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Abstract. Recent papers by Barber~i and Peleg and by Zhou have established that 
the Gibbard-Satterthwaite Theorem remains valid when individuals are restricted 
to reporting only "reasonable" preferences. We present a theorem that covers 
situations in which, as in Barber~i-and-Peleg and Zhou, preferences may be re- 
stricted to reasonable ones, but in which, additionally, it may be known in ad- 
vance that some dimensions of  the social decision do not affect all the participants 
- i.e., in which the social decisions are partially decomposable into decisions that 
affect only subsets of  the participants. As in the previous theorems, the conclusion 
of  this new theorem is that nonmanipulable voting schemes must be dictatorial. 

The Gibbard-Satterthwaite Theorem tells us that a voting scheme must be either 
manipulable or dictatorial if it admits all possible preferences as individual strat- 
egies. Recent papers by Barberg and Peleg (1990) and by Zhou (1991) have 
established that the Gibbard-Satterthwaite Theorem remains valid even when 
individuals are restricted to reporting only "reasonable" preferences. There re- 
mains, however, a broad class of  collective decision situations that are not covered 
by the original theorem or by the two newer ones - namely, situations in which 
some dimensions of  the alternative social decisions are known to affect only a 
subset of  the participants in the decision process. We present a theorem that 
covers a class of  such situations: We will show that the fundamental impossibility 
conclusion of  the previous theorems remains valid when the alternative social 
decisions can be expressed in terms of  some dimensions that are known to affect 
allparticipants (as in the previous theorems) and other dimensions that are known 
to affect only single participants or subsets of  participants. 

The Gibbard-Satterthwaite Theorem, as originally stated and proved by Gib- 
bard (1973) and Satterthwaite (1975), states that if a voting scheme allows each 

* An early version of this paper was delevered at the 1989 NBER-NSF Conference on Decen- 
tralization at Cal Tech; comments by the conference participants are appreciated, as are com- 
ments by James Schmitz. 
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of its participants to claim that his preference is any preorder over the set of 
alternatives, and if the set of alternatives is finite, then any voting scheme whose 
range contains more than two distinct outcomes must be either manipulable or 
dictatorial. The theorem in its original form thus left open the possibility that if 
the set of  alternatives has some natural structure (for example, an order, linear, 
a n d / o r  topological structure), then it might be possible to design a voting scheme 
that performs more satisfactorily if we require that participants' behavior be 
rationalizable by "reasonable" or "plausible" preferences - by preferences, in 
other words, that are consistent with the structure of the set of alternatives. The 
Barber~i-and-Peleg (henceforth B & P) and Zhou papers establish that even if we 
allow only continuous preferences (Barber~i and Peleg) or only strictly convex 
preferences (Zhou), every voting scheme will still be either manipulable or dic- 
tatorial. 

We shall consider the following problem, which leads to a further natural 
restriction on the set of admissible individual preferences. Suppose that one 
knows, when designing a voting mechanism, that some of the participants will 
not "care about" some dimensions of the decision, (i.e., their utility functions 
will not be affected by some components). The classical instance of this in eco- 
nomics is of course the problem of allocating goods to individuals when any one 
individual's consumption has no effect upon any other individual's utility. More 
generally, the idea that there are certain identifiable, potentially agreed-upon 
features of the world that affect some individuals and not others, and that only 
those individuals who are affected should be able to influence the choice of those 
features, is the cornerstone of  Western liberal thought. If  we know that some of 
the participants in the social decision will not be affected by certain dimensions 
of the decision, then to what extent, if any, can we exploit this knowledge to 
design a voting scheme that is neither manipulable nor dictatorial? 

It is intuitively clear, for example, that if each participant cares about different 
dimensions of the decision, then perfectly good outcomes will be achieved by 
"decentralizing" the decision-making: we simply allow each participant to choose 
the values of the components that he, and only he, cares about. Conversely, when 
every participant cares about every dimension, the B & P and Zhou theorems tell 
us that any nonmanipulable voting scheme will be dictatorial. In other words, if 
the participants' interests can never be in conflict, then a satisfactory 1 voting 
scheme exists, and if, at the other extreme, there is potential for the participants' 
interests to be "fully" in conflict, then no satisfactory scheme exists. The question 
we will address is whether satisfactory voting schemes exist when it is known 
that the participants' interests are less than fully "decomposable". What degree 
of "overlap" in the dimensions that different individuals care about is too much 
to permit the existence of any satisfactory voting scheme? The theorem we will 
present provides a partial answer to this question. Roughly speaking, the theorem 
states that if there are some dimensions that affect only some of the individuals, 
and if the remaining dimensions affect everyone, then any voting scheme that 
satisfies a very weak unanimity condition, and whose range includes a two- 

~ h e  term "satisfactory" is to be understood informally at this stage. The "completely decen- 
tralized" scheme applied to the "completely decomposable" environments is technically dic- 
tatorial - indeed, each participant always gets exactly what he wants - but is is dearly quite 
satisfactory; therefore, we do not want to simply define "satisfactory" voting schemes to be 
those that are neither manipulable nor dictatorial. See also Examples 4 and 5 in this connection. 
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dimensional set of decisions that affect everyone, must be either manipulable or 
dictatorial. 

The remainder of the paper is organized as follows. We will first lay out the 
notation and definitions we will need, followed by the theorems's two central 
assumptions. The assumptions characterize formally the kinds of social decision 
problems that are covered by the theorem, and we provide several illustrative 
examples of social decision problems that satisfy the assumptions. The theorem 
will then be stated and proved, and then we conclude with two additional ex- 
amples and several remarks concerning the theorem's limitations and its potential 
generalizations. 

Definitions 

1. Z denotes the set of (feasible) alternatives and N denotes the set { 1 .... , n} of 
individuals. 
2. A utility function is a real-valued function on Z. For each i ~ N, a set U~ of 
utility functions u~: Z--*IR is given. The members of Ui are referred to as the 
admissible utility functions for i. ~" denotes the Cartesian product H2= 1 Ui; the 
members u = (ul .... , un) of ~ are called profiles. If  u is a profile and ~7i is a 
member of U~, then (~7i, u~i) denotes the profile in which ~7 i has replaced the i th 

component of u. For each i ~ N, ~ ' ~  denotes the Cartesian product Hj.,~ Uj. 
3. A voting scheme, or mechanism, is a function f :  ~ ' ~ Z .  The alternative f ( u )  
is called the outcome associated with u. We will simplify notation slightly by 
writing u i f  (v) for u i ( f  (v)), i.e., for i's utility (according to the utility function 
ui) at the outcome associated with profile v. 
4. A mechanism f is manipulable by individual i at profile u via utility function 
ui if uif(~ti, u~i) > u J ( u ) .  A mechanism f is nonmanipulable if, for each profile 
u ~ ~/, each i ~ N, and each ue ~ U~, f is not manipulable by i at u via ~7i. 
5. An individual i ~ N is a dictator for the mechanism f if for every profile 
u = ( u l , . . . , u n ) ~  ~/, the outcome associated with u maximizes u~ on f (~Z) .  A 
mechanism f is dictatorial if there is a dictator for f ,  otherwise it is nondictatorial. 

The theorems of Gibbard, Satterthwaite, Barberfi and Peleg, and Zhou all 
give conditions under which every nonmanipulable mechanism is dictatorial: viz., 
if the range of f contains at least three elements and each U: is the set of all 
utility functions on Z (Gibbard and Satterthwaite); if Z is a metric space, the 
range o f f  contains at least three elements, and each U,. contains all the continuous 
real-valued functions on Z (Barber~i-and-Peleg); and if Z is a compact convex 
subset of a finite-dimensional Euclidean space, with dim (Range f )  >_ 2, and each 
U~ contains all the strictly concave quadratic functions on Z (Zhou). 

None of the above-mentioned theorems, however, applies to the following 
example. (Nor do they apply to Examples 2 and 3, to be presented shortly.) 

Example 1. Z = X ×  Y, where X is the unit square in IR 2 and Y is the set 
{ y E IR 3 l Yl + Y2 + Y3 ---< 1 }. For each i e N = { 1, 2, 3 }, let ~ denote the set of all 
strictly concave real-valued functions ui on X×  [0, 1], and let U i be the set of all 
functions ui: Z ~  IR of  the form ui (x, y) = it i (x, y~) for ui e ~ -  
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In the example, each individual i ~ N is always (i. e., whatever his utility func- 
tion fig) "unaffected" by a change in y: i f j  =¢ i. But in each of the above-mentioned 
theorems each set Ui is assumed to include a substantial class of utility functions 
that are affected by changing any of an alternative's components. Indeed, the 
theorems do not apply even if we change the example so that it is "decomposable" 
in the Y-components - i.e., if we let Y be the unit cube in IR 3. 

The theorem we are about to present covers the kind of  situation represented 
by the example - situations in which there are some dimensions of the social 
choice that directly affect only some of  the individuals. The theorem tells us that 
the fundamental incompatibility between nonmanipulability and nondictatorship 
is not alleviated by knowing in advance that some of  the participants do not care 
about certain features of the social alternatives. 

The following two assumptions characterize the kinds of social decision prob- 
lems that the theorem will cover. Assumption 1 captures the idea that is is known 
when designing a voting scheme that the social alternatives have some features 
that do not affect everyone. Assumption 2 specifies that each set U; of admissible 
utility functions must at least include all utility functions that are quadratic and 
strictly concave in the components that affect individual i's utility. 

Assumption 1. ( l a )  Z = X ×  Yand y c  I:1 × • " • × Yn, where X and Y1,..., Yn are 
compact convex subsets of finite-dimensional Euclidean spaces, and where each 
Y~ is the i th projection of Y - i.e., if y~ ~ Yg, then yi is the i th component of  some 
y ~ Y .  

(1 b) Every admissible ui depends only upon x e X and y~ e Y,. - i.e., for each 
i e N  and each u~eU~, there is a function f~:X×YI--*IR for which 
u~ (x, y) = ~i (x, y~). 

Assumption 1 seems to imply that the y-component of the social decision must 
be "decomposable" into components yi that only single individuals care about - 
that is, the assumption seems to require that each component of the social decision 
be cared about either by all the participants or by only a single participant. The 
following example shows that because Assumption 1 a allows the set Y to be a 
proper subset of Y~ × - . -  × Yn, the assumption is not nearly so restrictive. 

Example 2. A club operates a swimming pool and a spa. Each member of the 
club uses the pool, and therefore each member cares about both the temperature 
of the pool's water, xt, and its level of chlorination, x c. Only a subset S of the 
members uses the spa, however, and it is therefore known that only the members 
of S care about the temperature of the water in the spa. 

Let X denote the set of  feasible pool-temperature-and-chlorination pairs (xt, xc) 
in the example; let Y* denote the set of  feasible temperatures for the spa; for 
each i ~ S ,  let Y,= Y*; and for each i¢S, let Y,. be any singleton. Let 
Y = { Y ~  I:1× "'" × Y, li, j~S~yg=Y:} .  Then X ×  Y is the set of feasible deci- 
sions (Assumption 1 a is satisfied), and the admissible utility functions Ug will 
satisfy Assumption 1 b. (The theorem will cover situations in which, as in the 
example, the dimension of X is at least two.) 

Some notation. Henceforth, Assumption 1 will always be satisfied, and we will 
therefore use the notation fi; defined in Assumption 1 b, as well as the following: 
fx (u) will denote the x-component of  f (u); fy (u) will denote the y-component 
of f (u); and for each i ff N, f~ (u) will denote the y :componen t  of f (u). For  
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each i e N, U~ Q will denote the set of all functions on X ×  Ythat satisfy Assumption 
1 b and for which fit is strictly concave and quadratic. The set of all strictly concave 
quadratic real-valued functions on X will be denoted by V, and for every v e V, 
every i e N, and every a t e Y,., v al will denote the utility function on X ×  Y defined 
as follows: 

v " ' ( x , y ) = v ( x ) -  ][yi-a,[[ 2 . 

For  each i ~ N, U,* will denote the set of all such utility functions (thus, U* can 
be written V× Y,.), and ~ *  will denote the set of  all profiles of such functions 
for which a e Y: ~/* = V ~ × Y. Note that U* c U,. ° c U t for each i e N, and that . z  - -  

if Y is a proper subset of H~ Y,., then ~"* xs a proper subset of  H~ /2*. 

Assumption 2. For  each i e N, U~°c_ Ui; that is, each set Ui includes all utility 
functions ui that satisfy Assumption 1 b and for which z~ is strictly concave and 
quadratic. 

Assumption 2 requires, in particular, that the Uz include non-separable utility 
functions. Example 4 shows that this requirement is essential. 

The following example describes a concrete decision situation which satisfies 
Assumptions 1 and 2, and which therefore falls within the scope of  the theorem 
we are about to present (and it is not covered by previous theorems). 

Example 3. A community of  n farmers controls two water reservoirs, which we 
label A and B. Everyone uses Reservoir A for recreational pursuits (fishing, 
boating, swimming, etc.), and the water in Reservoir B is used to irrigate all the 
farmers' crops. Everyone therefore cares about both the water level and the degree 
of chlorination in Reservoir A, and each farmer cares only about his own allo- 
cation of water from Reservoir B. 

In this example, the water level x w and the degree of chlorination x C in Res- 
ervoir A are pure public goods: Each farmer would be assumed to have a pref- 
erence over alternative pairs (Xw, xc), and although we might expect such pref- 
erences to be single-peaked or quasi-concave, we would not expect them to nec- 
essarily be monotone. The allocation (Yl,Y2 .... , y , )  of some or all of  the water 
in Reservoir B must satisfy Yl +Y2 + ... ÷ Y~ =<Y; it is natural to assume that each 
farmer i e { 1, 2, . . . ,  n} has a preference (single-peaked, but not necessarily mono- 
tone) that depends only on Yi and not on yj f o r j ~  i. The set of feasible decisions 
is X ×  Y, where X is a subset of the product of two real intervals and 

e I-ry,< y}. 
The example clearly satisfies Assumption 1, and Assumption 2 is quite rea- 

sonable. On the other hand, some natural variations of the example violate the 
assumptions. Assmnption 1 a, for example, requires that the set of feasible de- 
cisions be the Cartesian product X ×  Y. Thus, if the water levels in A and B cannot 
be set independently of one another, Assumption 1 a will be violated. Assumption 
1 b would be violated if the farmers could obtain "recreational" use (in addition 
to irrigation) from the water in B. Assumption 2 does not allow us to restrict 
our attention to monotone preferences over any of  the components of the deci- 
sion; in particular, then, the quantities y; cannot represent monetary transfers 
(instead of irrigation levels) or any other commodity of  which the farmers are 
known to always prefer more to less. See also Remarks 2 and 4 at the paper's 
conclusion concerning these limitations. 
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When the social choice problem has the kind of separable structure described 
by Assumption 1, then the unanimity feature of  nonmanipulable mechanisms - 
a feature that is fundamental in the proofs given by Barberfi and Peleg and by 
Zhou - no longer holds. The proof  we are about to present makes use of a more 
limited unanimity property, one that we will refer to as "conditional unanimity." 
This property is akin to the "nonwastefulness" property generally considered 
desirable in allocation mechanisms, and is clearly substantially weaker than the 
standard notion of unanimity (viz., that when all utility functions are maximized 
at the same z ~ Z, then that z is the mechanism's outcome). In particular, when 
Y is a singleton - as in B & P and Zhou, for example - conditional unanimity is 
v a c u o u s .  

The CUproperty. A mechanism f has the Conditional Unanimity (CU) Property 
if, whenever a ~ Y and, for each i ~ N, the component a i of  a is the unique 
maximizer of fii ( fx (u), • ), then fy (u) = a. 

There is one additional concept that we will find helpful in developing a proof  
of the theorem: 

X-Dictatorship. We say that individual k is an X-dictator for f (and we say that 
f is X-dictatorial) if u k f (u) >_ u k (x, fy (u)) for every u ~ ~" and every x ~ f~ ( ~ ) .  

Theorem. I f  the set Z of  social alternatives and the sets U~ ,..., Un o futi l i ty  functions 
satisfy Assumptions 1 and 2, and if  n >= 2, then every nonmanipulable mechanism f 
that has the CU property, and for which the set f~(  ~') has dimension at least 2, 
is dictatorial. 

The proof  of the theorem will proceed via several lemmas. Throughout  the 
proof  we will maintain the assumptions of the theorem, and we assume that 
f :  ~ " ~  Z is a nonmanipulable mechanism that has the CU property. For  each 
a ~ H I Y~, define the mechanism f " :  V n--*X as follows: Vv ~ Vn: f "  (v) = fx(v"). 
Note, too, that although the restriction of  a voting scheme f to a subset U of 

is not ifself generally a voting scheme, we will nevertheless say that f is 
nonmanipulable or dictatorial or X-dictatorial on U if the defining condition is 
satisfied on U. 

Lemma 1 is an immediate consequence of the CU property and is used re- 
peatedly throughout the proof. Lemma 2 establishes that each f "  is nonmani- 
pulable. Lemma 3 establishes that each f a  attains the same set of x-outcomes as 
f - i.e., f " ( P ) = f x ( ~ )  for each a E Y. Lemma 4 establishes that each f "  is 
dictatorial. Lemma 5 establishes that all the outcomes attainable via f on the 
domain fg can be attained on the restricted domain g/*. Lemma 6 establishes 
that f is X-dictarorial on ~* .  We then expand the domain of profiles from g *  
"almost" to ~" and show in Lemma 7 that some individual is an X-dictator on 
this larger domain. Finally, in Lemma 8 we show that some individual is actually 
a dictator (not merely an X-dictator) on a certain subdomain of  ~ ,  and it is 
then easy to complete the theorem's proof  by showing that the same individual 
is in fact a dictator on g/. 

Lemma 1. For each i ~ N ,  each v ~  V n, and each a ~  Y, f / ( v a ) = a i  and 
v~.if (v") = v i f  ~ (v). 

Lemma 2. For each a ~ Y, f a  is nonmanipulable. 
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Proof Suppose f a  were manipulable for some a e Y; i.e., for some i e N, some 
v e P ,  and some g; e V, the following inequality holds: 

Vgfa(f,., v~,) > vifaCv) . 

But then, according to Lemma 1, we have 

v] ' f (g° ' ,v~,)=v, f+ ( t ~ ; ' , v : ~ ) - I l a , - a i l l  = 

= vifa (~, v i) > vi fa  (v) = v?+f (v a) , 

and therefore individual i can manipulate f at v a via tT; ~, contrary to the as- 
sumption that f is nonmanipulable. [] 

L e m m a  3. For each a e Y, f a  ( V n) = f~ (~Z'). 

Proof Clearly, f .  (V") __ f~ i f ) .  In order to show that fx ( ~ )  c_ fa  (V'), suppose 
to the contrary that there exist an a e Y and a fi ~ ~" for which f ( f~ )¢ fa (V ' ) .  
Let x ° =  f~ (fi). It is easy to show that because f ,  is nonmanipulable f a ( V  .)  is 
a closed set (see the proof  of "Step 2" in Zhou);  consequently, there is ~0 > 0 
such that 

I l x - x ° l [  < ~ o ~ x C f a ( g  ") . 

Let v~ be a member of V that satisfies both 

x ° maximizes vl , and 

] [ X + X 0 I [  ~___6 0 ::~ UI(XO)--Vl(X)) max I lY, -a ,  ll 2 , 
y lE  YI 

and let (x 1, y~) denote (f~ (v[ '1, u~l), f l  (v7 ~, U~l)). Then we have 

0 1 ( x l ) ~  

(1) 

(2) 

(3) 

U1 ( X 1 )  - IlYl-a, II 

V] l d  [vall ' b l~l)  

v~'f(fi)  , because f is nonmanipulable , 

v, (x° )  - l l f l  (U) - -a l  112 

v, (x°) - max [ [Yl -a l  II = 
yl e Y1 

According to (3), then, we must have I] x ~ - x ° [ I  < 60, and therefore, according 
to (1), x l C f " ( V ' ) .  

Because x~¢ f " ( V ' ) ,  there is a ~1 with which we can repeat the argument in 
the preceding paragraph, with x 1 and O t replacing x ° and ~o, thereby obtaining 
a v2e V and an x2=fx(Vf  1, v~ 2, a 3 .... , a , ) ¢ f a ( V ' ) .  Repeating the argument 
another n - 2 times yields x" = f~ (v a) ¢ f "  (V ' ) ,  a contradiction, which completes 
the proof  of  Lemma 3. [] 

L e m m a  4. For each a ~ Y, f a  is dictatorial 

Proof Because each f "  is nonmanipulable, we need only establish that the di- 
mension of the range of  f a  is at least two in order to apply Zhou's theorem, 
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which yields the desired conclusion. But Lemma 3 established that  the range o f  
each f "  is fx ( i f ) ,  and it was assumed in the statement o f  the theorem that  f~ (fZ)  
has dimension at least two. [] 

Lemma 5. f (~/*) = f ( i f ) .  

Proof Clearly, f ( fZ)  ~_ f (~ ' ) .  To  establish that  f ( i f )  c_ f (~/*) ,  let (x, y) 
e f ( ~ ) .  Then clearly x e f~ ( i f )  and y e Y. Because x e f~, ( i f ) ,  Lemma 3 

ensures that  there is a v ~ V n for which f Y ( v ) = x  - i.e., fx(vY)=x. Lemma 1 
yields fy (v y) = y. We have f ( v  y) = (x, y), and since v r ~  g/*, this completes the 
p roo f  o f  L e m m a  5. [] 

Lemma 6. f is X-dictatorial on ~/*. 

Proof Let ~ ~ Y and, wi thout  loss o f  generality, let individual 1 be a dictator  for  
f a  (Lemma 4). We will show that  individual 1 is an X-dictator  for f on ~'*.  As 
a first step in the lemma's  proof,  we will show that  at any u = v a ~  Hi  ~ U* for  
which al = al and 1)1 has a unique maximizer on the set fx ( ~ / * ) =  fx ( f / ) ,  the x- 
outcome fx(U) will be that  maximizer. Thus, let b I be any member  o f  V that  
has a unique maximizer on fx ( ~ ' ) ,  and denote the maximizer o f  Vl by :~. Of  
course, since individual 1 is a dictator  for f a ,  we have fx (v~) = 9? for any v ~ V n 
such that  v I = b 1 . We must  show that  changing the components  o f  ~ (other than 
the first one) does not  alter the x-outcome at any of  these v. 

Let  a = (a 1 , a2, . . . ,  an) ~/-/1" ii,., and we will show that  fx (va) = ~? for any v ~ V n 
such that  v 1 = Vl. The argument  will be carried out  recursively: First we change 
only the last componen t  o f  ~ to the alternative value an; we write a '  for the n- 
tuple (c~ 1 .... , an-  1, an); and we show that  fx(v a') = ~? for every v G {0:} × V n-  :. 
Suppose to the contrary  that  fx (V* ' )=  2 ~e ~? for  some v ~ {01} x V n-  1. Then let 
1) n be a member  o f  V for which b n 0 ?) < b n (2) - II an - Yn [I 2 for every Yn ~ Yn, and 
denote (vl , . . . ,  vn-1, bn) by 0. Then f x ( ~ " ) =  2, and we therefore have 

^ t f f n  ^ ~  _ _  ^ - 

vn f ( v  ) -vn(x) - I lan-a~l l  

= eo ( x )  

< ~n(2)- I la~-L(v" ' ) l [  

= O a ~ f ( v " ' )  ; 

hence, individual n can manipulate  f at ~a via v ha'", contradict ing the assumption 
that  f is nonmanipulable.  This establishes that  f~ (v "' ) = 2 after all - i.e., changing 
the last componen t  o f  ~ did not  change the x-outcome f rom 97 for  any 
v ~ {01} × V n-  1. N o w  we can repeat the same argument  for k = n -  1, n -  2 , . . . ,  2, 
each time writing a ' =  (al,..., a~_ l, ak,..., an) and showing that  f~(v " ')  =3? for 
every v ~ {vl} × P -  ~. After the last step, k = 2, we will have a '  = (a 1 , a 2 . . . . .  an) = a 
and f~(v a) = 2, as desired. 

In order to complete the p r o o f  that  individual 1 is an X-dictator  on f /* ,  we 
suppose to the contrary  that  he is no t  - i.e., that  while we continue to assume 
that  individual 1 is a dictator  for f a ,  there is a member  v a o f  f /*  for which 
fx (v ~) does no t  maximize v 1 on f x ( ~ ' * )  = f ~ ( f / ) .  Then certainly individual 1 is 

not  a dictator  for f a  and since a ~ Y, Lemma 4 allows us to assume, wi thout  
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loss of  generality, that individual 2 is a dictator for f a .  Now let a = 
(Ol,a2, 2 .... , c},), and let v be a member  of  V" that satisfies each of the following: 

v 1 has a unique maximizer 2 on fx ( ~ ' )  ; 

v2 has a unique maximizer x on f~ ( ~ ' )  ; 

x¢ )}  ; 

Vl()?)-  ] l a , - y l l l 2 >  v~(2) , for every yl e Y1 • 

(1) 

(2) 

O) 

(4) 

Note tha t  fx (va) = )? (a consequence of (1) and the first step in the lemma's  proof) 
and fx (v") = x (a consequence of  (2)). Therefore we have 

v~' f ( v  ~) = v 1 (x) - [I al - al II 2 

= V 1 ( X )  

< V l ( - ~  ) - -  [ ] a l - f ,  (va)ll 2 

a l f ( v " )  V 1 

and individual 1 can therefore manipulate f at v ~ via al contrary to the non- Vl , 

manipulability of  f ,  thereby completing the lemma's  proof. [] 

Now that we know there is some individual i who is an X-dictator for f on 
~/*, we can ultimately show that this same individual i is in fact a dictator on 
all of  ~ .  Our method will be to first show, in Lemma 7, that if individual i is 
an X-dictator on ~ * ,  then he will still be an X-dictator if we expand the domain 
of profiles f rom fg* to U ~ ×  ~ - i  (recall that U~ ° is the set of  all functions that 
satisfy Assumption 1 b and are strictly concave and quadratic on X ×  Yi). Then 
we will show, in Lemma 8, that the same individual is in fact a dictator (not 
merely an X-dictator) on a domain /~ix f Z i ,  where 0~ is a subset of  U~. Then 
it will be easy to complete the theorem's proof  by showing that individual i 
remains a dictator if the domain is expanded to ~g'. 

Lemma 7. Some individual i is an X-dictator for f on U ~ x  ~z" ~. 

Proof Without loss of  generality, let individual 1 be an X-dictator for f on ~ '* 
(Lemma 6). The p roof  will proceed in two steps: In Step 1 we will establish that 
individual 1 is an X-dictator on U* × ~/~ 1, and in Step 2 we will use Step 1 to 
establish that he is an X-dictator on U1 ° × ~~1.  

Step 1. Let u ~  U * ×  ~"~,, let (2, f ) = f ( u ) ,  and (since u, e UI*) let Ul=V~ 1. Let 
M denote the set of  those x e X  that maximize v 1 on the set f x ( ~ ) ;  we must 
show that ~? ~ M. Suppose to the contrary that ~¢ M, and we will obtain a 
contradiction. 

Let a be a member  of  Y whose first component  is the a 1 already specified in 
vi I . We will recursively define, for k = 1, 2 , . . . ,  n, profiles u k which have the form 

u~=(v?, °~  "~  .... u~) (1) V 2 ~ . . . , V  k ~ b l k + l ,  

and we will define (x k, yk) by 

(x k, yk) = f (uk) . (2) 
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This construction will be carried out in such a way that, for each k, xkCM. In 
particular, x'¢sM - i.e., f~(v~)¢M. But individual 1 is an X-dictator on i f*;  
therefore we must in fact have fx (v") • M, and this contradiction establishes that 

• M after all. All that is left, then, is to carry out the recursion - to define, at 
each k, the function Vk, and to show that x~¢ M. 

At the first stage of the recursion, i.e., for k = 1, (1) and (2) yield u ~ = u and 
(x ~, y~)= (:?, ~). We therefore have x~¢ M, as we desired. For  k = 2, 3, . . . ,  n, let 
v k be any member of  V that satisfies 

yk (X k -  1 )  - -  Vk (X) > I lY~--I -- ak [1 2 for every x • M . (3) 

The existence of a v k that satisfies (3) is assured by our having established at the 
preceding stage that x~-~¢ M and because M is closed relative to f~ (g/) .  To 
establish at the current stage that x k ~ M, suppose instead that x k • M. Then we 
have 

k u k f ( u  k) =vff(x k, y~) 

= v k ( x ~ )  - [ l y g - a ~ [ I  ~ , 

__< v~ (x ~) 

< v k ( x ~ - ~ ) -  Ily~ - l - a ~ [ I  2 , 

=vff(xk-1, yk-1) 

by definition of vff 

according to (3) 

_ k - -Ukf(U k - l )  , 

k - - 1  and individual k would therefore be able to manipulate f at u k via u k = uk, 
contradicting the nonmanipulability of f .  Hence, xk¢ M, and Step 1 is complete. 

Step 2. Let u e U~× ~'/1-- and let ()?, .~) denote f ( u ) .  We must show that 
u~ (x, ~)=< u 1 (:?, ~) for all x • fx(U~× ~ 1 - ) ,  which implies that individual 1 
is an X-dictator for f on UI°× ~ .  Suppose, to the contrary, that ux (2, ~) 
>u~(~ ,~ )  for some 2• f~ (U~× ~ ~), and note that Lemma 5 yields 

f~ (U~×~ 1)=f~(~), because U * ~ U ~ c U  i. Then there is a 6 > 0  for 
which the following is true of every y • Y: 

Hy~-y~H2<6=u~(2, y ) >  u~(2, ~) . (4) 

Let Vx be a member of V which satisfies both of the following: 

2 maximizes v 1 uniquely on fx (~/)  , (5) 

v I (2) - v~ ()?) < 6 , (6) 

and denote f(vYl 1, u~l) by (:?, ~). Then Step 1 guarantees that 2=2. 
Furthermore, IlY1-371 II 2 < 6, because if IlY,-371 II 2 > 6  then we would have 
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vf ~ f ( v f  ~,u , ) = v ~ ( 2 ) - [ l f l - . f l l l 2  

< v~ ( ~ ) -  

< v~ (~) 

= v , ( ~ ) - H y , - y ,  ll ~ 

= vf ~ f (u) , 

and individual 1 would therefore be able to manipulate  f at (v~ ~, u~l)  via u~. 
Thus, I])71 - f l [ I  2 < ~, and (4) therefore guarantees that  u 1 (2, ~) > u 1 (2, ~); a 
fortiori, u 1 (2, ~) > u I (~?, ~) - i.e., ul f (v~ ' ,  u l) > u l f ( u  ), and individual 1 can 
therefore manipulate  f at u via ~ ' ,  contrary  to the assumption that  f is non- 
manipulable.  This contradict ion establishes that,  after all, u I (2, y)=< ul (2, Y), 
thereby complet ing the lemma's  proof.  [] 

In order  to show that  an individual i who is an X-dictator  is actually a dictator,  
it will be necessary to focus at tent ion on utility functions that  have a unique 
maximizer  in the components  o f  interest to the dictator  and are not  separable in 
those components .  Thus, for  each i ~ N, we let Ui denote the set of  all utility 
functions u i in U~ Q for  which /~1 has a unique maximizer  (2, 9 0  and for which, 
whenever Yl ¢.91, fil ( ' ,  Yl ) is not maximized at 2. 

Lemma 8. Some individual i is a dictator for f on (7~× ~[~i, and f (Ui× ~ i )  
= f ( f [ ) .  

Proof Without  loss o f  generality, assume that  individual 1 is an X-dictator  for  
f on U ~ ×  fZ~ 1 (Lemma 7). We will show that  individual 1 is a dictator  for  f 
on U1 × ~"- 1, and then that  f (UI x ~/'~ 1) = f (~ ' ) .  Let  u ~ U1 × ~/'- 1; let 
( 9 7 , ) 7 ) = f ( u ) ,  and let (~, r/) be a member  o f  f ( ~ / ' )  for  which (¢,  r/1 ) is 
the unique maximizer  o f  ill. No te  that  we cannot  say (at this point  that  
(~, v/) ~ f ( U l  × ~"~1); it is in the second par t  of  the p roo f  that  we will establish 
that  f ( ~ z ' ) ~ f ( U l ×  ~['-1). For  now, we will show that  (X, x21)=(¢ , r/1 ). It will 
suffice to show that  fa = I/1: Since 1 is an X-dictator  on U Q × f[ l~ and ~ is the 
unique maximizer  o f f i  I ( . ,  rh),  we must  have f~(u)  = ~ - -  i.e., ~?1 = ~l - -  when- 
ever 371 = r/1. 

Suppose, then, that  Yl ¢ r/~. Then  u I ( . ,  ~ )  is not  maximized at ~, and since 
individual 1 is an X-dictator on u Q ×  ~/'~1, we have ~?i ¢ ~. As in Step 1 o f  the 
p roo f  o f  Lemma  7, we recursively define, for  k = 2 , . . . ,  n, profiles u k of  the form 
u k =  (u 1, v ~ , .  ~* u~) and u 1 .., v/~ , u~+ 1 .. . .  , = u ,  and we write (x ~, i f ) =  f ( u ~ ) ,  and 
we carry out  the recursive definition in such a way that  at each step k, x~¢ ~: 
For  k = 2 , . . . ,  n let v~ be a member  o f  V that  satisfies 

Vk(Xk--1)--Uk(~) > Ily k- l - r lkH2 (1) 

As in Step 1 o f  the p r o o f  of  Lemma  7, it follows f rom the nonmanipulabi l i ty  of  
f that  xk4= ~, and the existence of  a v~ that  satisfies (1) is guaranteed by having 
shown, at stage k -  1 o f  the recursion, that  x k-  1 ¢ ~. After  the last stage of  the 
recursion, we have fx (ul, v~i 1) = x n ¢  ~. Now let v 1 be a member  o f  V which is 
maximized over  f x ( ~ / )  at ~, and consider the profile v ~ = ( v ~ ' , . . . , v ~ " ) ~  ~/*. 
Since individual 1 is an X-dictator  for  f on f['*, we have fx (v")  = ~, and Lemma 
1 yields fy (v")  = q. Therefore  f is manipulable by 1 at (u 1 v" -' , -1 ) via v71 contrary  
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to the assumption that f is nonmanipulable. This contradiction establishes that 
Yl = r/l, completing the proof that individual 1 is a dictator for f on [7~ × X, 'I .  

We can now show that f ([71 × ~/~ 1) = f ( ~ ) .  Clearly, f ([71 × ~ ~  1) --- f (fd). 
To show that f ( fd)c_f([71 × ~~1), let (x, y) e f (X / ) ,  and we will show that 
(x, Y ) e f ( [ T l ×  ~ 1 ) .  Let u be a profile in UI× fg~~ for which (x, y~) is the 
unique maximizer of fl  and, for each i~  {2,...,n}, yg is the unique maximizer 
of fi(x, ") on Yi. Then the first part of the lemma's proof yields f~ (u )=  x, 
and Lemma 1 yields f y ( u ) = y  - i.e., f ( u ) = ( x , y )  and therefore 
(x,y) e f ( [ 7 1 ×  ~"~1). [] 

Proof that f is dictatorial 
Without loss of generality, assume that individual 1 is a dictator for f on [71 × ~ 1 
(Lemma 8), and suppose that he is not a dictator on ~ :  let n e X / 
and (2 ,~ )e  f ( ~ / )  be such that u1(2, Y)>  u l f (u) .  Let u[ be a member of 01 
for which (2, Yl ) is the unique maximizer of f{ ; then, since individual 1 is a dic- 
tator for f on [71×~/N1, and since (2 ,¢¢)e f ( fd ) - - - f ( [7~×~ 1) it fol- 
lows that ( f~(u~,u~l) , f l (u[ ,u  1))=(2,~1 ), and thus that ul f (u{ ,u~l )  
= u I (2, 29) > u l f  (u) - i.e., f is manipulable by individual 1 at u via u~, contrary 
to the assumption that f is nonmanupulable. Therefore, individual 1 is a dictator 
for f after all, and the theorem's proof is complete. [] 

The following two examples indicate the importance of certain features of 
Assumptions 1 and 2. In the first example Assumption 2 is violated - only 
separable utility functions are admissible - and a nonmanipulable, nondictatorial 
voting scheme is constructed. 

Example 4. Let n = 2 ;  let Z = X ×  Y, where X is the unit square [0, 1] 2 and 
Y= { Y ~ IR2 lYl + Y2 = 1 }; and let each Ui contain only separable utility functions, 
i.e., ones of the form ug(x, y) = vg(x) + wi(yi). Define the voting scheme f :  X/--* Z 
as follows: f~(u) maximizes Vl; f l  (u) maximizes wa; and f2 (u)= 1 - f l  (u). This 
mechanism, while clearly neither manipulable nor dictatorial, is nevertheless rather 
unsatisfactory: Individual 1 always chooses the value of x - i.e., he is an X- 
dictator - and individual 2 always chooses the remaining two ("private") com- 
ponents. In Lemma 8, where an X-dictator was shown to be a dictator, a subset 
[7~ of U 1 was constructed which contained certain nonseparable utility functions; 
this was the only place in the theorem's proof in which nonseparable functions 
appeared, and it is precisely the absence of the kind of functions in the set [71 
that prevents either of the individuals in this example from manipulating the 
mechanism f .  

In the next example, as in the theorem, each participant is unaffected by some 
dimension of the outcome (and these dimensions are linearly independent of one 
another), but here there are no common dimensions that affect everyone - there 
are no "purely public' components of the social decision - and we are able to 
construct a voting scheme that is neither manipulable nor dictatorial. (The voting 
scheme is nevertheless quite unsatisfactory.) 

Example 5. Let n = 3; let Z =  [0, 1] 3, the unit cube in ]R 3, and let each U~ consist 
of all the utility functions u i of the form ug(x)= fi(x~, Xg+l ), where i +  1 = 1 if 
i =  3. Define the voting scheme f :  ~ Z  as follows, where (2[, 2~+1) denotes, 
for each i, the (unique) maximizer of Zig: f2 (u )=  max{2~, 2~}; f~ (u) maximizes 
Ul (xl, fa (u)); and f3 (u) maximizes u2 (f2 (u), x3). The outcome is entirely deter- 
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mined by just the utility functions u 1 and u2: The dimension that affects them 
both, x2, is chosen by a "median voter" rule (min would work as well as max), 
and each of the remaining two dimensions is chosen by the individual who cares 
about it. Individual 3 has no influence on the outcome. The voting scheme f is 
clearly nonmanipulable; it is also nondictatorial, although from individual 3's 
point of  view the other two participants are "jointly dictating" to him. It is easy 
to see that similar examples exist for any number of participants, examples in 
which, for instance, two individuals always "jointly dictate" to everyone else. 
This example suggests that if our impossibility theorem and its predecessors are, 
in some form, valid in more general settings, they must include a generalized 
definition of dictatorship. 

We conclude with several additional remarks. 

Remark 1. The theorem we have presented contains Zhou's theorem as a special 
case - the case in which the set Y is a singleton. Note, however, that Zhou's 
theorem plays an important role in the proof  we have given. 

Remark 2. The classical allocation problem (viz., the "pure exchange", or "multi- 
person Edgeworth box" problem) might seem to be the most obvious application 
of  the theorem: One generally assumes in the allocation problem that each of  
the participants cares only about certain components of the outcomes. But in 
fact the theorem does not apply to this problem as it is usually formulated. 
Assumption 2 of the theorem requires that nonmonotone utility functions be 
admissible, while in the allocation problem all utility functions are usually as- 
sumed to be monotone in each component. Example 3 is also worth noting in 
this regard. 

Remark 3. It is not clear whether the CU Property is essential. We have not been 
able to construct a nonmanipuable, nondictatorial mechanism that does not have 
the CU Property. 

Remark 4. In addition to the generalization suggested by Remark 2 (i.e., the 
generalization to sets of  only monotone utility functions), it is also an open 
question whether the theorem can be generalized to cases in which the set Z is 
not a Cartesian product of  X and Y - i.e., in which the social decision does not 
have a "purely public" part which is independent of the decision's other com- 
ponents. Such a generalization would allow for the treatment of additional kinds 
of  externalities, such as, for example, "costly" public decisions - ones in which 
the choice of x determines which y-decisions will actually be available. 
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