort sets away from zero, and then let the bounds drop, is

already present in Fey (2008) �see the proof of his Theorem 1 and footnote 12.) The

crux of the proof in Einy et al. (2013) is to show that a limit point of the sequence

of equilibria of truncated contests with a lower bound on players�e¤orts approaching

zero is an equilibrium in the original contest. Ewerhart and Quartieri (2013) also

follow this approach to establish existence of equilibrium in a setting in which the

state space is �nite, and players have di¤erentiable cost functions and face budget

constraints. (In addition, they show that equilibrium is unique, and derive results on

rent dissipation in their setting. See also Ewerhart (2014) for results on existence and

uniqueness of equilibrium when there is a continuum of types that are independently

drawn.)

2 Tullock Contests with Incomplete Information

A group of players N = f1; :::; ng; with n � 2; compete for a prize by choosing a

level of e¤ort in R+. Players� uncertainty about the state of nature is described
by a probability measure p (representing the players� common prior belief) over a

measurable space (
;z) of states of nature. The private information about the state
of nature of player i 2 N is described by an z-measurable and countable partition
�i of 
; specifying for each ! 2 
 the event �i(!) containing ! that agent i observes.
(Henceforth �nite or countably in�nite sets will be referred to as countable.) W.l.o.g.
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we assume that p(�i) > 0 for each �i 2 �i.
The value for the prize of each player i 2 N is given by an z-measurable and

integrable random variable Vi : 
 ! R++, i.e., if ! 2 
 is realized then player i�s
value for the prize is Vi(!). The cost of e¤ort of each player i 2 N is given by function

ci : 
� R+ ! R+ that is jointly measurable,1 and is such that
(i) for every x 2 R+ the random variable ci(�; x) is integrable, and
(ii) for any ! 2 
 the function ci(!; �) is strictly increasing, continuous, convex,

and vanishes at 0.

Upon observing the event containing the realized state of nature ! 2 
 players
simultaneously choose their e¤ort levels x = (x1; :::; xn) 2 Rn+. The prize is awarded
to players in a probabilistic fashion, according to a state-dependent success function

that speci�es a probability distribution in the (n � 1)-dimensional simplex �n�1,

� : 
� Rn+ ! �n�1.

Denote by 0 2Rn+ the zero vector. The class of (generalized) Tullock contests
that we consider is characterized, in addition to (i) and (ii) above, by some simple

properties of the success function. Speci�cally, for each (!; x) 2 
� Rn+ and i 2 N :
(iii) � (!; �) is continuous on Rn+nf0g;
(iv) �i (!; x�i; xi) is non-decreasing and concave in the e¤ort xi of player i;

(v) �i (!; x) = 1 whenever xi > 0 and xj = 0 for all j 2 Nnfig; and
(vi) �i (�; x) is measurable with respect to �i:

Condition (vi) is very strong �when n = 2 it implies that �i (�; x) is measurable with
respect to the information partitions of both players, and hence (essentially) state-

independent. However, if the set of states of nature 
 is countable, then condition

(vi) will not be needed for our result. Henceforth (vi) will be imposed only if 
 is

uncountable.

A Tullock lottery is a particular Tullock contest in which the state-independent

success function �T is given for each x 2 Rn+nf0g and i 2 N by

�Ti (x) =
xiPn
j=1 xj

: (1)

It is easy to see that �T satis�es conditions (iii) �(vi). More generally, conditions (iii)

�(vi) are satis�ed by any success function � that is given for any ! 2 
; x 2 Rn+nf0g
1Joint measurability of ci; i.e., its measurability w.r.t. the tensor-product of z and the Borel

�-algebra on R+; assures that players� expected payo¤s in the contest are well de�ned � see (3)
below.
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and i 2 N by

�i (!; x) =
gi (!; xi)Pn
j=1 gj (!; xj)

; (2)

where, for every j 2 N; the state-dependent production function for lotteries gj(!; �) :
R+ ! R+ is strictly increasing, continuous, concave, and vanishes at 0 for every ! 2 

(and gj(�; xj) is �j-measurable for every xj 2 R+ if 
 is uncountable). Thus, our class
includes the incomplete information version of Tullock SO-contests (see Szidarovszky

and Okuguchi (1997)) where the functions g1; :::; gn are in addition state independent

and twice continuously di¤erentiable. In particular, the commonly assumed contest

success function given by gi (!; xi) = xri is a member of our class when the �impact

parameter�r is in (0; 1]:

A Tullock contest with incomplete information is formally represented by a col-

lection (N; (
;z; p); f�igi2N ; fVigi2N ; fcigi2N ; �): This representation can accommo-
date the familiar Harsanyi�s types model (with countable type sets). The present

framework, however, is more amenable to study the impact of changes in the infor-

mation structure, and has been used in the corresponding literature (see, e.g., Einy

et al. (2001) and Malueg and Orzach (2012) for studies of common-value �rst- and

second-price auctions).

In a Tullock contest, a pure strategy of player i 2 N is a �i-measurable function

Xi : 
! R+ (i.e., Xi is constant on every element of �i); that represents i�s choice of

e¤ort in each state of nature following the observation of his private information. We

denote by Si the set of strategies of player i, and by S = �ni=1Si the set of strategy
pro�les. For any strategy Xi 2 Si and �i 2 �i; Xi (�i) stands for the constant value

of Xi on �i. Also, given a strategy pro�le X = (X1; :::; Xn) 2 S; we denote by X�i

the pro�le obtained from X by suppressing the strategy of player i 2 N: Throughout
the paper we restrict attention to pure strategies.

For each strategy pro�le X = (X1; :::; Xn) 2 S we write

Ui(X) � E[�i (�; X(�))Vi(�)� ci (�; Xi(�))]: (3)

for the expected payo¤ of player i. Also, for �i 2 �i; we write

Ui(X j �i) � E[�i (�; X(�))Vi(�)� ci (�; Xi(�)) j �i]:

for the expected payo¤ of player i conditional on �i:

An n-tuple of strategies X� = (X�
1 ; :::; X

�
n) is a Bayesian Nash equilibrium if

Ui(X
�) � Ui(X�

�i; Xi) (4)
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for every player i 2 N , and every strategy Xi 2 Si; or equivalently, if

Ui(X
� j �i) � Ui(X�

�i; xi j �i) (5)

for every i 2 N; every �i 2 �i; and every e¤ort xi 2 R+ (viewed here as a strategy
in Si with a constant value xi on the set �i).

3 Existence of Equilibrium

In this section we state and prove our result.

Theorem. Every incomplete information Tullock contest satisfying (i) �(vi) has a

pure strategy Bayesian Nash equilibrium.2

Proof. Let C = (N; (
;z; p); f�igi2N ; fVigi2N ; fcigi2N ; �) be a Tullock contest.

Step 1. We show that it entails no loss of generality to assume that the set of

states of nature 
 is countable, and that each ! 2 
 occurs with positive probability
(and, in particular, f!g is measurable, i.e., z = 2
). These assumptions on C will

be maintained henceforth.

If 
 is countable, let 
0 be the set of all atoms (minimal measurable sets with posi-

tive probability) in the probability space (
;z; p) : De�ne the probability distribution
p0 on 
0 by

p0(f!0g) = p (!0) for every !0 2 
0; (6)

and, for every i 2 N; consider the partition �0i of 
0 that consists of the sets

�0i = f!0 2 
0 j !0 � �ig for every �i 2 �i: (7)

The players�values fVigi2N and costs fcigi2N , as well as the contest success function �,
all of which are z-measurable, can be viewed as functions on 
0 in the natural way.
Hence C 0 = (N; (
0; 2


0
; p0); f�0igi2N ; fVigi2N ; fcigi2N ; �) also constitutes a Tullock

contest. Since every strategy Xi of player i 2 N takes the constant value Xi (�i) on

each �i 2 �i, it is identi�able with his strategy X 0
i in C

0 that takes the value Xi (�i)

on each �0i 2 �0i (where �i = [�0i up to a zero-probability set). The map Xi ! X 0
i is

a bijection for each i, and there an obvious equality of the expected payo¤s under a

2Recall that (vi) is imposed only when the underlying set of states of nature 
 is uncountable.
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strategy pro�le X in C and under the corresponding strategy pro�le X 0 in C 0: Hence,

with the above identi�cation of strategies the contests C and C 0 are equivalent; note

that C 0 satis�es the required properties.

Assume next that 
 is uncountable. Let 
0 be the set of all positive probability

elements of �; where � = _i2N�i is the coarsest partition of 
 that re�nes each �i.
Since each �i is countable, so is 
0. De�ne the probability distribution p0 on 
0 as in

(6) above; and, for every i 2 N; consider the partition �0i of 
0 that consists of the
sets de�ned as in (7). Furthermore, for every !0 2 
0; x 2 Rn+; and i 2 N; de�ne

V 0i (!
0) � E[Vi j !0] and c0i (!0; xi) � E[ci (�; xi) j !0];

and note that

�0i (!
0; x) � �i (!; x) if ! 2 !0

is well-de�ned as �i is �i-measurable by condition (vi). It is easy to see that the

functions fV 0i gi2N are integrable on 
0; and that fc0igi2N and �0 satisfy conditions (i)�
(v) with 
0 as the new set of states of nature (speci�cally, the continuity of c0i(!

0; �)
in condition (ii) is an implication of the dominated convergence theorem and the

assumptions on ci). Thus, C 0 = (N; (
0; 2

0
; p0); f�0igi2N ; fV 0i gi2N ; fc0igi2N ; �0) also

constitutes a Tullock contest. Denote by U 0i the expected payo¤ function of player i

in C 0.

As in the case of countable 
; every strategy Xi of player i 2 N that takes the

constant value Xi (�i) on each �i 2 �i, is identi�able with his strategy X 0
i in C

0 that

takes the value Xi (�i) on each �0i 2 �0i (where �i = [�0i up to a zero-probability set);
the map Xi ! X 0

i is a bijection. Given a strategy pro�le X = (X1; :::; Xn); observe

that

Ui(X) =
X
!02
0

(�0i (!
0; X 0(!0)) � E[Vi j !0]� E[ci (�; X 0

i(!
0)) j !0]) � p (!0)

=
X
!02
0

(�0i (!
0; X 0(!0)) � V 0i (!0)� c0i (!0; X 0

i(!
0))) � p0 (f!0g)

= U 0i(X
0):

Hence, under the above identi�cation of strategies the contests C and C 0 are equiva-

lent.

Step 2. We construct a "bounded" variant C of the given contest C; in which

the strategy sets are compact.
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Since the cost function of each player is strictly increasing and convex in the

player�s e¤ort, limxi!1 ci(!; xi) =1 for every ! 2 
; and hence limxi!1E [ci(�; xi) j �i] =
1 by Fatou�s lemma for every i 2 N and �i 2 �i. It follows that for every i 2 N
and �i 2 �i there exists Qi�i > 0 such that E[Vi j �i] < E[ci(�; Qi�i) j �i]: Since
E[ci(�; 0) j �i] = 0; and since E[ci(�; xi) j �i] is continuous in xi on the interval�
0; Qi�i

�
by the dominated convergence theorem and the monotonicity of ci in xi;

there exists 0 < Q
i

�i
< Qi�i such that

E[Vi j �i] < E[ci(�; Q
i

�i
) j �i] < E[Vi j �i] + 1: (8)

(The �rst inequality ensures that choosing e¤ortQ
i

�i
gives player i a negative expected

payo¤ conditional on �i: The second inequality ensures that, when player i�s e¤ort

choices are bounded from above by Q
i

�i
on every �i; his ex ante expected cost is �nite,

since Vi is integrable by assumption.)

Consider a variant C of the given contest C; in which the e¤ort set of each player

i is restricted to be the bounded interval
h
0; Q

i

�i

i
given his information set �i: In C;

the set of strategies of player i, Si, is identi�able with the compact and metrizable

product set ��i2�i
h
0; Q

i

�i

i
via the the bijection Xi  ! (Xi (�i))�i2�i, and player i�s

expected payo¤ function Ui is concave in i�s own strategy (as ci(�; xi) is convex by
(ii) and �i(�; x) is concave in xi by (iv)).
For each i 2 N; the expected payo¤ function Ui is not continuous on S = �ni=1Si;

but we will show that it is continuous on S+; where S+ � S is the set that consists of
strategy-pro�les X such that X (!) 6= 0 for every ! 2 
: Indeed, consider a sequence�
Xk
	1
k=1
� S of strategy pro�les that converge (pointwise) to a pro�le X 2 S+: Then

lim
k!1

E[�i
�
�; Xk (�)

�
Vi(�)] = E[�i (�; X (�))Vi(�)]

by the dominated convergence theorem (note that limk!1 �i
�
!;Xk (!)

�
= �i (!;X (!))

for every ! 2 
 as � is continuous on Rn+nf0g by condition (iii)), and

lim
k!1

E[ci
�
�; Xk

i (�)
�
] = E[ci (�; Xi (�))];

also by the dominated convergence theorem3, as the continuity of the cost function

in e¤ort is ensured by condition (ii). It follows from (3) that

lim
k!1

Ui
�
Xk
�
= Ui (X) :

3The cost of i is bounded from above by the function that is equal to ci(�; Q
i

�i) on each �i; which

is integrable by the second inequality in (8).
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Each function Ui is also lower semi-continuous in the variable Xi 2 Si; i.e.,

for a �xed X�i 2 S�i � �j 6=iSj and every sequence fXk
i g1k=1 � Si that converges

(pointwise) to Xi; lim infk!1 Ui
�
X�i; X

k
i

�
� Ui (X�i; Xi). Indeed, for every ! 2 


lim inf
k!1

�
�i
�
!;X�i(!); X

k
i (!)

�
Vi(!)� ci

�
!;Xk

i (!)
��

� �i (!;X�i(!); Xi(!))Vi(!)� ci (!;Xi(!)) ;

since �i is lower semi-continuous in xi 2 R+ (as follows from conditions (iii) and (v)),
and ci is continuous in xi 2 R+: This inequality implies, by (3) and Fatou�s lemma,
that

lim inf
k!1

Ui
�
X�i; X

k
i

�
� Ui (X�i; Xi) :

Given the compactness of Si and the concavity of Ui in the variable Xi 2 Si;
for each i 2 N; existence of equilibrium in C is guaranteed by Theorem 3.1 of Reny

(1999), provided C is in addition better-reply-secure: if (a)
�
Xk
	1
k=1
� S is a sequence

such that the (pointwise) limit X � limk!1X
k exists and X is not a Bayesian Nash

equilibrium in C; and (b) wi � limk!1 Ui(X
k) exists for every i 2 N; then there must

be some player i that can secure a payo¤greater than wi atX; i.e., there exist Yi 2 Si,
zi > wi; and an open neighborhood W � S�i of X�i such that Ui(X 0

�i; Yi) � zi for
every X 0

�i 2 W:

Step 3. We show that C is better-reply-secure.

Let
�
Xk
	1
k=1
; X, and (wi)i2N be as above. If X 2 S+; then the functions (Ui)i2N

are continuous at X and hence wi = Ui(X) for every i 2 N: Since X is not an

equilibrium by assumption, there exist i 2 N and Yi 2 Si such that

Ui(X�i; Yi) > wi + " (9)

for some " > 0: It can be assumed w.l.o.g. that Yi is strictly positive in all states of

nature, as Ui is lower semi-continuous in the ith variable. By the continuity of Ui at

(X�i; Yi) 2 S+; Ui(X 0
�i; Yi) � zi � wi + "

2
for every X 0

�i in some open neighborhood

W of X�i; and thus i can secure at X a payo¤ greater than wi:

Assume now that X 2 SnS+; thus, X (!�) = 0 for some !� 2 
: Since 
 is count-
able, the set (�n�1)


 is metrizable and hence sequentially compact in the product

topology. We can therefore consider an accumulation point (ep (!))!2
 of the sequence
f
�
�
�
!;Xk (!)

��
!2
g

1
k=1: Assume w.l.o.g. (passing to a subsequence if necessary) that
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limk!1
�
�
�
!;Xk (!)

��
!2
 = (ep (!))!2
 : De�ne, for every ! 2 
 and i 2 N;
ewi (!) � epi(!)Vi(!)� ci (!;Xi (!)) :

By the continuity of the cost function and the dominated convergence theorem, wi =

E ( ewi (�)) :
Since ep (!�) is a probability vector and n � 2, there exists i 2 N for whom

epi (!�) < 1: (10)

For any 0 < " < 1; consider a strategy Y "i 2 Si given by Y "i (!) � maxfXi(!); "Q
i

�i(!)
g

for every ! 2 
: (In particular, Y "i (�i(!�)) = "Q
i

�i(!�).) For any ! 2 
 with X (!) 6=
0; since �i is continuous at X (!) 6= 0,

lim
"!0+

�i (!;X�i (!) ; Y
"
i (!)) = lim

k!1
�i
�
!;Xk (!)

�
= epi (!) ;

and therefore

lim
"!0+

[�i (!;X�i (!) ; Y
"
i (!))Vi(!)� ci (!; Y "i (!))] = ewi (!) : (11)

For any ! 2 
 with X (!) = 0;

lim
"!0+

h
�i

�
!;0�i; "Q

i

�i(!)

�
Vi(!)� ci

�
!; "Q

i

�i(!)

�i
= Vi(!) � ewi (!) (12)

by property (v) of �; with a strict inequality for ! = !� as follows from (10) and the

assumption that every Vi(!) is strictly positive: It is then implied by (3), (11) and

(12) and the dominated convergence theorem that4

lim
"!0+

Ui(X�i; Y
"
i ) > E ( ewi) = wi: (13)

Now �x some " > 0 for which Ui(X�i; Y
"
i ) > wi + ", which exists by (13), and

write Yi � Y "i : By de�nition, (X�i; Yi) satis�es (9); hence the arguments following

(9) show that i can secure a payo¤ greater than wi: Thus C is better-reply-secure.

We conclude that C possesses some Bayesian Nash equilibrium X�. In particular,

X� satis�es (5) for every i 2 N; �i 2 �i; and xi 2
h
0; Q

i

�i

i
: But note that every

xi > Q
i

�i
leads to a negative expected payo¤ to player i conditional on �i 2 �i (this

follows from the �rst inequality in (8)), which can be improved upon by lowering

4Recall that the cost of i is bounded from above by an integrable function that is equal to

ci(�; Q
i

�i) on each �i; and that w.l.o.g. (following step 1 of the proof) p (f!
�g) > 0:
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the e¤ort on �i to zero. Thus, in contemplating a unilateral deviation from X�
i (�i)

conditional on �i; player i is never worse o¤by limiting himself to e¤orts 0 � xi � Q
i

�i
:

But this means that X� satis�es (5) for every xi 2 R+: Since this is the case for every
i 2 N and �i 2 �i; X� is a Bayesian Nash equilibrium of the original contest C. �
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