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Notes

1. See Mount and Reiter (1990), Appendix A. For the continuous case. see Definition 3.

2. The space P* consists of the collection of lines passing through the origin of Euclidean
3-space R®. Therefore, P? can be considered to be the collection of equivalence classes of
the points in £°-{(0, 0,-0)} under the equivalence relation (x, y, z) = (&, ty, tz) for each 1 #
0. The topology used is the quotient topology. If E? has coordinates (X, Y, Z), then these
coordinates are also called homogeneous coordinates on P2. The space P” is a nonoriented
closed C"-manifold. For a discussion of P” in general, see Eisenberg (1974).
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3 CONVERGENCE THEOREMS
FOR A CLASS OF RECURSIVE

STOCHASTIC ALGORITHMS
Diego Moreno and Mark Walker

Several recent studies of the way individual economic units might learn
their parts in an economic or strategic equilibrium have modeled the
learning process as a recursive algorithm with stochastic features. The
central idea in each of these studies has been to explain or justify the
notion of equilibrium by demonstrating that an equilibrium is a stationary
point to which the learning process converges. This approach to
equilibrium analysis—and in particular the modelling of learning in terms
of a recursive stochastic algorithm—seems attractive and powerful, and
we expect its use to become more widespread.

Because the central issue in this approach is the convergence of recur-
sive stochastic algorithms, the theory of convergence for such algorithms
is clearly an important technical tool. The theoretical framework that
these recent studies have used is the one developed by Ljung (1975, 1977).
Ljung defines a general class of estimation or forecasting algorithms. and
he provides theorems that give conditions under which these algorithms
will converge to their stationary points. The algorithms are particularly
apt for modelling the learning of equilibrium.

Ljung’s contributions, despite their obvious importance, are fraught
with a number of difficulties. Our aim here is to clarify and resolve many
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of these difficulties, and thereby to provide a stronger foundation for the
convergence results and to smooth the path for applying the framework
and the results. Most of the difficulties in Ljung’s analysis arise from his
attempt at maximum generality, which has two kinds of consequences.
First, the theory is much more difficult to apply than it ought to be; in
particular, it is difficult to determine in applications whether Ljung’s
assumptions are satisfied, and it is easy to apply the theory incorrectly
(see, for example, Remark 1 in section 3). And second, it is very difficult
to determine whether Ljung’s proofs are correct for such convoluted
assumptions. (The proofs are even more convoluted than the assumptions.
Ljung (1977) acknowledges that some of his assumptions ‘“‘admittedly
look somewhat complex” and that “‘the many technicalities [in the proofs]
tend to obscure the simple idea.”)

In order to clarify the convergence theory and to obtain clear, revealing
proofs, we will concentrate on a linear form for the algorithms, a
somewhat less general form than Ljung’s. We will lay out the framework
clearly and will use simple, clear assumptions. This enables us to give a
straightforward and complete proof, in which it is easy to understand the
proof’s structure and to determine whether its steps are correct. While all
this is done for a less general algorithm than Ljung’s, the proof given here
provides a clear model for moving to applications that, in one respect or
another, fail to fit within this form.

The most serious of the difficulties we will address is that Ljung’s
proofs are not entirely correct. For the most part, we show how the
missteps in his proofs can be avoided. There is one error, however, that
does not seem to be correctible in the general case that Ljung treats. We
give a correct proof for our linear version of the algorithm, and we
indicate how strengthening onc of the assumptions will avoid the problem
in the general case. It remains an open question whether the theorem is
true with Ljung’s original weaker assumption (see Remarks 3 and 4 in
section 3 for discussion of this issue).

Another of the difficulties with Ljung’s proofs concerns his “‘projec-
tion” algorithms, the kind of algorithm that has been used in the economic
studies that deal with rational expectations. The proof of convergence
that was given tor these algorithms 1s not correct (it appeals incorrectly to
lemmas obtained for nonprojection algorithms). We treat projection and
nonprojection algorithms together, in a single unified proof, thereby
obtaining a clear and correct proof for projection algorithms (see Remark
2 in section 3).

In an attempt to apply projection algorithms to economic situations in
which individuals have disparate information and objectives, Marcet

l~f1-wy§‘; !
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and Sargent (1989b) and Moreno and Walker (1991) have defined
«decentralized” projection algorithms (Marcet and.Sargent do not use
this terminology). We indicate in Remark l‘of section 3 why our proof
(and Ljung’s) does not apply to such algorithms, and we also indicate
what would be required in order to devise a correct proof of convergence
for such algorithms. o .

We emphasize that most of the constructions in the proof we provide
are taken more or less directly from Ljung (1975, 1977). We show how
those constructions can (and cannot) be incorporateq into a correct proof
of convergence; the clarity of the analysis we'pr.ov1de should make fgr
much greater ease in verifying that the anally51s is cor're.ct, as well as in
applying the algorithms and theorems, and in generalizing them to deal
with new situations.

1. The Algorithms and the Theorems

Consider a system, evolving over time, in which estimates or forecasts (Qf
parameters, actions, the state of the system, etc.) must be formed, and in
which these estimates determine the current state of the system. We
assume that the estimates are formed via a recursive rule, or algorithm; in
forming the current estimate, only the preceding _estlmgte and the current
state are used. Formally, we have the following difference equation
system, which we will call Ljung’s Basic Algorithm:

q(t) = (x(t — 1))q(t) + Bx(t — 1))e(?), the state at 4; (1)
x(f) = x(t = 1) + )0, x(t — 1), q(¢)), the estimate attr.  (2)

We assume that g(f) € R™, x(t) € R", e(¢) is a random variable taking
values in R, that y(¢) is a real number, and that (for each x € R™y 27 (x)
and 48 (x) are matrices of appropriate dimension. .

It is natural to use this framework to model economic processes thgt
involve interaction among agents who do not know the true parametric
structure of the process, but who must neverthel4ess’ take actions based
upon some estimate of the structure, and m which tpose a<.:uons n iurn
determine the data which the agents will use in forming their subsequent
estimates. Marcet and Sargent (1989a, 1989b) and Woodfprd (1990)
contain applications of the framework to ratioqal .e)_cpectatlons (q re-
presents such variables as prices, and x represents individuals’ fo.recz.lsts of
those variables); Moreno and Walker (1991) contains an appllcan(_)n to
Nash equilibrium in a simple duopoly game (m = n = 2; q is the list of
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the firms’ output levels; and x is the list of the firms’ forecasts of their
rivals’ output levels). In each of these applications, the question addressed
is whether the system will converge to the equilibrium~—whether the
participants will “learn” to play their parts of an equilibrium. The
question whether a system of the form (1) & (2) will converge to a
stationary state is therefore of interest to economists.

Ljung’s method for studying the convergence properties of recursive
stochastic algorithms of the form (1) & (2) is to associate an ordinary
differential equation (called the Associated Differential Equation, or
ADE for short)

d .
== ) ()

with the algorithm; then to show that the algorithm (more specifically, its
sequence of estimates x(f)) “‘behaves asymptotically like the differential
equation”’; and then to study the convergence properties of the differential
equation, which is generally far easier than directly studying the con-
vergence properties of the time-varying stochastic difference equation
system (1) & (2).

Ljung derives the ADE for a system of the form (1) & (2) as follows.
Denote by g(¢, x) the path of the state g(f) under the restriction that the
estimate x(¢) is fixed at x instead of updated via (2):

qe, x) =(x)q(t — 1, x) +B(x)e(r), and g0, x) = 0;

and denote by Q(¢, x) the corresponding path of the value of the updating
function Q:

O, x) = O, x, 4(t, x)).

Clearly, f(x) ought to behave in some respect like O(z, x) if it is going to
serve as a surrogate for the algorithm: Each is a description of how the
estimate x(r) is updated if its current value is x. Q(t, x) tells how the
actual x(¢) behaves at x, and f(x) tells how the surrogate continuous-time
system of the ADE behaves at x. Although the intuition here leaves
<omething to he desired, Ljung nevertheless defines f(x) as
flx) = lim EQ(t, x),
P

and then goes about proving—at great length and difficulty, but for the
most part successfully—that indeed the algorithm “behaves asympto-
tically” like the ADE if the ADE is defined in this way, and that the
algorithm’s convergence properties do indeed essentially coincide with
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those of the ADE. (He requires, of course, that the limit that defines f{x)
be a well-defined finite vector for each x.) We w1!‘l assume throughout
that the ADE has at least one stationary point x*, and we denpte by
a(x*, f) the domain of attraction of x*—i.e., the set‘}of x for which the
solution X(-, f) of the ADE satisfies lim X(xy, f) = x*.

-> 0

Ljung lays out several sets of assumptions on the algolrithm and on _the
stochastic process {e(1)}, but in his effort to achieve maximum g§qerallty,
he makes the assumptions extremely complicated apd unintuitive. He
then proves several theorems describing t.he algorithm’s convergence
properties under these assumptions. We will concentrate upon his two
main theorems (Theorems 1 and 4 in Ljung, 1977), which we will refer to
as Ljung’s First Theerem and Ljung’s Second Theorem.

Ljung’s First Theorem: Under Ljung’s assumptions, if a sequence {x()}
which is generated by the Basic Algorithm has a bounded subsequence
that lies within @ (x*, f), then {x(f)} converges almost surely to x*.

The requirement that the sequence {x()} have a bou_nfied sut.)sequ.ence
is not entirely satisfactory. If we convert it from a condition on mdm_dual
sequences to a condition on the algorithm, we have: “If the algorithm
almost surely generates sequences that have bounded sul')s_equfances, then
the algorithm converges almost surely to x*.” This condition is genera}ly
very difficult to verify; in most applications, it may be no easier to verify
it than to establish convergence by direct analysis of the difference
equation system. N

In order to overcome the difficulties with the boundedness condition,
Ljung introduces a second algorithm, called a “projectioq algoritth,i’
which bounds the path of the first algorithm by replacing ‘“‘outlier”
estimates with substitute estimates that lie in a bounded set. He proves
that this projection algorithm behaves asymptotica!ly like the 0r1g1nal
algorithm (i.e., the replacement, or “projection,” is invoked o_nly finitely
many times), and, therefore, he has the following result (we will properly
define the projection algorithm shortly):

Ljung’s Second Theorem: Under Ljung’s assumptions, if the Projegtion
Algorithm satisfies Condition L (see below), then the algorithm
converges almost surely to x*.

Our own analysis will be carried out entirely for a linear forrp of the
Basic Algorithm and the Projection Algorithm; for the remainder of
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this section we will also restrict our attention to the deterministic
(nonstochastic) case. The Basic Algorithm will henceforth be described
by the following difference equation system:

q(t) = Bx(i — 1) )

x(H) =x(t— 1)+ %[Gq(t) + Hx(t — 1)},

where g(t) € R™, x(t) e R" and B, G, and H are m X n, n X m, and
n X n matrices. This algorithm has Ljung’s form, as follows:

.ﬂ(X) = 0, QB(x) — BX, y([) _ % .

o(t, x, q) = Gq(t) + Hx(t — 1), e(t) = 1.

Therefore, we have f(x) = (GB + H)x. We write A for the n X n matrix
GB + H, and we have f(x) = Ax. Note that if A is nonsingular, then x* =
0 is the unique stationary point of both the algorithm and its ADE; and
that x* is globally stable under f (i.e., Z(x*, f) = R") if A is a stable
matrix (i.e., if all its eigenvalues are negative), and that otherwise
P(x*, f) is a proper subspace of R”, and x* is an unstable stationary
point of the ADE. (We have x* = 0 as the stationary point because of the
system’s homogeneity; this is equivalent to the system being nonhomo-
geneous and to x and ¢ being the deviations of the estimate and state
from their equilibrium values.)

For the Basic Algorithm (4) & (5), Ljung’s Boundedness Condition
and his First Theorem can be given the following simple forms:

Condition B: An algorithm satisfies Condition B if, for any x(0) € R”, the
sequence {x(¢)} generated by the algorithm has a bounded subsequence.

First Convergence Theorem (Deterministic Version): If the Basic
Algorithm (4) & (5) satisfies Conditions B, and if x™ is an asymptotically
stable stationary point of the algorithm's ADE (i.e., if Z(x*, f) is an
open set), then {x(¢)} converges to x* for every x(0) e R".

We have already suggested that Condition B is generally difficult to
verify. Ljung therefore introduces a projection operator which replaces
“outlier” estimates with well-defined substitutes, thereby forcing the
algorithm’s estimates to always lie in a bounded set. Formally, the pro-
jection operator is defined as follows, where D is an arbitrary bounded
subset of R™:
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Let D be a subset of R with a nonempty interior D°; (5'a)
Let C be a nonempty closed subset of D° N P(x*, f); (5'b)
For any x(0) € R", q(0) € R”, and p(0) ¢ R",
define {X(8)}, {p(#)}, and {x(5)} as follows:

D =x(t—- 1+ %[Gq(t) + Hx(t — 1)], (5'¢c)
{p(£)} is an arbitrary sequence in C, and (5'd)
B {f(t) if %)eD (5'€)
D=0 it #)eD (5'f)

The projection operator (5') replaces (5) in the Basic Algorithm 4) &
(5). giving us the Projection Algorithm (4) & (5'). We say that “the
projection operator is invoked at £’ in a sequence {x(0)} if X¥(r) ¢ D, or
equivalently, if x(¢) # (7).

The Projection Algorithm certainly satisfies Condition B; indeed, the
entire sequence {x(¢)} will always be bounded. But so long as the projec-
tion operator is being invoked, the Projection Algorithm will not behave
like its ADE (which, in D°, is the same as the ADE for the Basic
Algorithm): It will be repeatedly “‘jumping.” Thus, the First Convergence
Theorem will not apply to the Projection Algorithm. It can be shown,
however, that if the Projection Algorithm satisfies the following con-
dition, then its projection operator will be invoked only finitely many
times (for any x(0) € R"), so that eventually the Projection Algorithm
will behave like the Basic Algorithm after all, and it will therefore
converge to x*.

Condition L: The algorithm (4) & (5') is said to satisfy Condition L
if there is a twice continuously differentiable function U: R" — R,
for which

Yy e f)"\\f" I/’(Y)f(\\f) < 0 and
3¢y, ¢, € Rsuch that 0 < ¢, < ¢y and Vx € C: U(x) < ¢, and
Vx ¢ D: Ulx) = ¢,

where U’(x) denotes the derivative (i.e., the gradient) of U at x.

Condition L requires the existence of a function U that behaves in the
set D°\ C like a Lyapunov function for the ADE. It impiies, in particular,
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that trajectories of the ADE that begin in C never leave the set D. The
effect of Condition L is as follows: Because the “‘step size” #(¢) — x(r — I§]
in the Projection Algorithm goes to zero as ¢ grows large, the step size
eventually becomes so small that if x(¢) € C, as it is when the projection
operator has been invoked, then X(¢ + 1) must still lie in D°; and because
the algorithm behaves (in D°) asymptotically like the ADE, Condition 1
ensures that if the projection operator is invoked when ¢ is large enough,
then {x(#)} will be trapped in D°, and the projection operator will there-
fore never again be invoked. If the set C is chosen sufficiently close to D,
then Condition L will be satisfied if the trajectories of the ADE point
inward on the boundary of D, which is often easier to verify than
Condition B.

Second Convergence Theorem (Deterministic Version): If the Projection
Algorithm ((4) & (5') with D bounded) satisfies Condition L, and if x* is
an asymptotically stable stationary point of the algorithm’s ADE, then
{x(#)} converges to x* for every x(0) e R".

Suppose we had assumed that D = [R” in (5’), instead of that D is
bounded. Then the projection operator would never be invoked, the set
C and the sequences {p(t)} would be irrelevant, and we would always
have x(t) = ¥(#). In other words, if D = [R”, then (5') is the same as
(5). This observation leads us to adopt a unified treatment of the two
algorithms: The Basic Algorithm is defined by (4) & (5') with D = R",
and the Projection Algorithm is defined by (4) & (5') with D bounded.
This yields the following convergence theorem, which contains the First
and Second Theorems as special cases:

Convergence Theorem (Deterministic Version): If the algorithm (4) & (5)
satisfies either

(a) D = R (the Basic Algorithm) and Condition B, or
(b) D is bounded (the Projection Algorithm) and Condition L.

and if x* is an asymptotically stable stationary point of the algorithm’s
ADE, then {x(r)} converges to x* for every x(0) ¢ R".

Section 3 contains a proof of the Convergence Theorem.
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A CUE
2. The Stochastic Convergence Theorem

Although it is not very clear i.n Ljung’s papers, t_lis app.roach to.the
convergence theory for recursive stochastic a?gonthms is essentially
deterministic, with the proof for the. stochastic case built upon the
deterministic proof. We make this relation t?etween the deternnmsgc aqd
the stochastic cases more explicit, and this enable§ us to provide, in
section 4, a brief but complete proof for the stochgstlc case. ' ‘

Assume that (Q, &, P) is a probability space, in which Q consists of
all the sequences {w(r)}7 of points in lRm;.é"’ is the sgt of Borel-
measurable subsets (“‘events”) of €; and P is a probablhty. measure
defined on &. We redefine the algorithm to include, at each time i, the
random term w(¢), as follows:

q(t) = Bx(t — 1) + w(1). 4

It is not necessary that the random vector have the same dimensionﬁ as q.
We could instead have g(f) = Bx(t — 1) + Su(t), where u(t) € R", S is
m x €, and o(f) = Su(t). We take the sequences o to be the elementary
events of the probability model (the elements of Q), .but we also treat
each w(f) as a random variable that takes its values in R". (In other
words, we write w(t) both for the tth random variable and for the random
variable’s value at a realization w € Q.) We denote the rth moment of
w(t) by p(f), when it exists.
We make the following assumptions on the random process w:

(S1) The random variables w(t) are independent. .
(S2) The first four moments of the random variables (?)
are bounded:

3, € Rivee N (1) < g, forr=1.2,3.4

(S3) Each random variable has mean zero: Vi € N: 2, (¢) = 0.

Assumption S3 is made for convenience only: It al}ows us to cqntinue
working with the same ADE, but it is not essential. Assumption S2
cannot be relaxed to require only that, say, the first two or three
moments of the process be bounded. On the other hand, it is possible to
generalize the form of the algorithm a bit if higher-order moments of Fhe
stochastic process are assumed to be bounded (see Remark 6 in sgctlon
4). It may be possible to relax somewhat the independence assumption S1
(see Remark 5 in section 4). .

A proof of the following theorem is given in section 4:
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Convergence Theorem (Stochastic Version): Assume that the algorithm
(4') & (5') satisfies either

(a) D = R" (the Basic Algorithm) and Condition B almost surely, or
(b) D is bounded (the Projection Algorithm) and Condition L.

If x* is an asymptotically stable stationary point of the algorithm’s ADE,
and if the stochastic process o satisfies S1, S2, and S3, then {x(#)}
converges -almost surely to x* for every x(0) e R".

3. Proof of the Deterministic Convergence Theorem

We emphasize again that most of the constructions in the proof we are
about to provide are adapted from Ljung (1975, 1977). In section 4, we
will show that the deterministic proof given in this section is essentially
the proof for the theorem’s stochastic version as well. In particular, the
lemmas that appear in the current section as steps in the deterministic
proof will appear again in the stochastic proof, where their statements
will be exactly the same, except for the addition of the phrase “‘almost
surely” in the right places. Therefore, in order to simplify things when we
come to the stochastic proof, and in order to emphasize the essentially
deterministic nature of the proof even for the stochastic case, we include
in the statements of this section’s lemmas the necessary additional phrases
“almost surely,” but we place them in brackets: {a.s.].

We denote the norm of a point x € R” by |x|, and we denote the norm
of a matrix A by ||A[|, defined in the usual way: |A|| = max,-,|Az|. We
will use the notation B(x, p) for the open ball about x of radius p, i.c.,
B(x, p) = {z € R"| |z — x| < p}. We assume throughout that x* is an
asymptotically stable stationary point of the algorithm’s ADE, i.e., that
P (x*, f) is an open set. (For our linear ADE, this is equivalent to global
stability, i.e., to Z(x*, f) = R".) We should perhaps note that while
Ljung may not seem to assume that x* is asymptotically stable, he
requires {equivalently) that &(x*, f) be open when he invokes the
“converse’ stability theorems to obtain a Lyapunov function.

The key idea in Ljung’s approach is that the sequence {x(f)} “behaves
asymptotically like” the ADE x = f(x). More precisely, for any point ¥
€ D° and any sufficiently small positive number 7, if x(f) is near x and if ¢
is sufficiently large, then
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{. a certain number of subsequent terms, say x(r + 1},... . x(m),
where m depends upon t, will also be near x; and moreover

7 the cumulative movement of the sequence between term ¢ and

) term m will be approximately tf(¥).

Following Ljung, we formally define the number m that appears in (1)
and (2) by a function m: N x R.. — IN which, for each t > 0, satisfies
m(tt) 1
lim > -=r1.

trsos=r+15

Because Ljung does not address the question whether such a function

. L 1
mf(t, 7) exists, we provide an explicit example: Given (5 1), it £ + 1 < pt

1
then take m(¢, ©) = ¢+ + 1; and when 7 + 1 = - take m(t, 7) to be the

first index such that

m(t.1) 1 mto)+1
-<r7 and > ->r1
s=1+1% s=t+1 §

0

1 . .
The function is well-defined, because z — = o, and it has the desired
. s=1+1

1
asymptotic property because, when ¢t + 1 = oowe have

m(11) 1 1

<t - S
Ot A T |
Note that this particular function m has the additional property, which we
will use, that the sum is never larger that v (when r is large enough).

We can now state the properties (1) and (2) precisely; they will be used
throughout the proof. (Henceforth, the symbol t will denote only strictly
positive real numbers.)

Property 1: Let x € R" and let p > 0. A sequence {x(t)} is said to have
Property 1 for ¥ and p if 37; > 0: Ve < 12 3T: Ve > Tt if x(f) € B(x, p)
then t < s < m(t, 1) = x(5) € B(x, 2p).

Property 2: Let ¥ € R" and let p > 0. A sequence {x(#)} is said to have
Property 2 for x and p if 37, > 0: Vo < 7,0 3T > 0: Ve > T: if x(1) €
B(x, p) then [x(m(t, 7)) — x(t) — flD)] < [|A]l pr.
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We will develop the proof of the theorem in a series of four lemmas.
Lemmas 1 and 2 establish conditions under which the sequence {x{t)} will
have Properties 1 and 2. Lemma 3 then uses Properties 1 and 2 to
establish that at any accumulation point of {x(¢)} other than the stationary
point x*, any function that is “Lyapunov-like” with respect to the ADE
at x* must satisfy an important auxiliary inequality. Lemma 3 is used to
prove Lemma 4, which establishes that the projection operator is never
invoked infinitely often (so that the Projection Algorithm eventually
behaves like the Basic Algorithm), and then Lemma 3 is used again to
complete the proof by establishing that every subsequence generated by
the Basic Algorithm must converge to x*

Lemmas 1, 2, and 3 provide two alternatlve condmons under which
their conclustons hold. This may seem odd, especially since the Basic
Algorithm clearly satisfies both conditions. The conditions are quite
different, however, for the Projection Algorithm. One of the conditions
(essentially, that we are not examining boundary points of D) is appro-
priate for applying the lemmas when it is not known (as it will not be until
Lemma 4) whether X¥(¢#) must eventually lie in D. The other condition
(that ¥(r) is indeed eventually in D) allows us, once we have obtained
Lemma 4, to use Lemmas 1, 2, and 3 to examine boundary points of D
that may occur as accumulation points of {x(#)}.

Lemma I: Let ¥ € R" and p > 0. If B(x, 2p) < D (and a fortiori ¥ € D°),
or if ¥(¢) is [a.s.] eventually in D, then {a.s.] {x(¢)} has Property 1 for
X and p.

Proof. If 7 is small enough and ¢ large enough, then for each k that
satisfics ¢ + 1 < k& < m(¢, v) we will show that if x(s) € B(%, 2p) fors =,
t+1,..., k — 1, then also x(k) € B(x, 2p). Property 1 assumes that we
already have x(¢) € B(X, p) < B(X, 2p); therefore this recursive argument
will establish that x(t + 1), x(+ + 2), ..., x(m) € B(X, 2p), as required.
Thus, assume that

ss< k- 1=x(s) € B(x, 2p); (6)

we will show that X(k) € B(¥, 2p), from which it follows that x(k) =
X(k) € B(x, 2p).

If ¥ € D and B(X, 2p) < D, then (6) implies that the projection
operator is never invoked during the periods ¢ to & — 1. The lemma’s
-alternative assumption is that X(¢) is eventually in D, in which case, we let
t be large enough that ¥(¢') € D for t' = ¢, and again the projection
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erator is never invoked during the periods ¢ to kK — 1. In either case.
?hen we have x(s) = ¥(s) e Dfort<s<k — L Therefore,

k) = x(k — 1) + [Gq(k) + Hx(k — 1)]

= x({t) + 2 Gq(s) + Hx(s — 1)]

s= H—l

=x(t) + 2 A x(s — 1)], (7)

s=t+15

and thus
k

5k - x0 < > lnAu x(s — )|

m(rz)

< [|All max [x(s — 1)| 2 " < Al 2o + IXI) Z

<s<k

where the last inequality follows from the assumption that x(s) € B(x, 2p)
whenever ¢t < s < k. Define 7, as follows:

I ;
“ = OAT @ R ®

and given 7 < 7y, let T be such that vi>T

S

m{t.t) 1
-7
s=1+195

< 1. C))

Then we have

(k) — x(0] < Al @p + [KD)2e < p.
and therefore
(k) — % = [B(k) — x(0) + x(0) = X| < |&(k) = x(O] + bx()) = x| < 2p,
completing the proof of Lemma 1. u
Lemma 2: Let ¥ € R* and p > 0. If B(x, 2p) < D (and a tortiori, x €

D°), or if Z(t) is [a.s.] eventually in D, then [a.s. ] {x(¢)} has Property 2 for
X and p.

Proof. Lemma 1 ensures that for any sufficiently small  we can choose ¢
large enough that we will have
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x(s) = x(s — 1) + %[Gq(s) + Hx(s — 1)]

for all s satisfying t < 5 < m(t, t). We therefore have

mitt)

x(m(t, 7)) = x(t) + =;ﬁl-}[Gq(s) + Hx(s — 1)]

m(t ) 1 T

= x(t) + tf(X) +f(f)[ > -

. s=i+1S e

m(t1)

+ 3 2[Ga(s) + Hals — 1) — f(0)]
m(e.t) 1

= x(t) + f(x) +f(f)[ 2 -t

s=1+15 |

m(tr) 1

+A4 >

=(x(s - 1) — X). (10)
s=1+15

Denote the third and fourth terms of (10) by z, and z,. According to the
definition of the function m(-, ), for any p and 7 we can choose ¢ large

enough that |z;| < 1||A| pr. We also have

m{tr) 1
|z < Al max |x(s) =% X =<cAl max |xs) - 3.
tss<m(t,T) s=t+15 r=s<m(t,t)

Lemma 1 ensures that for each p there is a 7, such that

Vi<t ATt > T:Ix(s)—)?l<g,

and therefore, for such z and ¢, we have
-

1 1
lzd +lzl < SlAlpr + elalSp = Al ® an

Lemma 3: Let V: R" — R, be a twice continuously differentiable func-
tion and let ¥ € R be a point at which V'(¥)f(x) < 0. If ¥ € D°, or
It x(f) 1s |a.s.| eventually in D, then [a.s.] if {x(f)} is a subsequence
of {x(z)} that converges to ¥, then 36 > 0, 1, > 0: V1 < t,; 3K: Vk > K:
Vix(m(t, 1)) < V(x) — or.

Proof. Let the function V, the point X, and the subsequence {x(;)} be as
described in the lemma, and let § = — 1V’(¥)f(X). For any k and any
positive number 7, two succesive applications of the Mean Value Theorem
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yield the following, where ( is a convex combination of x(mf{t,, 7)) and
(1) and ¢ is a convex combination of { and x:

Vix(m{te, 1)) — Vx(@)) = VI(Olx(m(ie, ) — x(4)]
= V' @x(m(ty, 1)) — x(t)]
+(C = D)VOx(mlte, ) — x(t)].
= V@)f(x) + V' (©O)x(mlt, 1)) — x(t) — f(x)]
+ (= D)TV)x(m(te, ©) — x(t)].
= =26t + R(#, 1, ¥), (12)
where R(#, 7, X) is given by

R(t, 7, X) = V'()x(m{ty, 7)) — x(te) — tf(x)]
+ (€ = DIVOx(mlt, 1)) — x(te)]. (13)
Because {x(#;)} — X, there is a number k such that

k> K= V{x()) < V(&) + ?;

_ ot .
combining this with (12) yields V(x(m(t, 7)) < V(x) + 5~ 20t +

R(t, t, X) for ali £ > K. In order to complete the proof, we therefore
need only show that if 7 is chosen small enough, then &k can be chosen
sufficiently large that

k> K= |R(t,, 7, X)| < % (14)

In order to establish (14), we will need to apply Lemmas 1 and 2 to ¥
and a carefully selected p > 0. Assume that p > 0, and assume either that
X(t) is eventually in D, or else that x € D° and that p is no greater than
half the distance from X to the boundary of D—i.e., that B(x, 2p) < D.
Then Lemmas 1 and 2 guarantee that there are a wy(p) = min{r,(p),
75(p)} and, for each v < 7o(p), a K(z, p) = max{K(z, p), Kx(z, p)} such
that Vk > K(z, p):

If x(t) e B(X,p) and 1 <s<m (&, 1),
then |x(s) — ¥| <2p and |x(m(t, 7)) — x(tx) — f(x)| < |A|pr.

And because {x(t,)} converges to X, K(z, p) can be chosen large enough
that indeed x(¢,) € B(x, p) for every k > K(z, p); therefore Vk > K(z, p):

b <s<mt, )= [x(s) — x| < 2p

and  |x(m(ty, 7)) — x(te) — D) < | Al prl.
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Let ¢(p) denote the number sup{ || V"(x)| | x € B(x, 2p)}. For r <
to(p) and k > K(z, p), the { and £ in (12) and (13) both lie in B(X, 2p),
and therefore |({ — X)TV"(&)| < 2¢(p)p. Substituting this inequality into
(13), we obtain for every p > 0 the following: Jro(p): Vr < wo(p):
AK(z, p): Yk > K(z, p):

[R(tx, 7, B)] < (VD) Ix(m(ty, ©) — x(t) — tf®)] + 2c(p)p| x(mlty, 1)) — x(1)|
< (V'@ +2c(p)p)lx(mlt, 1) = x(t) = fX)] + 2c(p)pt] AD)]
< (V@) + 2(p)p) | All pr + 2e(p) | fD)lpr
=[V'@I Al + 22X (] Al + [fE)D]er.
Now if we choose p small enough that [|V'(x)] |A] + 2c(p)(p]|All +

0
[fED]p < > and we choose 7 smaller than z4(p), and we choose K at least as

large as K(z, p), then (14) will be satisfied and the proof completed. [

Lemma 4: If the algorithm satisfies Condition L, then the projection
operator is [a.s.] invoked only finitely many times; i.e., ¥(¢) is [a.s.]
eventually in D.

Proof. The lemma is, of course, true by definition for the Basic Algorithm
(with or without Condition L), so we will assume throughout this proof
that we are working with the Projection Algorithm, i.e., that D is
bounded. Let ¢; and e, be real numbers that satisfy ¢; < ) < ¢; < ¢3,
where ¢, and ¢, are the numbers specified in Condition L; let { denote the
closed interval [ey, e,]; and suppose that the projection operator is invoked
infinitely many times. We will show that then there are infinitely many
terms of {U(x(#))} on each side of I, i.e., that

U(x(?)) < e, infinitely often, and (15)
U(x(t)) >e, infinitely often, (16)

and that this leads to a contradiction. To establish (15) and (16), note that
every time the projection operator is invoked we have a ¢ for which ¥(t) ¢
D and x( e C—and therefore. according to Condition L, we also have
U@E®) = ¢, and U(x(r)) < ¢;. Thus, if the projection operator is invoked
infinitely often, (15) is obvious; and (16) follows from the continuity of U,
together with the fact that the “step size” between the forecast and the
subsequent unprojected forecast goes to zero:

50 — x( = DI = 21g() - x(¢ = 1) (7)
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1 1 1
= H{AG( — DI =714 ] suplal.
xeD

Now form a subsequence of {x(¢)}, denoted {x(z)}, by taking every
term of {x(¢)} that satisfies both U(x(#)) = e; and U(x(t — 1)) < e,. (The
existence of such a subsequence is guaranteed by (15) and (16).) We have

Jim u(x(6)) = e, (as)

for if any of the terms were to satisfy ¥(t,) ¢ D, so that x(¢) € C, then we
would have U(x(t;)) < ¢, < e;, which violates the definition of the
subsequence. Therefore, every term satisfies x(#;) = X(t,) € D, and (18) is
then a direct consequence of (17) and the definition of the subsequence.
The important consequences of (18) are that (a) any accumulation point
of {x(tz)} must be in D°, and (b) the sequence {U(x(t))} eventually
remains inside the interval [, and therefore the sequence {x(t)} eventually
remains inside the set D\ C.

For each index ¢, let ¢ denote the first integer s = ¢ for which U(x(s))
¢ I, i.e., for which U(x(s)) < e; or U(x(s)) > e,. Note that r* is well-
defined, according to either (15) or (16). And note that because {U(x(%))}
eventually remains inside the interval /, none of the terms #{ coincides
with any of the terms #. Now form a subsequence of {x(t;)}, denoted
{x(¢})}, by choosing just those terms ¢, for which U(x(t{)) > e,, omitting
the terms for which U(x(¢})) < e,. Because each term x(#), and a fortiori
each term x(r}), is in D\ C, and because D is bounded, {x(f)} has a
subsequence, say {x(#{)}, that converges; denote its limit by X, and note
that (18) yields U(X) = e,. Thus, we also have X € D°. Because ¢; < U(x)
< ¢,, Condition L implies that x € D\ C. Let p be small enough that

x € B(X, 2p) = U(x) < ey, (19)

which also ensures that B(X, 2p) < D. Lemma 1 then guarantees that
{x(r)} has Property 1 for X and p; therefore, let 7 be small enough and K
large enough that if & = K and x(t) € B(X, p), then each term x(f),
x(te + 1), ..., x(m(t, 7)) lies in B(X, 2p); and since {x(r})} converges to
%, choose K large enough that in fact x(tx) € B(x, p) for each k = K.
Consequently, for each k = K and for each s between 7 and m(t}, 7), we
have x(s) € B(x, 2p), and therefore, according to (19),

If k=K and i <s<m(t}, 1), then Ux(s)) <e. (20)

But ¥ € D°\ C, and Condition L therefore implies that U'(¥)f(x) < 0, and
Lemma 3 therefore yields U(x(m(t;, 1))) < ey, which implies that
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U(x(m(tt, 7)) ¢ L. Clearly, then, ¢ is between £} and m(¢}, 7), and (20)
therefore yields U(x(# )) < e,, which is inconsistent with the definition of
the subsequence {x(t;)} and its subsequence {x(t;)}, thereby completing
the lemma’s proof. n

Remark 1: It is of fundamental importance, as the proof of Lemma 4
makes clear, that the target set C in the Projection Algorithm be a closed
subset of the interior of D. More specifically, it is critical (for the known
proof that the Projection Algorithm converge, at any rate) that the
projection sequence {p(#)} be bounded away from the boundary of D. If
this is not the case, then (15) cannot be guaranteed; therefore, the limit
points, such as X, which resuit from invoking p(?) infinitely often might al/
lie in the boundary of Dj; and, therefore, Lemmas 1 and 3 cannot be
applied to them. For example, Marcet and Sargent (1989b) and Moreno
and Walker define “decentralized” projection algorithms, in which each
participant i projects X,(f) to p(t) € C; independently (i.e., only when his
own estimate x,(t) lies outside his own set D), but there is no guarantee
that in these algorithms the realized projections, say p*(¢), will indeed be
bounded away from the exterior of D, and therefore we seem to have no
assurance that such algorithms will converge to a stationary point (for
more on this, see Moreno and Walker, 1991). A generalization of Ljung’s
Second Theorem to include such ‘“‘decentralized” projection algorithms
could be achieved if one could devise a proof of Lemma 4 that does not
require the existence of this limit point ¥ in the interior of D.

Remark 2: The remainder of the proof of the Convergence Theorem will
rely on the application of Lemma 3 to a Lyapunov function at sub-
sequential limit points (accumulation points) of the sequence {x()}.
When D is bounded (i.e., when we are analyzing the Projection Algorithm)
one or more of these limit points might lie in the boundary of D, and we
would not be able to use Lemma 3 to analyze these boundary limit points
if it were not for Lemma 4. Ljung’s proof does not take account of this
fact: He establishes analogues of Lemmas 1, 2, and 3 only for the case in
which X(¢) is always (or eventually) in D, but not for the case (required in
ordet o vbtain Lemma 4) in which one does not yet know whether {x(r)}
eventually remains in D, but one does know that x € D.

Because x™ is an asymptotically stable stationary point of the ADE,
there is a twice continuously differentiable Lyapunov function W: R"* —
R, that satisfies W(x) > 0 and W'(x)f(x) < 0 for all x in R" except x*,
and W(x*) = W'(x*)f(x*) = 0. Because f is linear, W can be taken to be
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uadratic (see, e.g., Hahn, 1967, p. 117). Let X d_enote the set of
gubsequential limits of {x(¢)}, and let W(X) deqote the image of X under
the function W. The set X is clearly closed. It is also nonempty: For the
Projection Algorithm, this follows from the boundedness_c_)f D; for.th.e
Basic Algorithm, it is an immediate consequence of Ccindmon B (this is
the only use of Condition B in the proof). Let w and w denote infW(X')
and supW(X). We will prove that w = 0 and then that W= w Thus,
7 = 0, that is {x(f)} converges to x*. The step w = 0 is the difficult one;
w = w will require only a repetition of the proof of Lemma 4.

Remark 3: For the Projection Algorithm, in which D is bounded, it is
clear that X is nonempty and bounded, and therefore th.at Xis a nonempty
compact set. Hence W(X) is compact as wpll, and in 'pa.rtxcular, w e
W(X). Now if one assumes (in order to obtain a contradiction) thaF w >
0, the fact that w € W(X) makes it easy to apply Lemma 3 to obtain the
contradiction. Ljung makes it appear equally easy to show that w = 0 fqr
the Basic Algorithm: he states (1977, p. 568) that X n @(x.*, f) is
compact. However, there seems to be no justification for this state-
ment when D is unbounded, as in the Basic Algorithm. .For more
on this problem, see Remark 4, which follows the completion of the
theorem'’s proof.

Completion of the Theorem’s Proof
(a) Proof thatw = 0:

For each w € R,, let L(w) denote the W-lower-contour set of w, i.e.,
L(w) = {x e R*| W(x) < w}. For every w = 0, L(w) is nonempty
(because W(x*) = 0), closed (because W is continuous),.and bounded
(because W is quadratic). In other words, each set L(w) is a nonempty
compact set. '
According to the definition of w, for every positive integfsr n there isa
point ¥(n) which satisfies W(¥(n)) < w + 1/n and which is also a limit
point of {x(t)}—say, ¥(n) = lim;_.x(1(j, n)) for a subsequence {x(i(-, n))r}
of {x(t)}. The sequence {X(n)} of limit points Is theretore bounded,
because each of its terms lies in the lower-contour set L(W(x(1))).
Therefore, the sequence {X(n)} has a convergent subsequenge——say
lim,_,..X(n,) converges to x. And because X is closed, X € X; tl_lat is there
is a subsequence {x(f;)} of {x(r)} that converges to X, and W(x) = w.
Because {x(t;)} converges to X, we can apply Lemma 3 to the fypc-
tion W, the subsequence {x(f)}, and its limit X: For some positive
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6 and all sufficiently small values of 7, each term of the sequence
{x(m(t, 7))} satisfies

W(x(m(ty, 1)) < W(X) — ot < w. 21

(Note that, for the Projection Algorithm, we must appeal to Lemma 4 in
order to apply Lemma 3.) The sequence {x(#;)} is bounded, and there-
fore (according to Lemma 1) the sequence {x(m(t, 7))} is bounded as
well and has a convergent subsequence, which is also a subsequence
of {x(¢)}. Write it as {x(t¢)}, with, say, Aimx(s) = x'. Clearly, (21)
implies that W(x’) < W(x) = w; but this is inconsistent with the definition
of w as infW(X), and this contradiction establishes that w = 0.

(b) Proof that w = w:

Suppose, by way of contradiction, that w < w. Let ¢, and e, be real
numbers that satisfy w < e; < e, < W, and let I = [e,, e,]. Clearly, the
sequence {W(x(¢))} is infinitely often on each side of I, just as in the
proof of Lemma 4. The argument used there applies here as well, with
the exception of one detail that does not carry over immediately: In the
proof of Lemma 4, the conclusion (14) depends upon the supremum in
(17) being taken over a bounded set (the proof of Lemma 4 concerned
only the Projection Algorithm, so we could use the set D there). Here we
must establish that for the Basic Algorithm the supremum in (17) can
similarly be taken over a bounded set. When, as immediately following
(17), we form the subsequence {x(t)}, in which, for each k, W(x(t, — 1))
< ey and W(x(t,)) > e, (the existence of such a subsequence is immediate
here, because (15) and (16) are immediate), we only require that (17)
hold for the terms of the subsequence, and therefore we now take the
supremum in (17) over the W-lower-contour set L(e;), which is bounded
because W is quadratic. The remainder of the proof of Lemma 4 applies
here without change, yielding a contradiction, and thereby completing
the proof. |

Remark 4: We noted in the preceding remark that Ljung’s proof for the
Basic Algorithm 1s incomplete, because he assumes without justification
that X N P(x*, f) is compact. We have established that w € W(X), and
also that w = w, by appealing instead to the boundedness of the lower-
contour sets of the quadratic Lyapunov function W, and we know that W
can be taken to be quadratic because the ADE for our algorithm is linear.
It is not clear to us how one can construct a proof without a Lyapunov
function in which the lower-contour sets are bounded.

A CLASS OF RECURSIVE STOCHASTIC ALGORITHMS 73
Fe

Ljung, too, relies on the boundedness of the Lyapunov function’s
jower-contour sets. (Our proof that w = w is essentially thc? same as
Ljung’s proof.) But this assumptions on the Lyapun_ov function is not
justified when f is not linear: Barbashin and Krasovskii (see Hahn, 1967,
p. 109) provide an example of an asymptotically stable differential
equation X = f(x) for which no Lyapunov function with bounded
lower-contour sets exists. Of course, this problem can be completely
circumvented by strengthening Condition B so as to specify that {x(¢)} is
itself a bounded sequence. And that may be a reasonable approach: In
applications, it may be no more difficult to establish that each {x()} is
bounded than to establish that each one has a bounded subsequence (see,
for example, Moreno and Walker, 1991).

4. Proof of the Stochastic Convergence Theorem

The key result in moving from the deterministic theorem to the stochastic
theorem is the following lemma, which establishes that, with probability
one, the stochastic terms that appear in the lemmas’ proofs will all vanish
asymptotically. With this lemma in hand, the stochastic proof is virtually
identical to the deterministic proof.

Lemma 5: If Assumptions S1, S2, and S3 are satisfied, then V7, ¢ > 0: for
almost every w € Q: 3T(z, ¢, w): YVt > T: if t < k < m(¢, 7) then

$ vl

s=t+1 S

<e.

Proof. We must show that for all t and ¢,

ko w(s)
2

s=r+1

P{For infinitely many #: 3k: t < k < m(#, 7) and > e} = 0.

Thus, according to the Borel-Cantelli Lemma, it will be sufficient to
show that

> [ | l‘\ (;)./5)| Al
ZPiw max | >, —* > s} < o, (22)
=1 t+1lsksmls=r+1 S

For each ¢, let K(z, 7) denote the index k (between ¢t + 1 and m(t, 1))
for which

£ o)

s=t+1 S
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is maximized. Chebyshev’s inequality yields
K

K 4
Ao | £ 2> of < ds| 5 2OF

and straightforward calculation (see Remark 5, immediately following)
yields

o 2 20] = 2 o) o 3 e (282
£1 S’<<s'1
< ([‘4)(&211;4- + 6r+21’s—4

< 1,(’"[4_ Ly 6(%)%(;11 —(m — 1 — 1))

1 3
< Uy ;5 + t_z (24)
where the last inequality follows from the fact that m(t, t) — 7 < ¢, which

can be easily shown as follows: > L € 1, by definition of m(¢, 7); and
+1 S

m
1 _m-—t ..
Z; = ——; combining thesc two inequalities yields m — ¢ < mt or
t+1

equivalently m < ,orm—t s ‘
1-x 1~z

(23 and (24), it is clear that (22) is satisfied. ]

t<twhent< % Combining

Remark 5: Writing &; for w(s)/s, and making use of the independence
assumption S1, the first step in (24) is as follows:

K 4 4! 4! 41
E £ = ZE(EN —— F(ENE(E : = V2E(E )2
(zs) 2B+ 23 ECYEQE) + T 55 EE)ER)
41
+ —— E(&,)2E(E)E
2, g O EEEE)

!

>

r<s<u<vy 1'1|1'1'

E(C)E(CIEE)ER,).

It follows from the zero-mean assumption S3 that the second, fourth, and
fifth terms on the right-hand side are all zero. (If S3 were not assumed,
the ADE would be altered, and instead of w(f), we would always be
working with w(f) — u,(¢), that is, with the difference between w(t) and

N

{.

A CLASS OF RECURSIVE STOCHASTIC ALGORITHMS 75

its mean, which behaves as « does in the zero-mean case.) This remark is
the only use of the independence assumption Si in the proof of the
Stochastic Convergence Theorem. Thus, it may be possible to relax
sl in a way that does not allow the relevant sums to grow at a rate
faster than £2.

Remark 6: The proof of Lemma 5 that we have just given is essentially
(for the case #(t) = 1/f) the proof in Ljung (1975), except that (a) because
of his weaker assumptions on y(t), Ljung’s proof is much longer and more
complex, and (b) Ljung’s proof is not completely correct. It is also worth
noting, as Ljung points out (1975, pp. 11 and 55), that there is a trade-off
between the restrictiveness of the assumptions on the asymptotic behavior
of y(¢) on the one hand, and, on the other hand, the number of moments
of the random variables () that are assumed to be bounded in ¢.

Remark 7: For a more compact notation, let S(¢, k, w) denote the sum

K

> 9(—s—) and let E*(z, ¢) denote the set {w e Q| AT: [t = T &t <k <
PR

{m(t, )] = |S(¢, k, w)| < ¢}. Then Lemma § states that for every positive ¢

and &, P(E*(z, €)) = 1. The set-valued function E*(z, ¢) is decreasing in ©
and increasing in &: (r < ¢’ & e <¢&') = E*(¢', ¢) € E*(7, &) < E*(1, ¢).

Let E denote the set of w for which the sequence {%(¢, w)} is eventually
in D. For each x € R” and each p > 0, let Ei(x, p) and £,(x, p) be the
sets of realizations w for which {x(¢, @)} has Property 1 and Property 2,
respectively. For any ¥ and V as in Lemma 3, let E3(X, V) be the set of w
for which the conclusion of Lemma 3 is valid. The stochastic versions of
Lemmas 1, 2, and 3 state that for any ¥, p, and V, the events E,, F,, and
E; all have probability one (under the conditions assumed in the lemmas);
Lemma 4 establishes that E has probability one.

Proof of Lemma 1 (Stochastic version)

Let w € Q, and assume either that x € D and B(x, 2p) < D, or else that
w € £ and P(E) = 1. The only changes in the determinisiic prooi ate
as follows: The right-hand side (RHS) of (7) has the additional term

S(t, k, w), and each of the expressions following (7) has the additional
term |S(¢, k, w)|. Define 7,(p) to be, say, half the value that (8) assigns to

it in the deterministic proof; let w € E*(rl(p), §>’ and (invoking Re-
mark 7) for each t < 7,(p), let T(z, p) be such that
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[t> T(t, p) & t < k < m(t, 7)] = {(9) and |S(z, k, »)] < ’2—’}

Then we have |¥(k, 0) — x(¢, )] < g + g = p and |i(k, w) ~ x| < 2p—
either for all @ in E*(rl(p), 'g) or for all @ in E n E*(rl(p, g)),
i.e., with probability one. n

Proof of Lemma 2 (Stochastic version )

It is shown that for every x and p: (a) Ei(x, p) N E < E;(x, p) n E; and
(b) if B(x, 2p) < D, then Ei(x, p) < Ey(x, p). It follows, then, from
Lemma 1 that P(Ey(x, p)) = 1 if either B(x, 2p) = D or P(E) = 1. The
only changes in the deterministic proof are as follows: The expression in
(10) has a fifth term, S(¢, m(t, 1), w), the absolute value of which can, for
any wek;, be made smaller than pt/2 by choosing ¢ large enough; |z,| can
be made smaller than p7/2; and the inequality in (11) holds for t < 7,(p).

Proof of Lemma 3 (Stochastic version)

It is shown that for any ¥ and V as in the lemma, if p is small enough, then
(a) EoX, p) N E < Es(x, V) n E; and (b) If X € D°, then Ex(%, p) <
E;(%, V). It follows, then, from Lemma 2 that P(E;(x, V)) = 1 if either ¥
€ D°or P(E) = 1. The only change in the deterministic proof is that now
we must show that, with probability one, t can be chosen small enough
and K large enough that (14) holds. Consequently, after taking an arbit-
rary positive p, we assume that w € E5(X, p) and either that B(x, 2p) ¢ D,
or else that € E; the proof is otherwise unchanged. a

Proof of Lemma 4 (Stochastic version)

The only change in the deterministic proof is that (17) becomes
! 1 1
" [Ax(r — 1) + w(p)] < p | Aflsup |x| + ;]w(t)l. (17%)
xeD

Exactly as in the proof of Lemma 5, we appeal to Chebyshev’s Inequality
and the Borel-Cantelli Lemma to verify that, for any given ¢, there is a
set of probability one on which ¢ can be chosen large enough to make the
second term on the RHS of (17') smaller than ¢. By a result similar to the
Borel-Cantelli Lemma (Shiryayev, 1984, p. 253), this is sufficient to
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guarantee that the second term converges almgst surely to zero; i.e.,
there is a set E for which P(E) = 1 and on which ()] converges to
zero. The deterministic progf establishes that if & ¢ E, then_t_here is ap
sufficiently small that w ¢ E 0 Ey(X, p) N E3(x, U), where X is the limit

point defined just before (19). Lemmas 1 and 3 then yield P(E) =1. M

For the remainder of the proof, we choose an arbitrary w € Q. This
gives us a sequence {x(t, w)}, for which we define X(w), w(w), and' w_(a?)
just as in the deterministic proof. With no other changes, the deterministic
proof verifies that, unless w lies outside one or more of thc_:: several
probability-one sets we have defined, we must have W(a_)) = 0—'—1.6., {x(¢,
w)} converges to x*, and the proof of the stochastic version of the
theorem is complete. [ ]

5. Concluding Remarks

The convergence proof we have given for linear recursive stochastic
algorithms serves several functions. It seems to be the only complete,
correct proof of convergence for algorithms of this form. Moreover,
it shows how a number of flaws in Ljung’'s proofs for more general
algorithms can be corrected, and, for one seemingly uncorref:tible error in
Ljung’s analysis, we indicate a strengthening of assumptions that' wﬂl
circumvent the problem. Perhaps the greatest value of the proof is its
potential as a model for proving similar results for algorithms that do not
have the exact form of those with which we deal. The proof makes the
role of each of the assumptions clear and provides insight into how the
various assumptions can and cannot be altered.

In this connection, we have shown, in particular, that if the idea of a
projection operator is to be extended to “‘decentralized” projection., as
suggested in Marcet and Sargent (1989a) and Moreno and Walker (1991),
then the existing convergence proofs (including the proof given here) do
not guarantee convergence. The interplay between Condition L anq the
definition of the projection operator is quite delicate. and it seems likely
that some change in Condition L would be required in order to yield
Lemma 4 (that the projection operator is invoked only finitely many
times). The failure of the convergence results to cover decentrahged
estimation when it involves projection operators is an important limita-
tion which, if no way can be found to circumvent the obstacle we
have described, narrows considerably the scope for applications of the
projection idea to economic problems.
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The proof we have given emphasizes the essentially deterministic char.
acter of the ordinary differential equation method pioneered by Ljung. If
the deterministic results are developed with the stochastic case in mind,
as we have done here, then the stochastic extension is as straightforward
as Ljung suggests. Developing the proof in such a way that the stochastic
extension can be carried out explicitly raises the possibility that the
convergence results might hold under much weaker assumptions on the
stochastic process than the assumptions which we (or Ljung) have used.
In particular, Remark 5 suggests that the independence assumption S1 is
stronger than necessary: It ought to be possible to allow for some kinds of
interperiod - dependence in the stochastic process. Extensions of the
convergence theorems in this direction might give them much wider
applicability in economic models.
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4 EFFICIENCY IN

PARTNERSHIP WHEN
THE JOINT OUTPUT
1S UNCERTAIN

Steven R. Williams and Roy Radner

This paper concerns a model of partnership in which each partner privately
chooses his input into a joint production process. The partners’ inputs
determine a probability distribution over a set of alternative output levels.
Earlier work suggests that because of moral hazard, there cannot exist a
rule for fully sharing the joint output that sustains the efficient inputs as a
Nash equilibrium. We show that the existence of such a rule depends
critically upon attitudes towards risk: the first-order conditions for
existence are solvable generically if the partners are risk neutral, but are
unsolvable generically if the partners are risk averse. Robust examples in
the case of risk neutrality are then constructed in which such rules exist.

1. Introduction

A partnership is a group of agents who jointly produce some observable
output. A production plan is efficient for the partnership if it is Pareto
optimal given the disutility to each partner of his input into the collective
effort. Moral hazard may exist when each partner’s input is not fully
observable, for a partner may have an incentive to contribute less of his
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