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Consider an oligopolistic industry where firms have access to the same technol-
ogy but are asymmetrically informed about the environment. Even though it is
commonplace to think that in this context superior information leads to higher
profits, we find that under Cournot competition this is not generally the case: It
holds when firms’ technology exhibits constant returns to scale, but it does not
necessarily hold otherwise. Journal of Economic Literature Classification Numbers:
C72, D43, L13. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Consider an oligopolistic industry in which firms have access to the same
technology but are asymmetrically informed about the environment (e.g.,



about the demand and/or the cost function). It is commonplace to think
that, in this context, superior information gives a competitive advantage
and therefore leads to higher profits; i.e., ceteris paribus, if Firm A has an
information advantage over Firm B, then in any Bayesian equilibrium the
ex-ante expected profits of Firm A are greater than or equal to those of
Firm B. This is obviously the case in a competitive market, where each firm
faces an individual decision problem. We investigate whether this pre-
sumption is correct under Cournot competition, and we find that, as the
example below shows, this it is not generally the case. We show, however,
that the presumption is correct when firms’ technology exhibits constant
returns to scale. We establish these results in a general framework that
imposes no restrictions on the space of states of nature or on firms’ infor-
mation. (In particular, firms’ information can be either continuous or
discrete.)
There is an extensive literature studying the role of information in
oligopolistic markets under uncertainty. This literature has focused atten-
tion on the incentives for information sharing, as well as on the value of
information—see, e.g., Gal-Or [8, 9], Raith [19], Sakai [20], Shapiro
[21], and Vives [22, 23]. Few papers have studied the effect of the infor-
mation advantage of a firm on its profits. Note that studying this
issue—whether the information advantage reflects on profits—involves
comparing the profits of firms with different information in the Bayesian
equilibria of a (fixed) game. In contrast, determining the value of informa-
tion or the incentives for revealing information involves comparing the
profits of a (given) firm in Bayesian equilibria of different games.
Gal-Or [10] shows that in a Stackelberg equilibrium the leader may be
worse off having information that a follower can infer. Our exercise, in
contrast to Gal-Or’s, isolates the role of information by forcing the sym-
metry of firms in all aspects (costs, strategy sets) other than information.
Also, Gal-Or [11] studies this issue in a two-period linear duopoly where
firms are uncertain about costs and shows that the worse informed firm
may produce more in the first period and obtain higher ex-ante profits than
the better informed firm. This result, which seems at odds with the theorem
below, is driven by the assumption that the accuracy of a firm’s signal
increases with its output during the first period. Vives [24], in a model
where firms first invest (to reduce their cost or to foster their demand) and
then, after the state of nature has been realized, compete in the market,
finds that an increase in the accuracy of the information of a firm leads to
higher profits. In Vives’ model, however, competition takes place after the
information has been revealed, whereas in our model firms compete under
asymmetric information.
The issue of information advantage has been also a recurrent topic in
other settings; e.g., Milgrom [17], Milgrom and Weber [18], and Einy et al.
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[4] study this issue in auctions; Koutsougeras and Yannelis [14], Krasa
and Yannelis [15], and Einy et al. [5] study it in exchange economies with
differential information.

2. THE MODEL AND THE RESULT

Consider an oligopolistic industry where a group of firms N={1, ..., n},
n \ 2, compete in the production of a homogeneous good. There is uncer-
tainty about the industry’s demand and the firms’ costs. This uncertainty is
described by a probability space (W,F, m), where W is the set of states of
nature, F is a s-field of subsets of W, and m is a s-additive probability
measure on (W,F). (We interpret m as the common prior of the firms.)
Once the state of nature w ¥ W is realized, the market demand and the
firms’ costs (the same for all firms) are determined. Write p: W×R+QR
for the inverse market demand function, and write c: W×R+QR for the
firms’ cost function. The information of a firm i ¥N about the state of
nature is described by a s-subfieldFi of F; that is, for every A …Fi Firm i
knows whether the state of nature is a member of A. An oligopolistic
industry with differential information is thus described by a collection
I=(N, (W,F, m), p, c, (Fi)i ¥N).
Our framework proves to be very useful in dealing with the possible
information structures that may arise. An alternative model due to
Harsanyi [12] represents agents’ private information by a set of types and
takes the set of states of nature to be the cross product of the sets of
agents’ types. When firms’ information fields are generated by partitions,
Jackson [13] has shown that both approaches are equivalent (see also
Section 2 in Vohra [25]).
We now introduce the following standard definition from probability
theory. Let T be a set. A family {xt}t ¥ T of random variables on W is called
uniformly integrable if

lim
aQ.
sup
t ¥ T

F
{|xt| \ a}

|xt | dm=0.

We say that a function f: W×R+QR is uniformly integrable if

(2.1) for all x ¥R+ the function f( · , x) isF-measurable, and
(2.2) the family {f( · , x)}x ¥R+ of random variables is uniformly

integrable.

Throughout the paper we assume that the inverse demand function p and
the cost function c of any oligopolistic industry with differential informa-
tion are uniformly integrable.
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Let X be an integrable random variable on (W,F, m), and let G be a
s-subfield of F. We write E(X |G) for the conditional expectation of X
with respect to G, and

E+(X |G)=max{0, E(X |G)}.

Let I be an oligopolistic industry with differential information. The
Bayesian game associated with I is the collection G(I)=(N, (W,F, m),
Rn
+, (Fi)i ¥N, (pi)i ¥N), where for each firm i ¥N the set of possible actions
is R+ and its profits function pi: W×Rn

+QR is given for all w ¥ W and
r=(r1, ..., rn) ¥Rn

+ by

pi(w, r)=ri p 1w, C
j ¥N
rj 2− c(w, ri).

We refer to G(I) as the Cournot game with differential information asso-
ciated with the industry I. In this game, a (pure) strategy for a firm i ¥N is
an Fi-measurable function qi: WQR+ whose first and second moments
exist. We denote by Si the set of all strategies for Firm i, and by S the set
<j ¥N Sj of profiles of strategies.
Let G(I) be a Cournot game with differential information. A Bayesian
equilibrium is a profile of strategies qg=(qg1 , ..., qgn ) ¥ S such that for every
i ¥N and every qi ¥ Si,

E(pi( · , qg( · )) |Fi)(w) \ E(pi( · , (qi( · ), qg−i( · ))) |Fi)(w), (2.3)

for almost every w ¥ W. (Our assumptions on p and c and on the set of
strategies of every firm guarantee that for all i ¥N and q ¥ S, and for every
s-subfield G ofF, E(pi( · , q( · )) |G) exists.)
The equilibrium condition (2.3) requires that at a Bayesian equilibrium
every firm maximizes its (interim) conditional expected profits at every
state of nature. This condition is equivalent to requiring that each firm
maximizes its ex-ante expected profits; i.e., condition (2.3) is equivalent to

E(pi( · , qg( · ))) \ E(pi( · , (qi( · ), qg−i( · )))), (2.4)

for every i ¥N and every qi ¥ Si. This equivalence is obvious in Harsanyi’s
model of Bayesian games (see, e.g., Section 6.4 in Fudenberg and Tirole
[7]), and it is easy to show that it also holds in our model.

As the following example shows, having superior information does not
necessarily entail higher profits: in the unique Bayesian equilibrium of this
duopolistic industry with differential information, the better informed firm
obtains lower profits than its (worse informed) competitor.
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Example. Let I=(N, (W,F, m), p, c, (Fi)i ¥N) be an oligopolistic indus-
try with differential information where N={1, 2}, W={w1, w2}, F=2W,
m({w1})=m({w2}), F1=F (i.e., Firm 1 is completely informed) and
F2={”, W} (i.e., Firm 2 is completely uninformed): The market demand
function is given by

p(w1, Q)=˛120−2Q if 0 [ Q [ 60,
0 otherwise,

and

p(w2, Q)=380−Q if 0 [ Q [ 80,
0 otherwise.

Firms’ cost function is c(w, q)=q2 for all (w, q) ¥ W×R+. The strategy
profile qg=(qg1 , qg2 ), where qg1 (w1)=1620

109 , q
g
1 (w2)=1760

109 , and q
g
2 (w1)=

qg2 (w2)=1680
109 , is the unique Bayesian equilibrium of the associated Cournot

game with differential information G(I). Direct computation yields

E(p1( · , qg( · )))=592.05 < 593.89=E(p2( · , qg( · ))).

As the example clearly illustrates, better information allows a firm
greater flexibility, as it can fine tune its strategy depending upon the state
of nature. Worse information, on the other hand, introduces the possibility
of commitment. In the example, the possibility of commitment allows the
uninformed firm to overproduce in the low demand state, while underpro-
ducing in the high demand state. The informed firm must then hold back
its production in the low demand state. As a result, the uninformed firm
obtains higher (lower) profits in the low (high) demand state than the
informed firm. And for the convex cost function considered in the example,
this yields higher expected profits for the uninformed firm. Hence in this
example the benefit of commitment that comes from being worse informed
is more valuable than the flexibility that comes from being better informed.
When marginal cost is constant, however, the effect of output on profits
depends solely on the firm’s marginal revenue, which is the same for all
firms. In this case, the greater flexibility that comes from a firm’s informa-
tion advantage dominates the benefit of commitment. As a consequence, as
the theorem below establishes, the information advantage of a firm is
rewarded; i.e., if Firm i has better information than Firm j, then in any
Bayesian equilibrium the ex-ante expected profits of Firm i are greater than
or equal to those of Firm j. In fact, the proof establishes that the expected
profits of Firm i conditional or Firm j ’s information field are greater than
or equal to those of Firm j (see (2.14) below), a stronger conclusion than
that stated in the theorem.
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The proof of this result for the case where one firm observes the state of
nature and the other firm is completely uninformed (and the solution to the
firms’ profits maximization problem is interior) is straightforward: In this
case, the ex-ante equilibrium profits of the uninformed firm can be com-
puted from the first-order conditions for profit maximization (see (2.11)
below). The conclusion then follows as an application of the Cauchy–
Schwartz inequality (see (2.14) below). In our model, it is a simple matter
to extend this conclusion to arbitrary information structures. Also, dealing
with corner solutions to a firm’s profits maximization problem amounts to
show that at the states of nature where this occurs the firm’s profits are
zero (see 2.9 below).
Even though the theorem is stated and proved here only for the case
where the demand is differentiable (but not necessarily linear), it holds even
when, as in Example 2, it has kinks—see Einy et al. [6] for a proof of this
more general result.

Theorem. Let I=(N, (W,F, m), p, c, (Fi)i ¥N) be an oligopolistic
industry with differential information such that for all w ¥ W, c(w, · ) is affine
on R+, p(w, · ) is non-increasing and differentiable on R+, and its derivative
p − is uniformly integrable. Let i, j ¥N be any two firms such that Fi `Fj
(i.e., Firm i’s information field is at least as fine as that of Firm j), and let qg

be any Bayesian equilibrium of G(I). Then

E(pi( · , qg( · ))) \ E(pj( · , qg( · ))).

For the proof of the theorem we need the following lemma, which
follows directly from the definition of conditional expectation.

Lemma. Let I=(N, (W,F, m), p, c, (Fi)i ¥N) be an oligopolistic industry
with differential information, and let q=(q1, ..., qn) ¥ S. Then for all k ¥N
and all w ¥ W we have

E 1p 1 · , C
i ¥N
qi( · )2 :Fk 2 (w)=E 1p 1 · , qk(w)+ C

i ¥N0{k}
qi( · )2 :Fk 2 (w).

With this lemma in hand we can now prove the theorem.

Proof of the Theorem. Let I=(N, (W,F, m), p, c, (Fi)i ¥N) be an oligo-
polistic industry with differential information satisfying the assumptions of
the theorem, and let i, j ¥N be such that Fi `Fj. Without loss of general-
ity assume that for all w ¥ W, c(w, 0)=0, and let d: WQR+ denote the
marginal cost function. In order to reduce notation, in the rest of the proof
we identify p(w, · ) with p(w, · )−d(w).
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Let qg be a Bayesian equilibrium of the Cournot game with differential
information G(I). Write Qg=; i ¥N qgi . Since for all k ¥N the function qgk
isFk-measurable, by Theorem 34.3 of Billingsley [3] we have

E(pk( · , qg( · )) |Fk)=qgkE(p( · , Qg( · )) |Fk). (2.5)

Further, for each k ¥N, qgk maximizes firm k −s conditional expected profits
(given qg−k). Now if w ¥ W is such that qgk (w) > 0, then the above lemma
and the first-order conditions for maximization of Firm k −s conditional
expected profits yield

qgk (w) E(p −( · , Qg( · )) |Fk)(w)+E(p( · , Qg( · )) |Fk)(w)=0. (2.6)

Hence we have

E(p( · , Qg( · )) |Fk)(w) \ 0,

for all w ¥ W satisfying qgk (w) > 0. Also, since qg is a Bayesian equilibrium
of G(I), we have

E(p( · , Qg( · )) |Fk)(w) [ 0,

for all w ¥ W satisfying qgk (w)=0. Thus, for all k ¥N and all w ¥ W we
have

qgk (w) > 0 2 E+(p( · , Qg( · )) |Fk)(w)=E(p( · , Qg( · )) |Fk)(w) (2.7)

and

qgk (w)=0 2 E+(p( · , Qg( · )) |Fk)(w)=0. (2.8)

For every k ¥N let

Ak={w ¥ W | E(p −( · , Qg( · )) |Fk)(w)=0}.

Then Ak ¥Fk, and by (2.5)–(2.8) we have

E(pk( · , qg( · )) |Fk)(w)=E+(p( · , Qg( · )) |Fk)(w)=0, (2.9)

for all w ¥ Ak. By (2.2)–(2.4), for all k ¥N and all w ¥ W0Ak we have

qgk (w)=
E+(p( · , Qg( · )) |Fk)(w)
E(−p −( · , Qg( · )) |Fk)(w)

. (2.10)

Therefore (2.5), (2.7), and (2.8) yield

E(pk( · , qg( · )) |Fk)(w)=
(E+(p( · , Qg( · )) |Fk))2(w)
E(−p −( · , Qg( · )) |Fk)(w)

, (2.11)
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for all k ¥N and all w ¥ W0Ak. Since Fi `Fj, by Theorem 34.4 of
Billingsley [3] we have

E(Z |Fj)=E(E(Z |Fi) |Fj), (2.12)

for every integrable random variable Z on W.
Since the function f(x)=max {0, x} is convex on the real line, by
Jensen’s inequality we have

E+(E(p( · , Qg( · )) |Fi) |Fj) [ E(E+(p( · , Qg( · )) |Fi) |Fj). (2.13)

Let Y=`E(−p −( · , Qg( · )) |Fi) . Then Y \ 0 on W and Y > 0 on W0Ai.
For all w ¥ W define

X(w)=˛ E+(p( · , Qg( · )) |Fi)(w)
Y(w)

if w ¥ W0Ai,

0 otherwise.

Since p −(w, Qg(w)) [ 0 for all w ¥ W, X \ 0 on W. Also, by (2.9) and the
definition of X we have

XY=E+(p( · , Qg( · )) |Fi)

and

X2=E(pi( · , Qg( · )) |Fi).

Now (2.12), (2.13), and the Cauchy–Schwartz Inequality yield

(E+(p( · , Qg( · )) |Fj))2

=(E+(E(p( · , Qg( · )) |Fi) |Fj))2

[ (E(XY |Fj))2

[ E(X2 |Fj) E(Y2 |Fj)

=E(E(pi( · , qg( · )) |Fi) |Fj) E(E(−p −( · , Qg( · )) |Fi) |Fj)

=E(pi( · , qg( · )) |Fj) E(−p −( · , Qg( · )) |Fj).

Therefore by (2.9) and (2.11) we have

E(pj( · , qg( · )) |Fj) [ E(pi( · , qg( · )) |Fj). (2.14)
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Now, by taking integrals over W on both sides of (2.14) we obtain

E(pj( · , qg( · ))) [ E(pi( · , qg( · ))),

which establishes the proposition. L
Remark. The theorem above has an interesting consequence for the
correlated equilibria of the games associated with oligopolistic industries
with complete information. (See Aumann [1, 2], and Section 2.2 in
Fudenberg and Tirole [7].) Analogously to the Bayesian equilibria of the
Cournot games with incomplete information, in a correlated equilibrium
relative to a correlation device for which a Firm A has an information
advantage over Firm B, the profits of Firm A are greater than or equal to
the profits of Firm B. A formal statement of this observation can be found
in Einy et al. [6]. The set of correlated equilibria of linear Cournot
oligopoly is studied in Liu [16].
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