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We study the asymptotic nucleolus of differentiable monopolistic market games
in continuum economies with a finite number of traders' types, and show that,
under appropriate assumptions, it is the center of symmetry of the subset of the
core in which all the monopolists receive the same payoff. Thus, the nucleolus dis-
criminates the traders in the atomless sector, whereas the competitive equilibrium
does not. Moreover, if there is a single syndicated atom and a finite number of
atomless sectors, the syndicate is treated more favorably under the asymptotic
nucleolus than under the Shapley value associated with the pure monopolistic
market. Journal of Economic Literature Classification Numbers: C71, D40. � 1999
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1. INTRODUCTION

Aumann [2] suggested than an appropriate model of an oligopolistic
economy is one in which the set of traders consists of a few large traders
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and a continuum of small traders (such an economy is usually called a
mixed economy). Following this suggestion, Shitovitz [25] analyzed an
imperfect competition model which consists of one monopolist and a finite
large number of traders each of which has a small impact on the market
by associating a mixed economy with it. Since the Shitovitz [25] paper,
many works on the subject have been written (for a comprehensive survey
see Gabszewicz and Shitovitz [10]).

Shapley and Shubik [24] associated with every finite production
economy a coalitional game with a transferable utility which is called the
market game. In order to define their game, the different commodities in
the economy are interpreted as production factors and the individuals are
interpreted as owners of production factors. The utility functions can be
viewed (under standard normalization) as production functions. The worth
of a coalition in the Shapley�Shubik market game is then defined as the
maximum production that its members can produce under the feasibility
constraint. Aumann and Shapley extended the definition of a market game
to economies with a continuum of traders (for a detailed discussion of large
market games the reader is referred to Chapter VI of Aumann and Shapley
[5]).

One of the fundamental concepts in economic theory and the theory of
cooperative games is that of the core. As is shown in Shitovitz [25], in
most monopolies, the core has a range which is large enough to contain
both the competitive equilibria on the one hand and the allocations that
express the exploitation of the small traders on the other. In the theory of
finite cooperative games with transferable utility there are two fundamental
solution concepts which assign to every game a unique outcome, the
Shapley value [23] and the nucleolus [21]. In the asymptotic approach to
solution concepts of games with an infinite set of players, one studies the
asymptotic behavior of the solution of sequences of games with a finite set
of players which approximate the original game (see, for example, Kannai
[14] and Aumann and Shapley [5] in the context of the Shapley value).

Gusenerie [12] and Gardner [11] investigated the asymptotic behavior
of the Shapley value in mixed markets. Legros [15] deals with the
nucleolus of a bilateral market with two complementary commodities. The
nucleolus of a finite coalitional game can be interpreted as the imputation
which minimizes the greatest dissatisfaction of any coalition in the game
and it implements in a certain respect a notion of justice due to Rawls
[20]. Aumann [3] identifies the monopoly power in a mixed market with
what he can prevent other coalitions from getting; that is, the strength of
a monopolist bargaining power relies on the harm he can cause by refusing
to trade. Thus, the monopoly power is measured by the difference of what
others can get with him, and they can get without him (see Aumann [3,
p. 10]). From the definition of the kernel of a game and the fact that payoff
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vectors in the kernel preserve the desirability relation between players
(player i is at least as desirable as player j if player i 's marginal contribu-
tion to every coalition which does not contain i and j is at least that of
player j ), it follows that the kernel may reflect the monopoly power (as
interpreted above) in mixed market games. Since the nucleolus lies in the
kernel, it is useful to study how it reflects the monopoly power in mixed
market games.

The purpose of this work is to study the asymptotic nucleolus of mixed
differentiable market games, and to compare it to the core, the competitive
equilibrium, and the Shapley value. Bird [6] extends Schmeidler's defini-
tion [21] of the nucleolus to games with an infinite set of players. The
problem with Bird's nucleolus is that in some cases it does not exist and
also when it does exist it may yield a very large set of outcomes. In the
class of games which is studied in this work Bird's nucleolus yields the core
which is large, while the asymptotic nucleolus is a unique point in the core
of the game.

Our mathematical model consists of a measure space of players in which
the small players form a non-atomic part and the large players (i.e., the
monopolists) are atoms. We assume that every atom has a corner on one
of the commodities in the economy (see (4.2) in Section 4). In this model
the competitive equilibrium does not reflect at all the power of discrimina-
tion of the monopolists. We show that in this model the asymptotic
nucleolus is the center of symmetry of the subset of the core in which all
the monopolists receive the same payoff. Since in our model each member
of the core expresses some degree of exploitation of the small traders by the
monopolists (that is, every payoff distribution in the core gives to a coali-
tion of small traders a payoff which does not exceeds its payoff in the com-
petitive distribution��this follows from Theorem 3.2 and also from
Theorem A in Shitovitz [25]), this implies that the asymptotic nucleolus is
the average of discrimination (of the small traders with respect to their
position in the competitive distribution) in this imperfect competitive
environment. Moreover, in the case of one syndicated atom and a finite
number of atomless sectors, we show that the syndicate is more favored
under the asymptotic nucleolus than under the asymptotic Shapley value.
Similar results are have been found in finite coalitional games in which
some of the players have veto power; usually in these games the nucleolus
is less egalitarian than the Shapley value. In voting games with veto
players, for example, the nucleolus is dominated (in the sense of Lorenz) by
the Shapley value.

The paper is organized as follows: in Section 2 we define the basic
notions which are relevant to our work. In Section 3 we prove some
general results which will be used in Section 4 to derive our results on
market games. In Section 4 we state and prove the above mentioned results
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on the asymptotic nucleolus of mixed market games. In Section 5 we com-
pare the asymptotic nucleolus in our model with the asymptotic Shapley
value.

2. PRELIMINARIES

In this section we define the basic notions which are relevant to our
work. Let (T, 7) be a measurable space, i.e., T is a set and 7 is a _-field
of subsets of T. We refer to the member of T as players and to those of 7
as coalitions. A coalitional game, or simply a game on (T, 7), is a function
&: 7 � R with &(,)=0. If T is finite and 7=2T is the set of all subsets of
T, the game & will be called a finite game. A game & is superadditive if
&(S1 _ S2)�&(S1)+&(S2) whenever S1 and S2 are disjoint coalitions.
A payoff measure in a game & on (T, 7) is a bounded finitely additive
measure !: 7 � R which satisfies !(T )�&(T ).

We denote by ba=ba(T, 7) the Banach space of all bounded finitely
additive measures on (T, 7) with the variation norm. The subspace of ba
which consists of all bounded countably additive measures on (T, 7) is
denoted by ca=ca(T, 7). If * is a measure in ca then ca(*)=ca(T, 7, *)
denotes the set of all members of ca which are absolutely continuous with
respect to *. If A is a subset of an ordered vector space we denote by A+

the set of all non-negative members of A.
Let K be a convex subset of an Euclidean space and let f : K � R be a

concave function. A vector p is a supergradient of f at x # K if f ( y)&
f (x)� p } ( y&x) for all y # K. The set of all supergradients of f at x will be
denoted by �f (x). It is well known that if x is an interior point of K then
�f (x){, and f is differentiable at x iff it has a unique supergradient at x
which, in this case, coincides with the gradient vector.

For two vectors x, y in Rm we write x� y to mean x i� y i for all
1�i�m, x> y to mean x� y and x{ y, and x>> y to mean xi> yi for
all 1�i�m. A function f defined on a set A/Rm is called non-decreasing
if for every x, y # A we have x� y implies f (x)� f ( y). It is called increasing
if, in addition, x> y implies f (x)> f ( y).

3. THE ASYMPTOTIC BEHAVIOR OF THE KERNEL AND THE
NUCLEOLUS IN MIXED GAMES

Many games that arise in economic applications can be represented as a
concave function of a finite dimensional vector of measures. (Some of these
applications are discussed in the introduction of Einy et al. [9].) In this
section we characterize the asymptotic nucleolus of a class of such games.
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This characterization is used in the next section in order to investigate the
properties of the asymptotic nucleolus of mixed market games.

Let & be a finite game (that is, T is finite and 7=2T). If x # R |T | and
S/T we define x(S)=�i # S xi if S{,, and x(,)=0. Denote

I(&)=[x # R |T | | xi�&([i]) for every i # T and x(T )=&(T )]

and

I*(&)=[x # R |T | | x(T )=&(T )].

For every i, j # T, i{ j and x # R |T | define

sij (x)=max[&(S)&x(S) | S/T, i # S and j � S].

The prekernel of the game & is the set

PK(&)=[x # I*(&) | sij (x)=sji (x) \i, j # T, i{ j].

The kernel of the game & is the set

K(&)=[x # I(&) | (sij (x)&sji (x))(x j&&([ j]))�0 \i, j # T, i{ j].

It is well known that if & is a finite game which is zero monotonic (that
is, &(S _ [i])�&(S)+&([i]) for every S/T and i # T"S), then PK(&) and
K(&) coincide (see Theorem 2.7 in Maschler et al. [17]). For a further
discussion of the kernel the reader is referred to Maschler [16].

Let & be a finite game. For every x # I(&), let %(x) be a 2 |T |-tuple whose
components are the numbers &(S)&x(S), S/T, arranged in non-increas-
ing order, i.e., %i (x)�%j (x) for 1�i� j�2 |T |. The nucleolus of the game &,
denoted by N&, is the member of I(&) such that %(N&) is the minimum in
the lexicographic order of the set [%(x) | x # I(&)]; that is, there is no
y # I(&) such that %(N&) strictly dominates %( y) in the lexicographic order.
It is well known that the nucleolus of a finite game & always exists when
I(&){, and it consists of a unique point which belongs to the kernel of &
(e.g., Schmeidler [21]).

In the rest of the paper we assume that a fixed measure * # ca+(T, 7) is
given. We interpret * as a population measure, that is, if S is a coalition,
then *(S) is the proportion of the total population which is contained in
S. We also assume that T can be represented in the form T=T0 _ T1 ,
where T0 and T1 are non-empty disjoint coalitions, the restriction of * to
(T0 , 7T0

) is non-atomic (where, here and in the sequel, if S is a coalition
7S=[Q # 7 | Q/S]) and T1 is a finite set of atoms of * such that every
subset of T1 is in 7.
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Let & be a game on (T, 7) and let ? be a finite subfield of 7. The set of
all atoms of ? is denoted by A? . The set of all subsets of A? is identified
naturally with ?, and thus a finite game with a set of players A? is identified
with a function w: ? � R with w(,)=0. The restriction of the game & to ?
is denoted by &? . An admissible sequence of finite fields is an increasing
sequence (?n)�

n=1 of finite subfields of 7 such that every subset of T1 is in
?1 and ��

n=1 ?n generates 7.
Let & be a superadditive game on (T, 7). It is said that & has an

asymptotic nucleolus if there exists a game �& such that, for every
admissible sequence of finite fields (?n)�

n=1 and every S in ?1 ,
limn � � N&?n(S) exists and equals �&(S). It follows that �& # ba, and it is
called the asymptotic nucleolus of the game &.

The asymptotic approach was introduced in Kannai [14] in the context
of the Shapley value of non-atomic games (see also Chapter III of Aumann
and Shapley [5]).

We are now ready to state and prove the main result of this section.

Theorem 3.1. Let m be a natural number and let +=(+1 , ..., +m) be a
vector of non-trivial measures in ca+(*). Assume that f : Rm

+ � R+ is a non-
decreasing concave function which is continuously differentiable in int Rm

+

and satisfies, { f (+(T ))>>0 and f (+(T"[a]))=0 for every a # T1 . Then the
game &= f b + has an asymptotic nucleolus. Moreover, if (?n)�

n=1 is an
admissible sequence of finite fields and xn # K(&?n) for every n, then for every
S # ?1 we have

lim
n � �

xn(S)= 1
2 { f (+(T )) } +(S & T0)

+
f (+(T ))& 1

2{ f (+(T )) } +(T0)
|T1|

|S & T1|.

Proof. Let (?n)�
n=1 be an admissible sequence of finite fields. We first

show that if S # ?1 & 7T0
and xn # K(&?n) for every n, then limn � � xn(S)=

1
2{ f (+(T )) } +(S). Note that since f is non-decreasing, the game & is super-
additive. Therefore, for every n, the game &?n is zero-monotonic, and thus
K(&?n)=PK(&?n) for every n. Let n be a fixed natural number and let
j # ?n & 7T0

. Assume that xn # K(&?n). Then for every i # T1 we have

sji (xn)=max[&(Q)&xn(Q) | Q/?n , j # Q, [i] � Q]=&xn( j)

and

sij (xn)�&(T" j)&xn(T )+xn( j)= f (+(T" j))& f (+(T ))+xn( j).
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Since xn # PK(&?n), we have

sij (xn)=sji (xn).

Therefore

xn( j)� 1
2 ( f (+(T ))& f (+(T" j))).

Since f is concave and differentiable,

f (+(T ))� f (+(T" j))+{f (+(T" j)) } +( j).

Thus,

xn( j)� 1
2{ f (+(T" j)) } +( j). (3.1)

Let =>0. As f is continuously differentiable on int Rm
+ , there exists $>0

such that for every x # Rm
+ we have

&x&+(T )&<$ O { f (x)�{ f (+(T ))+=e, (3.2)

where e=(1, 1, ..., 1). Since +1 , ..., +m are absolutely continuous with
respect to * and the restriction of * to (T0 , 7T0

) is non-atomic, there exists
a natural number n0 such that &+( j)&<$ for every j # ?n0

& 7T0
. Therefore

by (3.1) and (3.2), for every n�n0 and j # ?n & 7T0
we have

xn( j)� 1
2 ({ f (+(T ))+=e) } +( j).

Let S # ?1 & 7T0
. Then S is the union of members of ?n for every n.

Therefore for every n�n0 .

xn(S)� 1
2 ({ f (+(T ))+=e) } +(S).

Since = is arbitrary, we have

lim xn(S)� 1
2{ f (+(T )) } +(S).

We now show that lim xn(S)� 1
2{ f (+(T )) } +(S). Since f is continuously

differentiable on int Rm
+ and { f (+(T ))>>0, there exists $� >0 such that for

every x # Rm
+ we have

&x&+(T )&<$� O { f (x)� 3
2 { f (+(T )).

Let n1 be a natural number such that &+( j)&<$� for every j # ?n1
& 7T0

.
Then

{ f (+(T" j))� 3
2 {f (+(T )).
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Therefore by (3.1), for every n�n1 and j # ?n & 7T0
we have

xn( j)� 3
4 {f (+(T )) } +( j).

Hence,

xn(S)� 3
4 {f (+(T )) } +(S). (3.3)

Since f is concave, f ((1�4) +(T ))�(1�4) f (+(T ))>0, and therefore there
exists a natural number n2�n1 such that for every n�n2 and j # ?n & 7T0

we have &+(T )&<4 f ((1�4) +(T ))�3 &{ f (+(T ))&; hence

xn( j)�
3
4

&{ f (+(T ))& | &+( j)&<
1

|T1|
f \1

4
+(T )+ . (3.4)

Let n�n2 be fixed and let i # T1 and j # ?n & 7T0
. Choose Qn /?n such

that [i] # Qn , j � Qn and

&?n(Qn)&xn(Qn)=max[&?n(Q)&xn(Q) | Q/?n , [i] # Q, j � Q].

As xn # K(&?n), then &?n(Qn)&xn(Qn)=&xn( j).
Let Sn=�l # Qn l. We show that Sn #T1 . Assume not. Then &(Sn)=0,

and thus xn( j)=xn(Sn)�xn([i]). Since all the players in T1 are inter-
changeable in the game &?n (two players in a finite game are inter-
changeable if they have the same marginal contribution to every coalition
which does not contain them), they get the same payoff in every member
of K(&?n). Hence,

f (+(T ))=xn(T )=|T1| xn([i])+xn(T0).

By (3.3), xn(T0)�(3�4) { f (+(T )) } +(T0). Therefore,

xn([i])�
f (+(T ))&(3�4) { f (+(T )) } +(To)

|T1|
.

Since f is concave, differentiable and non-decreasing,

f (+(T ))& 3
4 { f (+(T )) } +(To)� f (+(T )& 3

4 +(To))� f ( 1
4 +(T )) .

Thus, xn([i])�1�|T1| f ((1�4) +(T )). Since xn( j)�xn([i]), this contradicts
(3.4). Therefore S#T1 , and thus there exists S� n # 7T0

such that Sn=
(T" j)"S� n . Hence,

&xn( j)=&(Sn)&xn(Sn)=&(Sn)&&(T )+xn( j)+xn(S� n).
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Thus

xn( j)= 1
2 (&(T )&&(Sn)&xn(S� n)).

By (3.3)

xn(S� n)� 3
4 {f (+(T )) } +(S� n).

Since f is concave,

&(T )&&(Sn)=f (+(T ))& f (+(T )&+( j)&+(S� n))

�{f (+(T )) } (+( j)++(S� n)).

Therefore,

xn( j)� 1
2 [{ f (+(T )) } +( j)+ 1

4 {f (+(T )) } +(S� n)]� 1
2 { f (+(T )) } +( j).

Hence,

xn(S)� 1
2{ f (+(T )) } +(S) for every n�n2 . (3.5)

This implies that lim xn(S)� 1
2 { f (+(T )) } +(S).

Assume now that S # ?1 is any coalition. Then for every natural number
n we have

xn(S)=xn(S & T0)+xn(S & T1).

Let tn be the payoff which is assigned by xn to a player in T1 . Then

&(T )=xn(T )=|T1| tn+xn(T0) O lim
n � �

tn=
&(T )& 1

2{ f (+(T )) } +(T0)
|T1|

.

Therefore,

lim
n � �

xn(S)=
1
2

{f (+(T )) } +(S & T0)+
&(T )& 1

2{ f (+(T )) } +(T0)
|T1|

|S & T1|.

Q.E.D

Let & be a game on (T, 7). The core of &, denoted by Core(&), is the set
of all payoff measures ! # ba such that !(S)�&(S) for every S # 7.

We now interpret the core as a set of real-valued functions on T. A game
& is continuous at T if for every sequence [Tn]�

n=1 of coalitions such that
Tn+1 #Tn for all n and ��

n=1 Tn=T we have limn � � &(Tn)=&(T ). It is
easy to see that if & is a non-negative game on (T, 7) which is continuous
at T, then core(&)/ca+ (e.g., Schmeidler [22]). A coalition S0 is null in a
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game & if for every coalition S with S & S0=, we have &(S _ S0)=&(S).
A non-negative game & is weakly absolutely continuous with respect to the
population measure * if every null coalition of * is also a null coalition
of &. Now if & is non-negative, continuous at T, and weakly absolutely
continuous with respect to *, then core(&)/ca+(*). Therefore by the
Radon�Nikodym Theorem, core(&) can be identified with the set of all non-
negative functions g in L1(T, 7, *) such that �T g d*=&(T ) and for all
S # 7, �S g d*=&(S).

We want to determine the location in the core of the asymptotic
nucleolus of a game which satisfies the conditions of Theorem 3.1. We first
state and prove a representation theorem for the core of such games.

Theorem 3.2. Let +=(+1 , ..., +m) be a vector of non-trivial measures in
ca+(*). Assume that f: Rm

+ � R+ is a concave function which is differen-
tiable at +(T ) and satisfies f (+(T"[a]))=0 for every a # T1 . Then the core
of the game &= f b + is given by

Core(&)=[! # ca+(*) | !(T )= f (+(T )) and \S # 7T0
,

!(S)�{ f (+(T )) } +(S)].

Proof. Let

M(&)=[! # ca+(*) | !(T )= f (+(T )) and \S # 7T0
,

!(S)�{ f (+(T )) } +(S)].

We will show that M(&)=Core(&). We first show that M(&)/Core(&). Let
! # M(&) and S # 7. Now if S does not include T1 then &(S)=0 and clearly,
!(S)�&(S). If S#T1 then T"S/T0 . As ! # M(&),

!(T"S)�{f (+(T )) } +(T"S).

Therefore

!(S)=!(T )&!(T"S)�!(T )&{ f (+(T )) } +(T"S)

=f (+(T ))&{ f (+(T )) } +(T"S).

As f is concave,

&(S)= f (+(S))� f (+(T ))&{ f (+(T )) } +(T"S).

Hence, !(S)�&(S), and thus ! # Core(&).
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It remains to show that Core(&)/M(&). Let ! # Core(&). Then for every
S # 7 we have

0�!(S)�!(T )&&(T"S). (3.6)

As f is continuous at +(T ) and +1 , ..., +m are in ca+(*), the inequality in
(3.6) implies that ! # ca+(*). Since the restriction of * to (T0 , 7T0) is non-
atomic, the restrictions of +1 , ..., +m and ! to (T0 , 7T0

) are also non-atomic.
Let S # 7T0 . We will show that !(S)�{ f (+(T )) } +(S). By Lyapunov's
theorem, for every 0<:<1 there exists a coalition S: # 7T0

such that
+(S:)=:+(S) and !(S:)=:!(S). As f is differentiable at +(T ), for every
0<:<1 we have

f (+(T"S:))= f (+(T ))&:{f (+(T )) } +(S)+o(:).

As ! # Core(&), we have

!(S:)=!(T )&!(T"S:)� f (+(T ))& f (+(T"S:)).

Hence,

!(S)�{ f (+(T )) } +(S)+ g(:).

where lim: � 0 g(:)=0. Therefore !(S)�{ f (+(T )) } +(S), and the proof is
complete. Q.E.D

Note that the core of a game & in Theorem 3.2 can be identified with the
following subset of L1(T, 7, *)

{g # L1(T, 7, *) | g�0, |
T

g d*= f (+(T )), \t # T0 : g(t)�h(t)= ,

where h is the Radon�Nikodym derivative (with respect to *) of the
measure { f (+(T )) } +.

Let A be a subset of a linear space. A point x0 # A is called a center of
symmetry of A if for every x # A, the point 2x0&x also belongs to A. Note
that if A is bounded, there may be at most one center of symmetry.

The following corollary is a direct consequence of Theorems 3.1 and 3.2.

Corollary 3.3. Let +=(+1 , ..., +m) be a vector of non-trivial measures
in ca+(*). Assume that f: Rm

+ � R+ is a non-decreasing concave function
which is differentiable in int Rm

++ and satisfies, { f (+(T ))>>0 and
f (+(T"[a]))=0 for every a # T1 . Then the asymptotic nucleolus of the game
&= f b + coincides with the center of symmetry of the subset of the core of &
in which all the members of T1 receive the same payoff.
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4. MARKET GAMES

In this section we apply Theorem 3.1 to mixed market games.
We consider a pure exchange economy E in which the commodity space

is Rm
+ . The traders' space is represented by the measure space (T, 7, *). We

assume again that T=T0 _ T1 , where T0 and T1 are non-empty and dis-
joint coalitions, T1 is a finite set of atoms of * such that every subset of T1

is in 7, and the restriction of * to (T0 , 7T0
) is non-atomic. We will interpret

the members of T1 as monopolists or syndicates. Every trader t # T has a
utility function ut : Rm

+ � R+ . An assignment in E is an integrable function
x: T � Rm

+ . There is a fixed initial assignment | (|(t) represents the initial
bundle density of trader t). An allocation is an assignment x such that
�T x d*��T | d*. A transferable utility competitive equilibrium (t.u.c.e.) of
the economy E is a pair (x, p), where x is an allocation and p # Rm

+ , such
that for all t # T, ut(x)& p } (x&|(t)) attains its maximum (over Rm

+) at
x=x(t). The measure {(S)=�S [ut(x(t))& p } (x(t)&|(t))] d* (when the
function ut(x(t)) is integrable) is called the competitive payoff distribution,
and p is the vector of competitive prices. We assume

|
T

| d*>>0, (4.1)

for every trader a # T1 there exists a commodity

1�ka�m such that |ka(t)=0 for every t # T"[a], (4.2)

where |ka denotes the ka -component of |.

The implication of (4.1) is that every commodity is present in the
market. The interpretation of (4.2) is that every atom of * has a corner on
one of the commodities in the economy; that is, every monopolist holds a
commodity that the other traders do not have. The small traders may
initially own positive amounts of some commodities (the number of com-
modities may be greater than the number of monopolists), although (4.2)
implies that their initial endowments are in the boundary of Rm

+ .
Denote by U the set of all functions u: Rm

+ � R+ which are continuous
and concave on Rm

+ , continuously differentiable and increasing on the inte-
rior of Rm

+ and vanish on the boundary of Rm
+ . Note that any differen-

tiable neoclassical utility function is in U (see Definition 1.4.2 in Aliprantis
et al. [1]).

Two traders in the economy E are of the same type if they have identical
utility functions and the same initial bundle. We assume that the number
of different types of traders in T0 is n. For every 1�i�n, we denote by
Si the set of traders in T0 which are of type i. We assume that
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Si is measurable (i.e., Si # 7) and *(Si)>0. The utility function of the
traders of type i (1�i�n) is denoted by ui . We assume that the utility
function of every trader in E is in U. Note that under these assumptions the
economy E has a unique t.u.c.e. The Aumann�Shapley�Shubik market
game associated with the economy E in this case of finite number of types
is

&(S)=sup { :
a # S & T1

*([a]) ua(x(a))

+ :
n

i=1
|

S & Si

ui (x(t)) d* | x # X(S)= , (4.3)

where X(S)=[x | x is an assignment such that �S x d*=�S | d*].
We first study the case in which for every 1�i�n the utility function ui

is homogeneous of degree one. Define a function f: Rm
+ � R+ by

f ( y)=max{ :
a # T1

*([a]) ua(xa)+ :
n

i=1

ui (xi) | xa , xi # Rm
+ ,

:
a # T1

*([a]) xa+ :
n

i=1

x i� y= . (4.4)

Since the utility functions of the traders are continuous and concave, it is
easy to see that f is well defined and concave on Rm

+ .

Lemma 4.1. Let & be the market game defined in (4.3), and let f be the
function defined in (4.4), then for every S # 7, &(S)� f (�S | d*), with
equality when *(S & Si)>0, for all 1�i�n.

Proof. Let S # 7. We show that &(S)� f (�S | d*). Assume first that S
does not include T1 . Then by (4.2), �S | d* belongs to the boundary of
Rm

+ . Since the utility functions of the traders in T vanish on the boundary
of Rm

+ , we have &(S)=0 and f (�S | d*)=0. So assume that S#T1 . Let x
be an assignment such that �S x d*=�S | d*. For every a # T1 let xa=x(a)
and for every 1�i�n let x i=�S & Si

x d*. Then

:
a # T1

*([a]) xa+ :
n

i=1

x i=|
S

x d*=|
S

| d*.

Therefore by the definition of f, we have

f \|S
| d*+� :

a # T1

*([a]) ua(xa)+ :
n

i=1

ui (x i).
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Since the ui are concave and homogeneous of degree one,

:
a # T1

*([a]) ua(xa)+ :
n

i=1
|

S & Si

ui (x(t)) d*

� :
a # T1

*([a]) ua(xa)+ :
n

i=1

ui (xi).

As x was an arbitrary assignment which satisfies �S x d*=�S | d*, we
obtain that &(S)� f (�S | d*).

Assume that S # 7 satisfies *(S & Si)>0 for all 1�i�n. Now we show
that &(S)� f (�S | d*). Let (xa)a # T1

and (xi)
n
i=1 such that

f \|S
| d*+= :

a # T1

*([a]) ua(xa)+ :
n

i=1

ui (x i).

Define an assignment x by x(t)=xt if t # T1 and for every t # Si (1�i�n)

x(t)=
1

*(S & Si)
xi .

Then

|
S

x d*= :
a # T1

*([a]) xa+ :
n

i=1

x i�|
S

| d*.

Therefore &(S)��S ut(x(t)) d*. Since the u i are homogeneous of degree one,

&(S)�|
S

u t(x(t)) d*= :
a # T1

*([a]) ua(xa)+ :
n

i=1

ui (xi)= f \|S
| d*+ .

Lemma 4.2. The function f defined in (4.4) is continuously differentiable
on int Rm

+ and { f (�T | d*)>>0.

Proof. We first show that f is differentiable at every point in the interior
of Rm

+ . Let y* # int Rm
+ . Then from the definition of f it is clear that

f ( y*)>0. Since f is concave on Rm
+ , it is sufficient to show that �f ( y*)

consists of a unique point. Let (xa*)a # T1
and (xi*)n

i=1 be such that

f ( y*)= :
a # T1

*([a]) ua(xa*)+ :
n

i=1

u i (x i*).
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Since the utility functions of the traders are non-decreasing, we have

:
a # T1

*([a]) xa*+ :
n

i=1

xi*= y*.

Since f ( y*)>0, the assumption that the utility functions of the traders
vanish on the boundary of Rm

+ implies that there exists j # T1 _ [1, ..., n]
such that xj* # int Rm

+ . Assume first that 1� j�n. We will show that
�f ( y*)/�uj (x j*). Let p # �f ( y*). Then for every x # Rm

+ we have

uj (x)&uj (xj*)=uj (x)+ :
a # T1

*([a]) ua(xa*)+ :
i{ j

ui (xi*)

&uj (x j*)& :
a # T1

*([a]) ua(xa*)& :
i{ j

ui (xi*)

�f \x+ :
a # T1

*([a]) xa*+ :
i{ j

xi*+& f ( y*)�p } (x&xj*).

Thus p # �uj (xj*) and �f ( y*)/�uj (xj*). Since uj is differentiable at xj*, we
have �uj (xj*)=[{uj (x j*)]. As �f ( y*){,, we have �f ( y*)=[{uj (xj*)]. If
j # T1 , for every x # Rm

+ we define u� j (x)=*([ j]) uj (x). Then the above
argument implies that �f ( y*)=[{u� j (x j*)]. Thus, in any case �f ( y*) con-
sists of a unique point, and therefore f is differentiable at y*. The assump-
tion that the utility functions of the traders are increasing in int Rm

+ implies
that {f (�T | d*)>>0. Now since f is concave on Rm

+ , it is continuous on
int Rm

+ . Moreover, since the utility functions of the traders vanish on the
boundary of Rm

+ it is easy to see that f is also continuous on the boundary
of Rm

+ . Now Proposition 39.1 of Aumann and Shapley [5] asserts that any
continuous concave function on Rm

+ which is differentiable on int Rm
+ is

continuously differentiable in int Rm
+ . Therefore f is continuously differen-

tiable on int Rm
+ . Q.E.D

Lemma 4.3. Let & be the market game defined in (4.3) and let f be the
function given in (4.4). Then the asymptotic nucleolus of & coincides with the
asymptotic nucleolus of the game w(S)= f (�S d*) for all S # 7.

Proof. We first note that by Lemma 4.2, the game w satisfies the
assumption of Theorem 3.1. Now by Lemma 4.1, &(S)=w(S) for every
S # 7 satisfying *(S & Si)>0, for all 1�i�n, and also w(S)�&(S)�0 for
all S # 7. Therefore the first part of the proof of Theorem 3.1 can be applied
for the game &. Also the second part of this proof works for the game & by
noticing that the first equality in (3.5) can be replaced by a weak inequality
(�). Q.E.D

We are now ready to state and prove the following theorem.
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Theorem 4.4. Assume that the economy E satisfies (4.1), (4.2) and also

(1) There is a finite number n of traders' types in T0 .

(2) The utility functions u1 , ..., un of the traders in T0 are in U and in
addition they are homogeneous of degree one on Rm

+ .

(3) The utility functions [ua]a # T1
of the traders in T1 are in U.

Let f be the function given in (4.4). Then the market game & defined in
(4.3) has an asymptotic nucleolus �& which is given by

�&(S)=
1
2

{ f \|T
| d*+ } |

S & T0

| d*

+
f (�T | d*)& 1

2{ f (�T | d*) } �T0
| d*

|T1|
|S & T1|. (4.5)

Moreover, if { is the competitive payoff distribution of the economy E, then
�&(S)= 1

2{(S) for every S # 7T0
.

Proof. Equation (4.5) follows from Theorem 3.1 and Lemmata 4.1, 4.2
and 4.3. Denote b=�T | d*. Let (xa*)a # T1

and (x i*)n
i=1 be such that

f (b)=�a # T1
*([a]) ua(xa*)+�n

i=1 ui (x i*). For every t # T, let

x*(t)={xt*,
x i*,

t # T1

t # S i .

Then by a similar argument to that which was used in the proof of
Lemma 4.3, we obtain that for every t # T and x # Rm

+

ut(x)�ut(x*(t))+{ f (b) } (x&x*(t)). (4.6)

Since f is non-decreasing on Rm
+ , { f (b)�0. Let 1�i�m. Now if x i* is

on the boundary of Rm
+ , then ui (xi*)=0, and thus by (4.6), ui (x)&

{f (b) } x�0 for every x # Rm
+ . If xi* # int Rm

+ , then { f (b)={ui (xi*). Since
ui is homogeneous of degree one, {ui (x i*) } xi*=ui (xi*). Therefore we again
have by (4.6), ui (x)&{f (b) } x�0 for every x # Rm

+ and thus

max
x # R

m
+

(ui (x)&{ f (b) } x)=0.

This implies that for every t # T

max
x # R

m
+

(ui (x)&{f (b) } (x&|(t)))={ f (b) } |(t).

Now by (4.6), for every a # T1 and t # T we have

max
x # R

m
+

(ua(x)&{ f (b) } (x&|(t)))=ua(xa*)&{ f (b) } (xa*&|(t)).
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For every t # T let

g(t)={ut(x*(t))&{ f (b) } (x*(t)&|(t)),
{ f (b) } |(t),

t # T1

t # T0 .

For every S # 7, define {(S)=�S g d*. Then { is the competitive payoff dis-
tribution in the economy E and for every S # 7T0

we have �&(S)= 1
2{(S).

Q.E.D

We now study the case in which the utility functions of the traders in the
continuum (i.e., the ui , 1�i�n) are not necessarily homogeneous of
degree one. In this case we introduce the following assumption on the
functions ui , (1�i�n),

for every 1�i�n we have lim
&x& � �

ui (x)
&x&

=0. (4.7)

The Assumption (4.7) is a special case of the Aumann�Perles [4] Condi-
tion. This assumption is standard in the theory on non-atomic market
games (see, for example, Aumann and Shapley [5], Dubey and Neyman
[7, 8], and Mertens [18]). Note that (4.7) may not be satisfied when every
ui , (1�i�n), is homogeneous of degree one; for example, when the u i 's
are linear (4.7) is not satisfied.

Let m=|T1|. It will be convenient to denote the member of T1 by
an+1 , ..., an+m , their utility functions by un+1 , ..., un+m , and their initial
bundles by |n+1 , ..., |n+m , respectively. Define now a function g: Rn+m

+ �
R+ by

g( y, z)=max { :
n+m

i=1

y iu i (xi) | xi # R l
+ , and :

n+m

i=1

yixi�z= . (4.8)

Then under our assumption on the utility functions of the traders in E, by
Lemma 39.9 in Aumann and Shapley [5], g is concave, non-decreasing and
continuous on Rn+m

+ . Moreover, by Proposition 39.13 of Aumann and
Shapley [5], g is continuously differentiable in the interior of Rn+m

+ .
Define now a function h: Rn

+ � R+ by

h( y1 , ..., yn)=g \y1 , ..., yn , *([an+1]), ..., *([an+m]), :
n

i=1

y i|i

+ :
n+m

i=n+1

*([ai]) |i+ . (4.9)
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Then h is concave non-decreasing and continuous on Rn
+ , and it is con-

tinuously differentiable in the interior of Rn
+ . Now a similar proof to that

of Lemma 4.1 (see also the proof of Lemma 39.8 in Aumann and Shapley
[5]) yields that for every S # 7

&(S)=h(*(S & S1), ..., *(S & Sn)),

where & is the market game defined in (4.3).

Theorem 4.5. Assume that the economy E satisfies (4.1), (4.2) and also

(1) There is a finite number n of traders' types in T0 .

(2) The utility functions u1 , ..., un of the traders in T0 are in U and in
addition they satisfy condition (4.7).

(3) The utility functions [ua]a # T1
of the traders in T1 are in U.

Let h be the function given in (4.9). Then the market game & defined in
(4.3) has an asymptotic nucleolus �& which is given for every S # 7T0

by

�&(S)= 1
2{h(*(S1), ..., *(Sn)) } (*(S1 & S), ..., *(Sn & S)). (4.10)

Moreover, if { is the competitive payoff distribution of the economy E, then
�&(S)= 1

2{(S) for every S # 7T0
.

Proof. The fact that �& exists and satisfies the formula (4.10) follows
from Theorem 3.1. We will show that for every S # 7T0

, �&(S)= 1
2{(S),

where { is the competitive payoff distribution of E. In order to avoid heavy
notations, we assume without loss of generality that T0=[0, 1] and
*([an+1)= } } } =*([an+m])=1. Let B be the _-field of Borel subsets of the
interval [1, m+1], and let F be the _-field generated by 7T0

_ B. Consider
the measurable space ([0, m+1], F ). Let S # F. Then S=Q0 _ Q1 where
Q0 # 7T0

and Q1 # B.
Define

&̂(S)=g \*(Q0 & S1), ..., *(Q0 & Sn), +(Q1 & I1), ..., +(Q1 & Im),

:
n

i=1

*(Q0 & S i) |i+ :
m

j=1

+(Q1 & I j) |n+ j+ ,

where + is the Lebesgue measure on [1, m+1] and for every 1� j�m,
Ij=[ j, j+1]. The game &̂ is a non-atomic game on ([0, m+1], F ).
Moreover, by Proposition 10.17 of Aumann and Shapley [5] the game &̂ is
in the space pNA of non-atomic games (e.g., Aumann and Shapley [5]).
Therefore by Theorem J and Theorem B (the diagonal formula) of Aumann
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and Shapley [5], we obtain that if { is the competitive payoff distribution
of the economy E, then for every S # 7T0

{(S)={h(*(S1), ..., *(Sn)) } (*(S1 & S), ..., *(Sn & S)).

Q.E.D

5. COMPARISON WITH THE ASYMPTOTIC SHAPLEY VALUE

In this section we assume that our population measure * has one atom
a, that is T1=[a]. Let & be a finite game on (T, 7). Recall that the Shapley
value of a player i # T is given by

S&(i)=
1

|T |!
:
_

(&(P_
i _ [i])&v(P_

i )),

where the sum is taken over all orders _ of T and P_
i denotes the set of all

players that precede i in the order _. It is known (see for example, Hart
[13] and Neyman [19]) that if +=(+1 , ..., +m) is a vector of non-trivial
measures in ca+(*) and f: Rm

+ � R+ is a function which satisfies the
assumptions of Theorem 3.1, then the game &= f b + has an asymptotic
Shapley value .. Moreover,

.&([a])=|
1

0
[ f (+([a])+x+(T0))& f (x+(T0))] dx.

Since f (x+(T0))=0 for every 0�x�1, we have

.&([a])=|
1

0
f (+([a])+x+(T0)) dx. (5.1)

Theorem 5.1. Let +=(+1 , ..., +m) be a non-trivial measure in ca+(*).
Assume that f: Rm

+ � R+ satisfies the assumptions of Theorem 3.1. Let .&
and �& be, respectively, the asymptotic Shapley value and the asymptotic
nucleolus of the game &= f b +. Then

.&([a])��&([a]).

Proof. By Theorem 3.1 we have

�&([a])= f (+(T ))& 1
2{f (+(T )) } +(T0).
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Since f is concave, for every 0�x�1 we have

f (+([a])+x+(T0))� f (+(T ))+(x&1) { f (+(T )) } +(T0).

By integrating both sides of (5.2) over the interval [0, 1] we obtain

.&([a])� f (+(T ))& 1
2{ f (+(T )) } +(T0)=�&([a]).

Q.E.D

The following corollary is a direct consequence of Theorems 5.1 and 4.5.

Corollary 5.2. Let & be the market game defined in (4.3). If the
economy E satisfies the assumptions of Theorem 4.5, then

.&([a])��&([a]).
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