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Abstract

We derive alternative sufficient conditions for the value of public information to be either po
or negative in a Cournot duopoly where firms technology exhibits constant returns to scale.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to study the value of public information in a Cou
duopoly where there is uncertainty about the market demand and/or the cost functi
provide conditions that allow one to determine whether the value of public inform
is positive or negative. With every Cournot duopoly in a certain class, we assoc
real-valued function (defined on a convex subset of the positive orthant of the real
whose curvature determines whether the value of public information is either posit
negative: if this function is convex (concave) then the value of public information is po
(negative). Using this fact we identified interesting subclasses of industries where the
of public information is positive (negative). We also show the usefulness of our resu
determine the value of public information in specific applications.

There is a considerable literature studying the value of public information in ge
equilibrium. Hirshleifer (1971) shows that improving public information may make ag
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worse off ex-ante in an exchange economy where agents share risks. Several
generalize aspects of Hirshleifer examples—see, e.g., Marshall (1979), Wilson (
Green (1981), Sulganik and Zilcha (1996). In a recent paper, Schlee (2001) show
in this context the value of public information is negative in any economy where the
a representative agent. Contrary to Schlee’s result, in our context we can easily g
examples of classes of industries for which the value of public information is positive

There are also a number of papers that study the value of information in a
oligopoly.1 Ponssard (1979) investigates this issue in an industry where there is unce
about the market demand, and where some firms are informed about the state of na
other are uninformed. Vives (1984) studies the value of information under both Co
and Bertrand competition in a duopoly where demand is uncertain. Also in a
duopoly where firms are uncertain about their costs, Sakai (1985) investigates the
of information under a variety of information structures.

In studying the value of information in a Cournot oligopoly some difficulties eme
Specifically, the associated non-cooperative game with incomplete information ma
have a unique and/or interior equilibrium. When the game has several equilibrium po
is not clear which equilibria to compare. And when equilibrium is not interior, compar
static exercises are difficult as corner equilibria are characterized by a set of inequ
rather than a system of equations. Moreover, it is easy to produce examples of ind
whose associated game has a unique and interior equilibrium, for which altering the
information structure by adding public information leads to a new game whose u
equilibrium is a corner equilibrium (see Example 4.1 below).

All the papers mentioned above circumvent this problem by directly assuming th
games associated with the industries under study have a unique and interior equil
even though it is not difficult to find examples where this assumption is viola
Instead, we identify a class of Cournot duopolies (not necessarily linear) with symm
information for which the game associated to each industry has a unique in
equilibrium. This allows us to define the value of public information for any industr
this class, and study conditions under which it is either positive or negative. In add
our model of incomplete information does not impose any restriction of the space of
of nature or on the character of firms’ information. In particular, our framework allow
continuous as well as discrete information structures.

There are other topics on information in oligopolistic environments that have rec
attention in the literature. Gal-Or (1985, 1986), for example, studies the incentive
information sharing, and Einy et al. (2002) examine whether information advantag
rewarded in equilibrium. Studying these issues involves exercises different from
performed in the present paper. Determining whether a firm may have an incentive to
(part or all of) its information to a rival, for example, requires to compare the payof
the firm in two games that differ in the information of the rival. Or determining wheth
firm with superior information enjoys greater profits requires to compare the profits
firms in a (given) game. Our results offer no conclusion regarding these issues.

1 In a recent paper, Ottaviani and Pratt (2001) study the value of public information in a monopoly.
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2. The model

Consider a duopolistic industry where two firms compete in the production
homogeneous good. There is uncertainty about the industry’s demand and the
costs. This uncertainty is described by a probability space(Ω,F ,µ), whereΩ is the
set of states of nature,F is a σ -field of subsets ofΩ, andµ is a σ -additive probability
measure on(Ω,F). (We interpretµ as the common prior of the firms.) Once the st
of natureω ∈ Ω is realized, the market demand, and the firms’ costs are determ
Write p :Ω × R+ → R+ for the inverse market demand function, and fori ∈ {1,2} write
ci :Ω × R+ → R for Firm i ’s cost function. The information of Firmi ∈ {1,2} about the
state of nature is described by aσ -subfieldFi of F ; that is, given an eventA ∈ Fi , Firm i
knows whether the realized state of nature is a member ofA. We refer toFi as Firmi ’s
information field. Aduopolistic industry with incomplete informationis thus described b
a collectionI = ((Ω,F ,µ),p, c1, c2,F1,F2).

Throughout the paper we assume that the inverse demand function,p, and the cos
functions,c1 andc2, of any duopolistic industry with incomplete information are such
for every integrable functionq , the functionsqp(· , q(·)), c1(· , q(·)), andc2(· , q(·)) are
also integrable.

Let I be a duopolistic industry with differential information. TheBayesian gameasso-
ciated withI is the collectionG(I)= ((Ω,F ,µ),R2+, (F1,F2), (π1,π2)), where for each
firm i ∈ {1,2} the set of possible actions isR+, and its profit functionπi :Ω × R2+ → R is
given for allω ∈Ω andr = (r1, , r2) ∈ R2+ by

πi(ω, r)= rip(ω, r1 + r2)− ci(ω, ri).
We refer toG(I) as theCournot game with incomplete informationassociated with the
industryI. In this game, a (pure) strategy for a firmi ∈ {1,2} is anFi-measurable function
qi :Ω → R+ whose first and second moments exist. We denote bySi the set of all strategie
for Firm i, and byS = S1 × S2 the set of profiles of strategies.

LetX be an integrable random variable on(Ω,F ,µ), and letG be aσ -subfield ofF .
We write E(X | G) for the conditional expectation ofX with respect toG. Let G(I)
be a Cournot game with incomplete information. ABayesian equilibriumis a profile of
strategiesq∗ = (q∗

1, q
∗
2) ∈ S such that for everyi ∈ {1,2} and everyqi ∈ Si,

E
(
πi

(· , q∗(·)) ∣∣Fi)(ω)�E(
πi

(· , (qi(·), q∗−i (·)
)) ∣∣Fi)(ω), (2.1)

for almost everyω ∈ Ω . (Our assumptions onp, c1, c2 and on the set of strategies
every firm guarantee that for alli ∈ {1,2} andq ∈ S, and for everyσ -subfieldG of F ,
E(πi(· , q(·)) | G) exists.)

Remark 2.1. Equilibrium condition (2.1) requires that at a Bayesian equilibrium ev
firm maximizes its (interim) conditional expected profits at every state of nature.
condition is equivalent to requiring that each firm maximizes its ex-ante expected p
i.e., condition (2.1) is equivalent to

E
(
πi

(· , q∗(·))) �E
(
πi

(· , (qi(·), q∗−i (·)
)))
, (2.2)

for everyi ∈ {1,2} and everyqi ∈ Si.
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Proof. Clearly (2.1) implies (2.2). To prove the converse, assume that (2.1) does no
then there isi ∈ {1,2} andqi ∈ Si such that

E
(
πi

(· , qi(·), q∗−i (·)
) ∣∣Fi)>E(

πi
(· , q∗(·)) ∣∣ Fi)

on some eventA ∈Fi with µ(A) > 0. Defineq̂i :Ω → R+ by

q̂i(ω)=
{
qi(ω) if ω ∈A,
q∗
i (ω) if ω ∈Ω\A.

Thenq̂i ∈ Si and

E
(
πi

(· , q̂i(·), q∗−i (·)
))

=
∫
Ω

πi
(· , q̂i(·), q∗−i (·)

)
dµ

=
∫
A

πi
(· , q̂i(·), q∗−i (·)

)
dµ+

∫
Ω\A

πi
(· , q̂i(·), q∗−i (·)

)
dµ

=
∫
A

E
(
πi

(· , qi(·), q∗−i (·)
) ∣∣Fi)dµ+

∫
Ω\A

πi
(· , q∗

i (·), q∗−i (·)
)
dµ

>E
(
πi

(· , q∗(·))).
Thus, (2.2) does not hold.✷

3. The value of public information

In this section we study the value of public information in a symmetric duopoly; i.e
an industryI where both firms have identical information (i.e.,F1 =F2 = G) and cost (i.e.
c1 = c2 = c). Thus, a symmetric duopolistic industryI can be described by a collectio
((Ω,F ,µ),p, c,G). (For economy of notation we do not repeatc andG.) We refer to
the gameG(I) associated to a symmetric duopolistic industry as aCournot game with
symmetric information.

Theorem 3.1 provides conditions on the demand and cost functions that gua
existence, uniqueness, symmetry and interiority of Bayesian equilibria in a Cournot
with symmetric information. Note the “multiplicative” nature of the uncertainty in dem
and cost assumed in Theorem 3.1. The proof of Theorem 3.1 relies on Amir (
for existence and uniqueness, although in order to guarantee the measurability
equilibrium strategies we have to appeal to Aumann’s Measurable Selection Theorem
Aumann (1969). For interiority and symmetry we provide an argument based on first
conditions for profit maximization.

Theorem 3.1. Let I = ((Ω,F ,µ),p, c,G) be a symmetric duopolistic industry. Assu
that for all (ω, x) ∈ Ω × R+, p(ω,x) = α(ω)f (x) and c(ω,x) = β(ω)x, where
α,β :Ω → R++ are integrable functions andf :R+ → R+ satisfies
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(3.1.1) there isx̄ ∈ R+ such thatf (x) > 0 for x ∈ [0, x̄), andf (x)= 0 for x � x̄;
(3.1.2) f is differentiable and strictly decreasing on[0, x̄);
(3.1.3) f is log concave on[0, x̄); and
(3.1.4) α(ω)f (0) > β(ω) > 0 for all ω ∈Ω .

ThenG(I) has a unique Bayesian equilibrium(q∗
1, q

∗
2). Moreover, q∗

1(ω) = q∗
2(ω) ∈

(0, x̄/2) for all ω ∈Ω .

Proof. For everyω ∈ Ω define the two-player game of complete informationG(ω, I)
where each playeri ∈ {1,2} set of pure strategies isR+, and its payoff function
σi(ω, ·) :R2+ → R+ is given by

σi
(
ω, (x, y)

) =E(
πi

(· , (x, y)) ∣∣ G)
(ω),

where

π1
(· , (x, y)) = xp(· , (x + y)) − c(· , x)

and

π2
(· , (x, y)) = yp(· , (x + y)) − c(· , y).

It is easy to check that under assumptions (3.1.1)–(3.1.4) the gameG(ω, I) satisfies the
assumptions of Theorem 2.3 of Amir (1996) and therefore has a unique Nash equili
(q∗

1(ω), q
∗
2(ω)). We show thatq∗(·)= (q∗

1(·), q∗
2(·)) is a Bayesian equilibrium ofG(I).We

first show thatq∗(·) is aG-measurable function. Define the correspondenceE :Ω → 2R+

by

E(ω)= {
(x, y) ∈ R2+

∣∣ (x, y) is a Nash equilibrium ofG(ω, I)
}
.

We show that the graph of the correspondenceE is measurable with respect to the prod
σ -fieldG ⊗B(R2+),whereB(R2+) is theσ -field of Borel subsets ofR2+. For all(a, b) ∈ R2+
letD(a,b) be the set{(

ω, (x, y)
) ∈Ω × R2+

∣∣ σ1
(
ω, (x, y)

)
� σ1

(
ω, (a, y)

)
and

σ2
(
ω, (x, y)

)
� σ2

(
ω, (x, b)

)}
.

Since for all(x, y) ∈ R2+ the functionsσ1(· , (x, y)) andσ2(· , (x, y)) areG-measurable
and for allω ∈ Ω the functionsσ1(ω, ·) andσ2(ω, ·) are continuous inR2+, then for all
(a, b) ∈ R2+ the setD(a,b) is G ⊗ B(R2+)-measurable. Now, the graph ofE is given by

graph(E)=
⋂

(a,b)∈R2+

D(a,b)=
⋂

(a,b)∈Q2+

D(a,b),

whereQ2+ denotes the set of duples of non-negative rational numbers. Since the sQ2+
is countable, graph(E) is G ⊗B(R2+)-measurable. Thus, by the Measurable Selec
Theorem (see Aumann (1969) and Hildenbrand (1974, Theorem 1 on p. 54)), there
a G-measurable functionφ :Ω → R2 such thatφ(ω) ∈ E(ω) for almost allω ∈Ω. Since
for all ω ∈ Ω the setE(ω) is a singleton (becauseG(ω, I) has a unique equilibrium)
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φ(ω) = q∗(ω) for almost allω ∈Ω, and thereforeq∗ is aG-measurable function. Now
for eachi ∈ {1,2} andqi ∈ Si we have

E
(
πi

(· , q∗(ω)
) ∣∣ G)

(ω)�E
(
πi

(· , (qi(ω), q∗−i (ω)
)) ∣∣ G)

(ω),

for everyω ∈Ω , and therefore

E
(
πi

(· , q∗(·))) �E
(
πi

(· , (qi(·), q∗−i (·)
)))
,

which by Remark 2.1 establishes thatq∗ is an Bayesian equilibrium ofG(I).
Uniqueness ofq∗ follows from the fact that for allω ∈Ω the gameG(ω, I) has a unique

equilibrium.
It remains to show that for allω ∈ Ω, q∗

1(ω) = q∗
2(ω) ∈ (0, x̄/2). Let ω ∈ Ω.

We first show thatq∗
1(ω), q

∗
2(ω) ∈ (0, x̄). If q∗

i (ω) � x̄ for some i ∈ {1,2}, then
p(· , q∗

1(ω)+ q∗
2(ω))= 0, and thereforeσi(ω, (q1(ω), q2(ω)) < 0, which contradicts tha

(q∗
1(ω), q

∗
2(ω)) is an equilibrium ofG(ω, I) (because a Firmi can guarantee itself zer

profits by producingqi(ω)= 0). Thusq∗
i (ω) < x̄ for all i ∈ {1,2}.We show thatq∗

i (ω) > 0
for all i ∈ {1,2}. Assume by way of contradiction thatq∗

i (ω) = 0 for somei ∈ {1,2}.
Without loss of generality seti = 1. The Kuhn–Tucker condition for profit maximizatio
implies

E
((
p
(· , q∗

2(ω)
) − β(·)) ∣∣ G)

(ω)� 0. (3.1)

If q∗
2(ω)= 0, then by (3.1) we have

E
(
p(· ,0) ∣∣ G)

(ω)�E
(
β(·) ∣∣ G)

(ω),

which contradicts condition (3.1.4). If̄x > q∗
2(ω) > 0, then Firm 2’s first-order conditio

for profit maximization implies

E
(
q∗

2(ω)p
′(· , q∗

2(ω)
) + p(· , q∗

2(ω)
) ∣∣ G)

(ω)=E(
β(·) ∣∣ G)

(ω).

And sincep′(· , q∗
2(ω)) < 0 andq∗

2(ω) > 0, we have

E
(
p
(· , q∗

2(ω)
) ∣∣ G)

(ω) > E
(
β(·) ∣∣ G)

(ω),

which contradicts (3.1).
Finally we show thatq∗

1(ω)= q∗
2(ω) < x̄/2. Since 0< q∗

i (ω) < x̄ for all i ∈ {1,2}, the
first-order conditions for profits maximization imply

E
(
q∗
i (ω)p

′(· , q∗
1(ω)+ q∗

2(ω)
) + p(· , q∗

1(ω)+ q∗
2(ω)

) ∣∣ G)
(ω)=E(

β(·) ∣∣ G)
(ω)

for all i ∈ {1,2}. Therefore

E
(
q∗

1(ω)p
′(· , q∗

1(ω)+ q∗
2(ω)

) ∣∣ G)
(ω)=E(

q∗
2(ω)p

′(· , q∗
1(ω)+ q∗

2(ω)
) ∣∣ G)

(ω),

and since(q∗
1(ω), q

∗
2(ω)) is a Nash equilibrium ofG(ω, I), we haveq∗

1(ω)+ q∗
2(ω) < x̄.

Hencep′(· , q∗
1(ω)+ q∗

2(ω)) < 0, and thereforeq∗
1(ω)= q∗

2(ω) < x̄/2. ✷
Throughout the rest of the section let us be given a probability space(Ω,F ,µ).

A symmetric duopolistic industryI is thus described by a demand and a cost funct
and aσ -subfieldG of F . Given a market demandp and a cost functionc, define the binary
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relation� on the family of allσ -subfields ofF as follows: IfG andH are twoσ -subfields
of F , then

H � G ⇔
{
E

(
p(· , x) ∣∣H) =E(

p(· , x) ∣∣ G ∨H
)

and

E
(
c(· , x) ∣∣H) =E(

c(· , x) ∣∣ G ∨H
) ∀x ∈ R

}
. (3.2)

(HereG ∨H is the smallestσ -subfield ofF that contains bothG andH.)
The interpretation of the binary relation� is simple:H � G if (and only if) the

predictions of demand and cost functions (the uncertain parameters of the indust
the same whether the firms information is given byH, or by the aggregate informatio
in G andH (i.e., byG ∨ H). The binary relation� contains that introduced in Blackwe
(1951); i.e., ifH is more valuable thanG in the sense of Blackwell (1951), thenH � G, but
the converse may not hold: IfH andG are generated by finite partitions ofΩ , for example,
thenH is more valuable in the sense of Blackwell thanG if and only ifH ⊇ G—see Laffont
(1989, Theorem 1 in Chapter 4). It is clear thatH ⊇ G impliesH � G, and therefore that�
contains Blackwell’s relation. However, it is easy to construct an example for whichH � G
even thoughH � G—for an example of this kind, see Example 1 in Einy et al. (2002).

Now, consider an industry where the market demand is given for(ω, x) ∈Ω × R+ by
p(ω,x)= α(ω)f (x), and where firms’ cost isc(ω,x)= β(ω)x, whereα,β :Ω → R are
F -measurable integrable functions. Then

H � G ⇔ {
E(α |H)=E(α | G ∨H) andE(β |H)=E(β | G ∨H)

}
. (3.3)

Let p :Ω × R+ → R and c :Ω × R+ → R be given for (ω, x) ∈ Ω × R+ by
p(ω,x) = α(ω)f (x), and c(ω,x) = β(ω)x, whereα,β andf satisfy the assumption
of Theorem 3.1. For everyσ -subfieldG of F consider the symmetric duopolistic indust
I = ((Ω,F ,µ),p, c,G). By Theorem 3.1, the Cournot gameG(I) has a unique Bayesia
equilibrium, which is symmetric. Denote this equilibrium by(q∗

G, q
∗
G), and the equilibrium

profit by π∗
G . We say thatthe value of public information in the industryI is positive

(negative) if for everyσ -subfieldH of F
H � G ⇒ E

(
π∗
H

)
�E

(
π∗
G
)(
E

(
π∗
H

)
�E

(
π∗
G
))
. (3.4)

That is, the value of public information is positive (negative) if having better informa
does not decrease (increase) firms’ expected profits.

Let f :R+ → R+ be a function satisfying the assumptions (3.1.1)–(3.1.3) of Th
rem 3.1. Define

K(f )= {
(α,β)

∣∣ α,β :Ω → R++ are integrable andf (0)α(ω) > β(ω) ∀ω ∈Ω}
.

Note thatK(f ) is a convex subset ofL1(Ω,F ,µ)× L1(Ω,F ,µ). We denote byI(f )
the class of duopolistic industries of the formI = ((Ω,F ,µ),p, c,G) whereG is aσ -sub-
field of F andp and c are such that there exists(α,β) ∈ K(f ) for which p(ω,x) =
α(ω)f (x) and c(ω,x) = β(ω)x for all (ω, x) ∈ Ω × R+. Each industryI ∈ I(f ) is
determined by a pair(α,β) ∈K(f ) and aσ -subfieldG of F , and can be described asI =
((Ω,F ,µ),αf,β,G). For every(α,β) ∈ K(f ) we denote by(q(α,β), q(α,β)) the unique
equilibrium of the Cournot game with symmetric information associated with the ind
I = ((Ω,F ,µ),αf,β,F), and byπ(α,β) = αq(α,β)f (2q(α,β)) − βq(α,β) the equilibrium
profit. Also we define the functionU :K(f ) → R by U(α,β) = E(π(α,β)). Clearly
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U(α,β) is well defined onK(f ). Define the setM(f )= {(x, y) ∈ R2++ | f (0)x > y},
a convex subset ofR2+, and let the functionV :M(f )→ R be given by

V (x, y)=U(x1Ω,y1Ω). (3.5)

Note thatV is convex onM(f ) if and only ifU is convex onK(f ).

Remark 3.2. Let (α,β) ∈ K(f ). For everyσ -subfield G of F we have(E(α | G),
E(β | G)) ∈K(f ) and

U
(
E(α | G),E(β | G)) =E(πG),

whereπG is the firms’ profit at the unique Bayesian equilibrium of the Cournot game
symmetric information associated with the industry((Ω,F ,µ),E(α | G)f,E(β | G),F).

Proof. Simply note that(α,β) ∈ K(f ) implies f (0)E(α | G)(ω) > E(β | G)(ω) for all
ω ∈Ω. Therefore(E(α | G),E(β | G)) ∈K(f ), andU(E(α | G),E(β | G))=E(πG). ✷

Proposition 3.3 below is an analog of a well-known result in Blackwell’s mo
However, since the binary relation� defined in (3.2) contains Blackwell’s ordering, t
conclusion of Proposition 3.3 is stronger than that obtained in Blackwell’s framewor

Proposition 3.3. Let f :R+ → R+ be a function satisfying conditions(3.1.1)–(3.1.3)of
Theorem3.1. If the functionV defined in(3.5) is convex(concave) onM(f ), then the
value of public information is positive(negative) in every symmetric duopolistic indust
I ∈ I (f ).

Proof. Let f :R+ → R+ be a function satisfying conditions (3.1.1)–(3.1.3) of Th
rem 3.1, and assume thatV is convex onM(f ). (If V is concave the proof is analo
gous.) LetI ∈ I(f ). ThusI = ((Ω,F ,µ),αf,β,G) for some(α,β) ∈ K(f ) and some
σ -subfieldG of F . LetH be aσ -subfield ofF such thatH � G. By Remark 3.2, in orde
to prove that

E(πH)�E(πG),
we must show that

U
(
E(α |H),E(β |H)) �U

(
E(α | G),E(β | G)).

By Theorem 34.4 in Billingsley (1995) we have

E(α | G)=E(
E(α | G ∨H)

∣∣ G)
(3.6)

and

E(β | G)=E(
E(β | G ∨H)

∣∣ G)
. (3.7)

It is also easy to see that

U
(
E(α |F ′),E(β |F ′)

) =EV (
E(α | F ′),E(β |F ′)

)
, (3.8)

for everyσ -subfieldF ′ of F . Hence (3.6)–(3.8) imply
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U
(
E(α | G),E(β | G)) = EV

(
E(α | G),E(β | G))

= EV
(
E

(
E(α | G ∨H)

∣∣ G)
,E

(
E(β | G ∨H)

∣∣ G))
. (3.9)

And sinceV is convex onM(f ), Jensen’s Inequality implies

EV
(
E

(
E(α | G ∨H)

∣∣ G)
,E

(
E(β | G ∨H)

∣∣ G))
�EV

(
E(α | G ∨H),E(β | G ∨H)

)
. (3.10)

SinceH � G, thenE(α | G ∨ H) = E(α | H) andE(β | G ∨ H) = E(β | H). Therefore
(3.9) and(3.10) imply

U
(
E(α | G),E(β | G)) �EV

(
E(α |H),E(β |H)) =U(

E(α |H),E(β |H)). ✷
In order to show the usefulness of Proposition 3.3 to determine the value of inform

in a symmetric duopolistic industry we present several applications.
Let f :R+ → R+ be a function satisfying conditions (3.1.1)–(3.1.3) of Theorem

Denote byI0(f ) the class of industries of the formI = ((Ω,F ,µ),α0f,β,G) ∈ I(f ),
whereα0 is a positive constant number. Thus, in every industry in the classI0(f ) the
demand is known with certainty and only the cost is uncertain. Also denote byI1(f )

the class of industries of the formI = ((Ω,F ,µ),αf,β1,G) ∈ I(f ), whereβ1 is a
positive constant number. In every industry in the classI1(f ) the cost is known with
certainty and only the demand is uncertain. Let the functionV0 : (0, f (0))→ R be given
for y ∈ (0, f (0)) byV0(y)= V (1, y). Also let the functionV1 : (1/f (0),∞)→ R be given
for x ∈ (1/f (0),∞) by V1(x)= V (x,1).

Proposition 3.4 provides a criterion for determining whether the value of p
information is positive or negative for industries in the classesI0(f ) and I1(f ),
respectively. The proof of Proposition 3.4 is analogous to that of Proposition 3.3 a
omitted.

Proposition 3.4. Let f :R+ → R+ be a function satisfying conditions(3.1.1)–(3.1.3)of
Theorem3.1, and letG be aσ -subfield ofF .

(3.4.1) If V0 is convex(concave) on (0, f (0)), then the value of public information
positive(negative) in every symmetric duopolistic industryI ∈ I0(f ).

(3.4.2) If V1 is convex(concave) on (1/f (0),∞), then the value of public information
positive(negative) in every symmetric duopolistic industryI ∈ I1(f ).

Our next proposition establishes that we can determine whether the functionV is convex
(concave), by checking whether eitherV0 or V1 is convex (concave).

Proposition 3.5. Let f :R+ → R+ be a function satisfying conditions(3.1.1)–(3.1.3)
of Theorem3.1, and assume thatf is twice continuously differentiable on[0, x̄). The
following conditions are equivalent:
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(3.5.1) V is convex(concave) onM(f );
(3.5.2) V0 is convex(concave) on (0, f (0));
(3.5.3) V1 is convex(concave) on (1/f (0),∞).

Proof. Proposition 3.5 follows from Lemma 3.6 below and the fact thatV is homogeneou
of degree one. ✷
Lemma 3.6. Let f :R+ → R+ be a function satisfying conditions(3.1.1)–(3.1.3)of
Theorem3.1, and assume thatf is twice continuously differentiable on[0, x̄). Then
sign(Vxx)= sign(Vyy). Moreover, ifVxx(x, y)� 0 (Vxx(x, y)� 0) for all (x, y) ∈M(f ),
thenV is convex(concave) onM(f ).

Proof. We show that for all(x, y) ∈ M(f ) the functionV :M(f ) → R defined by
(3.5) satisfiesVxx(x, y) � 0 if and only if Vyy(x, y) � 0. Let (x, y) ∈ M(f ) and let
(q(x,y), q(x,y)) be the unique equilibrium of the industryI = ((Ω,F ,µ), xf, y1Ω,F), and
writeQ(x,y)= 2q(x,y). Then, for alli ∈ {1,2} andqi ∈ Si we have

q(x,y)
(
xf

(
Q(x,y)

) − y) � qi
(
xf (qi + q(x,y))− y

)
.

Therefore, uniqueness of equilibrium implies

Q(x,y)=Q
(

1,
y

x

)
.

Also the first-order conditions for profits maximization imply

1

2
xQ(x, y)f ′(Q(x,y)) + xf (

Q(x,y)
) = y.

Hence

V (x, y) = −1

4
x
(
Q(x,y)

)2
f ′(Q(x,y)) = x

(
−1

4

(
Q

(
1,
y

x

))2

f ′
(
Q

(
1,
y

x

)))

= xV

(
1,
y

x

)
.

Thus, forλ > 0 we have

V (λx,λy)= λxV
(

1,
λy

λx

)
= λV (x, y);

i.e.,V is homogeneous of degree one. By Euler’s Theorem

V (x, y)= xVx(x, y)+ yVy(x, y),
and therefore

xVxx(x, y)+ yVyx(x, y)= 0 and yVyy(x, y)+ xVxy(x, y)= 0.

Thus x2Vxx(x, y) = y2Vyy(x, y), and therefore sign(Vxx(x, y)) = sign(Vyy(x, y)), and
Vxx(x, y)Vyy(x, y)−Vxy(x, y)Vyx(x, y)= 0. Since the eigenvalues of the Hessian ma
of V at (x, y) are 0 andVxx(x, y)+ Vyy(x, y), thenVxx(x, y)� 0 (Vxx(x, y)� 0) for all
(x, y) ∈M(f ) implies thatV is convex (concave) onM(f ). ✷
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The following remark is a direct implication of Proposition 3.5.

Remark 3.7. If the value of public information in every industryI ∈ I0(f ) (or I ∈ I1(f ))

is positive (negative), then the value of public information of every industryI ∈ I(f ) is
positive (negative).

Theorem 3.8 establishes useful conditions under which the value of informat
positive in an industry. These conditions are essentially the same that Novshek
imposes to guarantee existence of a Cournot equilibrium. (Condition (3.8.1) is the
condition of Novshek’s Theorem 3.)

Theorem 3.8. Let f :R+ → R+ be a function satisfying conditions(3.1.1)–(3.1.3)of
Theorem3.1. If f is thrice differentiable on[0, x̄) and for allx ∈ [0, x̄) satisfies

(3.8.1) xf ′′(x)+ f ′(x)� 0 and
(3.8.2) f ′′′(x)� 0,

then the value of public information in any industryI ∈ I(f ) is positive.

Proof. Let f be a function satisfying the assumptions of Theorem 3.8 and letI ∈ I(f ).
By Proposition 3.5 we may assume, without loss of generality, thatI ∈ I0(f ). Thus the
industryI is described by a collectionI = ((Ω,F ,µ), f, y1Ω,G), for some 0< y < f (0).
We show thatV ′′

0 (y)= Vyy(1, y)� 0 for 0< y < f (0), and therefore thatV0 is convex on
(0, f (0)).

Let 0< y < f (0), and let(qy, qy) be the unique Bayesian equilibrium of the Cour
game associated withI. WriteQ(y)= 2qy. We have

V (1, y)= Q(y)

2

(
f

(
Q(y)

) − y).
First-order conditions for profit maximization imply

Q(y)

2
f ′(Q(y)) + f (

Q(y)
) = y. (3.11)

Therefore

V (1, y)= −Q2(y)

4
f ′(Q(y)).

By (3.8.1) Q(y) is the unique solution to the equation

z

2
f ′(z)+ f (z)= y.

By the Implicit Function Theorem,Q is differentiable on(0, f (0)). Thus, differentiating
(3.11) we get

Q′(y)= 2
′′ ′ .
Q(y)f (Q(y))+ 3f (Q(y))
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Direct calculation yields

V ′′
0 (y)=

−f ′(Q(y))(Q2(y)f ′′′(Q(y))+ 6Q(y)f ′′(Q(y))+ 6f ′(Q(y)))
2(Q(y)f ′′(Q(y))+ 3f ′(Q(y)))3

. (3.12)

Sincef ′ < 0 on [0, x̄), (3.8.1) and(3.8.2) imply V ′′
0 (y)� 0. ThereforeV0 is convex on

(0, f (0)), and by Propositions 3.4 and 3.5 the value of public information in every ind
I ∈ I(f ) is positive. ✷

The following result is a direct corollary of Theorem 3.8.

Corollary 3.9. Let f :R+ → R+ be a function satisfying conditions(3.1.1)–(3.1.3)of
Theorem3.1. If f is concave, thrice differentiable on[0, x̄) and satisfiesf ′′′(x) � 0 for
0 � x < x̄, then the value of public information in any industryI ∈ I(f ) is positive.

We now apply our results to some examples.

Example 3.10. Let f be given forx ∈ R+ by

f (x)= max

{
a0 −

n∑
i=1

aix
λi ,0

}
,

wherea0 > 0, ai � 0, andλi � 1 for i ∈ {1, . . . , n}. The functionf satisfies condition
(3.1.1)–(3.1.3) of Theorem 3.1. LetG be aσ -subfield ofF , and for 0< y < a0 = f (0) let
(q(y), q(y)) be the unique Bayesian equilibrium of the Cournot game associated wi
industryI = ((Ω,F ,µ), f, y1Ω,G). WriteQ(y)= 2q(y). Now, we have

x2f ′′′(x)+ 6xf ′′(x)+ 6f ′(x)=
n∑
i=1

(
λ2
i + 3λi + 2

)
aix

λi−1< 0

and

xf ′′(x)+ 3f ′(x)= −
n∑
i=1

λi(λi + 4)aixλi−1< 0.

Sincef ′(x) < 0 for all x > 0, (3.12) yieldsV ′′
0 (y) > 0 for all 0< y < a0 = f (0). Thus,

V0 is convex on(0, a0), and therefore by Propositions 3.4 and 3.5 the value of informa
in any industryI ∈ I(f ) is positive.

Example 3.11. Let f be given forx ∈ R+ by

f (x)=
{
(x − a)2 if 0 � x � a,
0 otherwise,

wherea > 0. The functionf satisfies conditions (3.1.1)–(3.1.3) of Theorem 3.1. LeG
be aσ -subfield ofF , and for 0< y < f (0)= a2 let (q(y), q(y)) be the unique Bayesia
equilibrium of the Cournot game associated with the industryI = ((Ω,F ,µ), f, y1Ω,G).
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Write Q(y) = 2q(y). It is easy to check that the first-order conditions for pr
maximization yield 0�Q(y)� a/2 for all 0< y < a2. Now, for all 0< y < a2 we have

Q(y)f ′′(Q(y)) + f ′(Q(y)) = 4Q(y)− 2a � 0 and 0= f ′′′(Q(y)).
Therefore by(3.12) we haveV ′′

0 (y) > 0 for all 0< y < f (0). Thus,V0 is convex on
(0, f (0)), and therefore by Propositions 3.4 and 3.5 the value of public information in
industryI ∈ I(f ) is positive.

Example 3.12. Let f be given forx ∈ R+ by

f (x)=
{
(1− x)3 if 0 � x � 1,
0 otherwise.

The functionf satisfies conditions (3.1.1)–(3.1.3) of Theorem 3.1 on[0,1). Let G be
a σ -subfield ofF , and for 0< y < 1 = f (0) let (q(y), q(y)) be the unique Bayesia
equilibrium of the Cournot game associated with the industryI = ((Ω,F ,µ), f, y1Ω,G).
Write Q(y) = 2q(y). It is easy to check that the first-order conditions for pr
maximization imply 0�Q(y)� 2/5 for all 0< y < 1. Direct computation yields

Q(y)f ′′(Q(y)) + 3f ′(Q(y)) = (
1−Q(y))(15Q(y)− 9

)
< 0

and

Q2(y)f ′′′(Q(y)) + 6Q(y)f ′′(Q(y)) + 6f ′(Q(y)) = −60Q2(y)+ 72Q(y)− 18,

for all 0< y < 1. Now, wheny approaches 0, Q(y) approaches 2/5, and thus the abov
expression is negative. Therefore by(3.12) we haveV ′′

0 (y) < 0 for all 0< y < ȳ, where
ȳ > 0 is sufficiently small that the above expression is negative. Thus,V0 is concave on
(0, ȳ), and therefore there exists a subclassJ (f ) of I(f ) such that for any industr
I ∈J (f ) the value of public information is negative.

4. Extensions: asymmetric information

We conclude the paper with an example that illustrates the difficulties that emerge
firms are asymmetrically informed. In this example the Cournot game associated w
given industry has a unique interior Bayesian equilibrium, but the game obtained by a
some public information has a unique corner equilibrium.

Example 4.1. Let (Ω,F ,µ) be a probability space, whereΩ = {ω1,ω2,ω3},F = 2Ω, and
µ(ω1)= 1/2, µ(ω2)= 3/8, µ(ω3)= 1/8. Definep :Ω × R+ → R for (ω,Q) ∈Ω × R+
by

p(ω,Q)=
{

80−Q if Q� 80,
0 otherwise.

Also let c :Ω × R+ → R be given for(ω,Q) ∈Ω × R+ by c(ω,Q)= β(ω)Q, where

β(ω)=
{20 if ω = ω1,

1 if ω = ω2,
77 if ω = ω3.
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Let F1 = {∅,Ω, {ω1}, {ω2,ω3}}, F2 = {∅,Ω}, and letG = {∅,Ω, {ω1,ω3}, {ω2}}. Then
F1 ∨ G = 2Ω, and F2 ∨ G = G. The unique Bayesian equilibrium of the Courn
game associated with the industry((Ω,F ,µ),p, c,F1,F2) is (q1, q2) whereq1(ω) =
q2(ω) = 20 for all ω ∈ Ω. Also the Cournot game associated with the indu
((Ω,F ,µ),p, c,F1 ∨ G,F2 ∨ G), has a unique a Bayesian equilibrium,(q̂1, q̂2). In this
equilibrium we havêq1(ω3)= 0, and therefore it is a “corner” equilibrium.
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