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Abstract

We examine the e¤ectiveness of price caps to regulate imperfectly com-

petitive markets in which the demand is uncertain. To that e¤ect, we study

a monopoly that makes irreversible capacity investments ex-ante, and then

chooses its output up to capacity upon observing the realization of demand.

We show that the optimal price cap must trade o¤ the incentives for capacity

investment and capacity withholding, and is above the unit cost of capacity.

Moreover, while a price cap provides incentives for capacity investment and

mitigates market power, it cannot eliminate ine¢ ciencies. Capacity payments

provide a useful complementary instrument.
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1 Introduction

Since Littlechild (1983)�s report, price cap regulation is regarded as an e¤ective in-

strument to mitigate market power, foster cost minimization, and ultimately enhance

surplus: When precise information about cost and demand is available, the introduc-

tion of a binding price cap raises �rms�marginal revenue near the equilibrium output

and leads to an increase of the equilibrium output and surplus, and to a decrease

of the market price. Moreover, under broad regularity conditions on the demand

and cost functions, for any price cap above marginal cost both output and surplus

decrease, and the market price increases with the price cap. Further, in the most

favorable conditions (e.g., when �rms produce the good with constant returns to

scale), a price cap equal to marginal cost is able to eliminate ine¢ ciencies. (In con-

trast, rate-of-return regulation, used for most of the 20th century to regulate public

utilities, distorts incentives for cost minimization �see, e.g., Joskow (1972) �or cost

reduction �see, e.g., Cabral and Riordan (1989).)

We study the e¤ectiveness of price cap regulation under demand uncertainty and

capacity precommitment and withholding. Demand uncertainty may be interpreted

also as variations of demand over time �see Green and Newbery (1992) for a discus-

sion of this interpretation in electricity markets. Capacity withholding is common in

markets such as sport events, hotel accommodation, agricultural products, or elec-

tricity. In markets for agricultural products, farmer associations sometimes destroy

part of the output. In electricity markets �rms may declare some of their generators

to be unavailable �data for the California electricity market during the time period

May 2000-December 2001 show that at the price cap some generators did not supply

all of their uncommitted capacity �see Cramton (2003) and Joskow and Kahn (2002).

It is easy to show that in the absence of capacity precommitment, e.g., when

the good can be produced instantly upon the realization of demand or there is slack

capacity, the e¤ectiveness of price caps and their comparative static properties with

respect to the expected output, expected price, and expected surplus remain the same

as when the demand is deterministic. The only e¤ect of uncertainty is smoothing the

non-di¤erentiability at the lowest non-binding price cap arising when the demand

is deterministic. In particular, a price cap equal to marginal cost maximizes the ex-

pected surplus. The intuition of these results is analogous to that of the deterministic

demand case �see Lemus and Moreno (2015). The analysis of this case is relevant for,

e.g., the Spanish or California electricity markets, in which �rms have excess capacity

(at least in recent times), and their bids are short lived (�rms compete to serve the
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demand for only hourly or half hourly periods). Of course, price cap regulation has

an impact on �rms�capacity investments, which are long run decisions made prior to

the realization of demand. Thus, endogenizing �rms�capacity investment decisions

seems a natural next step to take.

In order to tackle this issue, we consider a setting in which a monopoly makes

irreversible capacity investments ex-ante, and then chooses its output up to capac-

ity upon observing the realization of demand. Thus, the monopoly may withhold

capacity if it is bene�cial to do so. In this setting, ine¢ ciencies arise both because

the monopoly installs a low level of capacity in order to precommit to high prices,

and because the monopoly withholds capacity for low demand realizations in order

to keep prices from falling too much.

Focusing on the monopolistic case allows us to avoid some potential conundrums

that arise in oligopolistic settings, which are distractions from the issue under scrutiny

�the impact of price cap regulation. For example, it is unclear what is the appropriate

model of competition to consider at the ex-post stage. Moreover, when demand is

uncertain there are well known di¢ culties therein to guarantee existence, uniqueness

and symmetry of equilibrium �see, e.g., Reynolds and Wilson (2000), Gabszewicz

and Poddar (1997).

The e¤ects of price cap regulation with demand uncertainty and capacity pre-

commitment and withholding are subtle. We show that, much as in the absence

of capacity precommitment, the introduction of a su¢ ciently large binding price cap

raises the �rms�marginal return to capacity investment near the equilibrium capacity

and leads to an increase of the equilibrium capacity, the expected output and the ex-

pected total surplus, and to a decrease of the expected market price. However, price

caps near the unit cost of capacity are suboptimal because they reduce the return to

capacity investment below its cost, and lead the monopoly to install no capacity.

The optimal price cap (i.e., the price cap that maximizes surplus) must trade

o¤ the incentives for capacity investment (a dynamic e¢ ciency e¤ect) and capacity

withholding (a static e¢ ciency e¤ect), and tends to be well above the unit cost of

capacity. When the unit cost of capacity is high, the dynamic e¤ect on capacity

investment is a �rst order e¤ect, while the static e¤ect on capacity withholding is

a second order e¤ect. Thus, in this case the optimal price cap maximizes capacity

investment. When the unit cost of capacity is low, however, near the price cap that

maximizes capacity investment the dynamic e¤ect on capacity investment is a second

order e¤ect, while the static e¤ect on capacity withholding is a �rst order e¤ect.

Thus, in this case reducing the price cap below the level that maximizes capacity
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investment increases expected surplus, and therefore the optimal price cap does not

maximize capacity investment.

The comparative static properties of price caps are complex: the e¤ect of a change

of the price cap on expected output and expected surplus depend on the magnitudes

of the static e¤ect (on withholding) and the dynamic e¤ect (on capacity investment),

which may have opposite signs. Under standard regularity assumptions on the de-

mand distribution, capacity investment is a single peaked function of the price cap:

for low price caps capacity investment increases with the price cap until it reaches a

maximum at some binding price cap r�, and then decreases with the price cap above

r�. When the unit cost of capacity is large the signs of the e¤ects of changes in the

price cap on expected output, expected surplus and capacity investment coincide.

Interestingly, when the unit cost of capacity is small, expected output and expected

surplus decrease with the price cap above and around r�, and thus the optimal price

cap is below r�. Price caps a¤ect the market price directly, but also indirectly via

their impact on the level of capacity. Thus, an increase of the price cap increases the

expected price above and around r�, but has an ambiguous e¤ect below r�:

Introducing a su¢ ciently large binding price cap enhances the incentives for capac-

ity investment and discourages capacity withholding. Nonetheless, a price cap alone

is unable to provide the appropriate incentives for capacity investment and simul-

taneously eliminate the ine¢ ciencies arising from capacity withholding: the optimal

price cap induces a low level of capacity, and does not prevent capacity withholding.

Hence, with demand uncertainty and capacity precommitment an optimal regulatory

policy may require using other instruments.

While a full analysis of complementary instruments available to reduce ine¢ -

ciencies is outside the scope of the present paper, we study the impact of capacity

payments, which have been used in, e.g., electricity markets. We show that when the

cost of capacity is large, introducing a small capacity payment, and accommodating

accordingly the optimal price cap, increases the surplus. (Signing the e¤ect of capac-

ity payments when the cost of capacity is small seems di¢ cult.) The e¤ect of capacity

payments is further illustrated in the examples in section 6, in which we evaluate the

impact on equilibrium of a small capacity payment combined with an optimal re-

duction the price cap: relative to the equilibrium arising with only an optimal price

cap, in this equilibrium there is more capacity investment and less withholding and,

consequently, the expected output and surplus are larger �see �gures 5 and 6.

Our assumption that demand is linear and subject to an additive shock is restric-

tive, although it is common in the literature. However, our main conclusions seem to
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hold more generally. For example, we obtain analogous results with a multiplicative,

uniformly distributed demand shock.

Earle et al. (2007) studies an oligopolistic model in which �rms make output

decisions ex-ante, i.e., �rms choose their output before the realization of demand and

supply it inelastically and unconditionally. In this setting, they show that for price

caps near marginal cost the output is suboptimally low and may increase with the

price cap. Moreover, they establish that the comparative static properties of price

caps that hold when the demand is deterministic fail for a generic stochastic demand

schedule. (The source of this result is not demand uncertainty per se, but quantity

precommitment, which is assumed in the model.) Grimm and Zoettl (2010) establish

that under standard regularity assumptions the comparative static properties of price

caps are recovered. (Also, Grimm and Zoettl (2010) consider a setting in which �rms

may withhold capacity, but do not study the trade-o¤s of capacity investment and

withholding, and mistakenly conclude that maximizing the expected surplus amounts

to maximizing capacity.) In a similar setting, Reynolds and Rietzke (2012) study the

impact of price caps in oligopolistic markets with endogenous entry, and identify

conditions under which a price cap improves welfare.

Other authors have studied the dynamic e¤ects of price cap regulation. Dixit

(1991) studies a competitive market in which the demand is uncertain and �rms

make ex-ante irreversible investments, and shows that price caps delay investments

and lead to higher prices over time. Biglaiser and Riordan (2000) show that in the

presence of exogenous technological progress price caps provide better incentives for

capacity investment and replacement than rate-of-return regulation. Dobbs (2004)

studies the intertemporal e¤ect of an optimal price cap on the size and timing of

the investments of a monopoly that faces an uncertain demand, and shows that it

leads to under investment and quantity rationing �Roques and Savva (2009) obtain

similar conclusions in an oligopolistic extension of this setting. Also, consistent with

our results, Dobbs (2004) shows that a price cap is an e¤ective instrument when

the unit cost of capacity is small relative to the consumers�willingness to pay (or the

demand rate or growth), than when it is large. As in our setting, these models assume

constant return to scale. However, they do not allow for capacity withholding.

The paper is organized as follows: In Section 2 we describe our model and derive

preliminary results. In Section 3 we study the comparative static properties of price

caps. In Section 4 we study optimal price caps. In Section 5 we discuss the usefulness

of capacity payments. In Section 6 we apply our analysis to a simple example, which

provides clear illustration of our �ndings. The Appendix contains the proofs.
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2 The Model

Consider a monopoly facing an uncertain demand given for p 2 R+ by D(X; p) =
maxfX � p; 0g, where X is a continuous random variable with c.d.f. and p.d.f.

denoted by F and f , respectively. The monopoly must decide how much capacity to

install, k 2 R+, before the demand is realized. The cost of installing a unit of capacity
is a positive constant c > 0: Once capacity is installed the good can be produced with

constant returns to scale up to capacity. We assume without loss of generality that

the production cost is zero. The monopoly decides its output upon observing the

realization of demand, and may withhold capacity if doing so is bene�cial.

In order to rule out trivial cases in which the monopoly installs no capacity we

assume that E(X) > c: Also we reduce notation by assuming that the support of

X is the interval [0; 1]. Under this assumption the consumers�willingness to pay is

always above the cost of production, which implies that the equilibrium price is a

well-de�ned random variable. This facilitates presenting and interpreting our results,

but entails a small loss of generality.

Suppose that a regulatory agency imposes a price cap r 2 [0; 1]: In order to identify
the monopoly�s capacity choice k�(r); we proceed by backward induction to identify

�rst the monopoly�s output Q(r; k;X); and the market price P (r; k;X): Since the

cost of capacity is sunk and the cost of production up to capacity is zero, then at

the stage of output choice the monopoly maximizes revenue. We note that levels

of capacity k > maxf1 � r; 1=2g are suboptimal: If the monopoly was not capacity
constrained, then its output for x 2 [0; 1] would be x=2 � 1=2 if x=2 � r, and it

would be x� r � 1� r if x=2 > r: Hence if k > maxf1� r; 1=2g; then the monopoly
would maintain idling capacity, and therefore since c > 0 it would be able to increase

its pro�t by installing less capacity. Thus, we restrict attention to price cap-capacity

pairs (r; k) 2 [0; 1]2 such that k � maxf1� r; 1=2g.
Figure 1 describes a partition of the set of relevant price cap-capacity pairs into

three regions, A = f(r; k) 2 [0; 1]2 j r � k � 1 � rg, B = f(r; k) 2 [0; 1]2 j k <
minf1 � r; rgg, and C = f(r; k) 2 [0; 1]2 j 1 � r � k � 1=2g. We calculate the
equilibrium price and output in regions A; B; and C for each realization of the

demand parameter X: In all three regions the monopoly equilibrium emerges for

low demand realizations x 2 [0; 2r). However, as we consider larger realizations

of the demand parameter, while in region A the price cap becomes binding (i.e.,

the monopoly equilibrium price is above the price cap) before the capacity is fully

utilized, in region B capacity binds before the price cap does. In region C the price
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Figure 1: Relevant Price Cap-Capacity Pairs

cap never binds.

Table A describes the prices and outputs for (r; k) 2 A.

X [0; 2r) [2r; r + k) [r + k; 1]

P (r; k; x) x=2 r r

Q(r; k; x) x=2 x� r k

Table A: Equilibrium Output and Price for (r; k) 2 A.

Figure 2 illustrates the results in Table A. For low demand realizations (such as

x0 < 2r in Figure 2), the price cap is non-binding, and the unconstrained monopoly

equilibrium arises. For intermediate demand realizations (such as x1 2 (2r; r + k)
in Figure 2) the price cap binds, and the monopoly serves the demand at the price

cap, x1 � r: (Note that marginal revenue becomes negative for output levels greater
than x1 � r < k.) Thus, for intermediate demand realizations a marginal decrease

of the price cap leads to an increase of output. For high demand realizations (such

as x2 > r + k in Figure 2) the marginal revenue remains equal to r > 0 even if the

monopoly serves its entire capacity. Hence the monopoly serves its entire capacity k,

and the demand x2 � r > k is rationed.
Note the main features of equilibrium for price cap-capacity pairs in region A:

the monopoly withholds capacity except for high demand realizations, the demand

is rationed only for high demand realizations, and the market price P (r; k; x) is in-

dependent of the level of installed capacity k: Increasing capacity a¤ects the revenue

only for high demand realizations x > r+k for which the monopoly supplies its entire

capacity. For these demand realizations the price cap r is binding. Thus, the expected
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Figure 2: The E¤ect of a Price Cap when (r; k) 2 A

revenue increases by r times the probability that the additional marginal unit of ca-

pacity is supplied, i.e., the expected marginal revenue to capacity is r[1 � F (r + k)]
�see the proof of Lemma 1 in the appendix.

Table B describes the prices and outputs for (r; k) 2 B.

X [0; 2k) [2k; r + k) [r + k; 1]

P (r; k; x) x=2 x� k r

Q(r; k; x) x=2 k k

Table B: Equilibrium Output and Price for (r; k) 2 B.

Figure 3 illustrates the results in Table B. For low demand realizations (such as

x0 < 2k in Figure 3) the price cap is not binding, and the unconstrained monopoly

equilibrium arises. For intermediate demand realizations (such as x1 2 (2k; r + k)
in Figure 3), marginal revenue remains positive even when the monopoly serves its

full capacity, and the price that clears the market when the monopoly serves its full

capacity is below the price cap. Thus, the monopoly serves its full capacity and the

price cap is non-binding. For high demand realizations (such as x3 > r+ k in Figure

3) marginal revenue remains positive even when the monopoly serves its full capacity,

but the price that clears the market is above the price cap. Thus, the monopoly

serves its full capacity and the price-cap is binding.

Note the main features of equilibrium for price cap-capacity pairs in region B:

the monopoly withholds capacity only for low demand realizations, the demand is

rationed only for high demand realizations, and the market price P (r; k; x) depends
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Figure 3: The E¤ect of a Price Cap when (r; k) 2 B

on the level of capacity. Changes in the price cap a¤ect the output for intermediate

and high demand realizations, and the market price for high demand realizations.

Table C describes the prices and output for (r; k) 2 C.

X [0; 2k) [2k; 1]

P (r; k; x) x=2 x� k
Q(r; k; x) x=2 k

Table C: Equilibrium Output and Price for (r; k) 2 C.

In region C the price cap is never binding. The monopoly withholds capacity only

for low demand realizations, x 2 [0; 2k), and supplies its entire capacity otherwise.
Demand is never rationed. The market price P (r; k; x) depends on capacity.

We study the monopoly�s capacity choice. Given (r; k) the monopoly revenue is

R(r; k;X) = P (k; r;X)Q(r; k;X);

and its expected pro�t is

��(r; k) = E (R(r; k;X))� ck:

Clearly �� is continuous on A [B [ C:
Using the results described in tables A, B and Cwe readily calculate the monopoly�s

expected pro�t, and verify that the expected marginal revenue to capacity,MR(r; k) =

@E (R(r; k;X)) =@k, is decreasing in k; and is di¤erentiable on A [ B [ C �see the
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proof of Lemma 1 in the Appendix. Note that while in region A a marginal increase

of capacity increases revenue only for high demand realizations (i.e., for x > r + k),

in regions B and C a marginal increase of capacity increases revenue for high and

intermediate demand realizations (i.e., for x > 2k).

In equilibrium, the monopoly�s capacity k�(r) maximizes ��(r; �). Thus, since
��(r; �) is a twice di¤erentiable and strictly concave function for all r 2 [0; 1]; k�(r) = 0
if MR(r; 0) < c; and otherwise k�(r) is the unique solution of the equation

MR(r; k) = c: (1)

Moreover, the Maximum Theorem implies that k� is a continuous function. We

summarize these results in Lemma 1.

Lemma 1. For all r 2 [0; 1], ��(r; �) is a twice di¤erentiable and strictly concave
function, and hence the equilibrium capacity k�(r) is a continuous function.

Calculating the equilibrium capacity is somewhat involved. Obviously, the equi-

librium capacity is zero for price caps below the unit cost of capacity c. Hence, price

caps near the unit cost of capacity are suboptimal. Moreover, it is easy to see that

the equilibrium capacity is also zero for price caps r above but near the unit cost

of capacity: because the probability of demand realizations x < c is positive, for r

above but near c the expected marginal revenue is below c even for k = 0. Therefore

installing capacity entails losses. Thus, the equilibrium capacity is zero unless the

price cap is su¢ ciently high that expected marginal revenue for levels of capacity near

zero is greater than c, i.e., r � r(c); where r(c) is the unique solution to the equation
MR(r; 0) = c: (If the lower bound of the support of X is � > c; instead of zero as we

have assumed, then for r = c the expected marginal revenue is c and pro�ts are zero

for k 2 [0; � � c], whereas pro�ts are negative for k > � � c: Hence the equilibrium
capacity may be positive, and may increase or decrease with r near the unit cost of

capacity depending of the distribution of demand.)

Obviously, su¢ ciently large price caps are non-binding. Speci�cally, the largest

binding price cap �r(c) is the unique solution to the equation c = MR(r; 1 � r): For
r � �r(c) the price cap is not binding, and (r; k�(r)) is in region C. We denote by kC
the equilibrium capacity, i.e., solution to the equation (1), when the price cap is not

binding.

Intermediate price caps r 2 [r(c); �r(c)) a¤ect the equilibrium capacity in more

complex ways. The equilibrium capacity as a function of the price cap, k�(r), di¤ers

depending on whether (r; k�(r)) is in region A or B: The solution to equation (1) in
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region A is kA(r) = F�1(1� c=r)�r: The solution to equation (1) in region B; kB(r),
cannot be obtained in closed form. We show that k�(r) = kA(r) for price caps such

that MR(r; r) � c, and that k�(r) = kB(r) otherwise.
When the hazard rate ofX is increasing, then for c �M� := maxr2[0;1=2]MR(r; r);

MR(r; r) � c on an interval [r�(c); r+(c)]; where r�(c) and r+(c) are the smaller and
larger solutions to the equationMR(r; r) = c; and satisfy r(c) < r�(c) < r+(c) < �r(c):

Hence under this assumption the equilibrium capacity is zero below r(c); kB(r) on

[r(c); r�(c)); kA(r) on [r�(c); r+(c)]; kB(r) on (r+(c); �r(c)]; and kC above �r(c): Lemma

2 states these results precisely.

Lemma 2. The equilibrium capacity is k�(r) = 0 if r 2 [0; r(c)), and it is k�(r) = kC
if r 2 [�r(c); 1]. For r 2 [r(c); �r(c)); k�(r) = kA(r) if MR(r; r) � c, and k�(r) = kB(r)
otherwise; moreover, if the hazard rate of X is increasing, then MR(r; r) � c holds
on a subinterval of (r(c); �r(c)) when c �M�, and does not hold otherwise.

Using the results in tables A, B and C, and the description on the equilibrium

capacity given in Lemma 2 , we can calculate the expected output and market price as

well as the expected surplus, thus providing a complete description of the monopoly

equilibrium. In Section 6 we solve an example in which X in uniformly distributed.

3 Comparative Statics

In this section we study the comparative static properties of price caps when the

hazard rate of X is increasing and its p.d.f. f is di¤erentiable. We �rst show that

under these regularity assumptions on the distribution of demand the equilibrium

capacity k� is a single peaked function of the price cap r on (r(c); �r(c)). Thus, the

comparative static properties of the equilibrium capacity are analogous to those price

caps have on expected output when capacity has no precommitment value.

It is easy to see that in our setting when capacity lacks precommitment value (i.e.,

when it can be built instantly), regardless of whether or not the hazard rate of X is

increasing and/or f is di¤erentiable, the expected output (which is equal to capacity)

is zero when the price cap r is below c, has an upward discontinuity at r = c; at which

point reaches its maximum value, and decreases smoothly with r above c �see Lemus

and Moreno (2015). We show that with capacity precommitment capacity is zero for

r 2 [0; r(c)); where r(c) > c, then increases with r until it reaches its maximum value
on (r(c); �r(c))), and then decreases with r until the price cap becomes non-binding at

�r(c), remaining constant above �r(c). These general features are illustrated in �gures
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5 and 6 of Section 6 in which we o¤er graphs of these functions for an example in

which X is uniformly distributed. We shall see that expected output and surplus

behave analogously.

We state these results in Proposition 1. The proofs of these results, which are

standard, involve implicitly di¤erentiating the �rst order condition for pro�t maxi-

mization �see the Appendix.

Proposition 1. Assume that the hazard rate of X is increasing and its p.d.f. is

di¤erentiable. Then k�(�) is a di¤erentiable single peaked function on (r(c); �r(c)); i.e.,
k�(�) has a maximum at some r�(c) 2 (r(c); �r(c)), and dk�(r)=dr > 0 on (r(c); r�(c))
whereas dk�(r)=dr < 0 on (r�(c); �r(c)):

Next, we discuss the e¤ects of changes in the price cap on the expected output

and the expected price. The expected output is readily calculated using the results

described in tables A, B and C. In region A; the monopoly maintains idling capacity

for intermediate demand realizations in which the price cap is binding. Thus, in

region A the expected output strictly decreases with the price cap given the level of

capacity. Since for price caps r 2 [r�(c); r+(c)] the equilibrium capacity k� satis�es

(r; k�(r)) 2 A; then the expected output decreases on [r�(c); r+(c)] provided the

equilibrium capacity does not decrease, i.e.,

dk�

dr
� 0) dE(Q(r; k�(r); X)

dr
< 0:

Hence when the price cap that maximizes capacity r�(c) is in the interval [r�(c); r+(c)],

the expected output decreases with the price cap on [r�(c); r+(c)]. Therefore the price

cap that maximizes output is below r�(c) since, as the proof of Proposition 2 given

in the Appendix shows, near r�(c) a decrease of the price cap has only a second order

e¤ect on capacity, while it has a �rst order e¤ect on demand via price reduction.

In region B; however, the output does not dependent directly on the price cap,

but only indirectly via its impact on the equilibrium level of capacity. Thus, for price

caps r 2 [r(c); �r(c))n[r�(c); r+(c)]; for which (r; k�(r)) 2 B; the signs of the e¤ects of
changes in the price cap on expected output and capacity are the same, i.e.,

dE(Q(r; k�(r); X)
dr

R 0, dk�

dr
R 0:

Let us discuss the e¤ect of changes in the price cap on the expected price. In

region A the market price is independent of k, and therefore a change in the price cap

only has a direct (positive) e¤ect on P: Hence the expected market price increases
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with the price cap regardless of its impact on capacity. Since (r; k�(r)) 2 A for

r 2 [r�(c); r+(c)], then
dE(P (r; k�(r); X)

dr
> 0

on [r�(c); r+(c)]: In region B; however, the market price depends on k, and therefore a

change in the price cap has an indirect e¤ect on the market price via its impact on the

level of capacity, as well as a direct (positive) e¤ect. When this indirect e¤ect is also

positive, i.e., when dk�=dr < 0; then the total e¤ect is positive, but when the indirect

e¤ect is negative, the sign of the total e¤ect is ambiguous. Since (r; k�(r)) 2 B for

r 2 [r(c); �r(c))n[r�(c); r+(c)], then

dk�

dr
� 0) dE(P (r; k�(r); X)

dr
> 0:

Therefore
dE(P (r; k�(r); X)

dr
> 0

on [r(c); r�(c)). However, the sign of this derivative on (r�(c); �r(c)] is ambiguous.

Obviously, changes in the price cap on [0; r(c))[(�r(c); 1] have no e¤ect on the expected
price. We summarize these results in Proposition 2.

Proposition 2. Assume that the hazard rate of X is increasing and its p.d.f. is

di¤erentiable. If r�(c) 2 (r�(c); r+(c)), then the expected output decreases with the
price cap above and around r�(c); otherwise the expected output increases with the

price cap on (r(c); r�(c)) and decreases on (r�(c); �r(c)). Moreover, the expected price

increases with the price cap on [r�(c); r+(c)] [ [r�(c); �r(c)):

Proposition 2 reveals that with demand uncertainty and capacity precommitment

the comparative static properties of price caps are somewhat complex. In particu-

lar, when c is small the capacity maximizing price cap r�(c) does not maximize the

expected output: decreasing the price cap below r�(c) leads to an increase of the

expected output even though installed capacity decreases. Of course, this fact has

direct implications on the price cap that maximizes the expected surplus, as we shall

see in the next section.

4 Optimal Price Caps

A regulator who wants to maximize the expected surplus using a price cap as its single

instrument, and cannot force the monopoly to serve its full capacity, must trade o¤

the incentives for capacity investment and capacity withholding, and must account
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for the cost of installing capacity (some of which may be seldom utilized). Thus, the

optimal price cap may di¤er from the price cap that maximizes capacity investment

r�(c). Indeed, we show that when the unit cost of capacity is small the optimal price

cap is below r�(c): For price caps near r�(c) reducing the price cap has a �rst order

positive e¤ect on surplus by discouraging capacity withholding, and only a second

order negative e¤ect on surplus by diminishing the incentives for capacity investment.

When the unit cost of capacity is high, however, the price cap a¤ects surplus only via

its impact on capacity investment, and thus the optimal price cap is r�(c). (Hence

when capacity cannot be withheld, as in the model of Earle et al. (2007) and Grimm

and Zoettl (2010), maximizing the expected surplus simply amounts to maximizing

capacity.) Obviously a price cap a¤ects the distribution of surplus also. A regulator

who wants to maximize the consumer surplus, for example, would choose as well a

price cap below r�(c) when the cost of capacity is low.

Denote by S(r; k;X) the equilibrium gross surplus (i.e., the surplus ignoring the

cost of capacity) as a function of the price cap, capacity, and demand realization.

Following the literature, we simplify somewhat the problem by assuming e¢ cient

rationing, i.e., when demand is rationed the consumers with the largest willingness

to pay receive priority to buy the good. See tables 3A and 3BC in the proof of

Proposition 3 in the Appendix. The expected surplus is

�S(r; k) := E(S(r; k;X))� ck:

An optimal price cap maximizes �S(r; k�(r)) on [0; 1]:

As Table A above shows, for (r; k) 2 A the monopoly withholds capacity for

demand realizations in the interval [0; r+k); and therefore the expected gross surplus

depends directly on the price cap, as well as indirectly through its e¤ect on capacity.

When (r; k) 2 B [ C, however, the price cap has no direct e¤ect on the expected
gross surplus, but only has an indirect e¤ect via its in�uence on capacity �see tables

B and C. These observations are made precise by di¤erentiating �S; to obtain

d �S(r; k�(r))

dr
= s(r)I[r�(c);r+(c)](r) +

dk�(r)

dr

�Z 1

r+k�(r)

(x� k�(r))f(x)dx� c
�
; (2)

where I is the indicator function, and s(r) = �r[F (r + k�(r)) � F (2r)]: (See the
proof of Proposition 3 in the Appendix.)

For r 2 [r�(c); r+(c)] the two terms in the expression (2) identify the direct and
indirect e¤ects on surplus, respectively, of changes in r. Since (r; k�(r)) 2 A; then
k�(r) = kA(r) > r; and therefore the sing of the direct e¤ect is negative, i.e., s(r) < 0.

Moreover, if r 2 [r�(c); r
�(c)]; then dk�(r)=dr � 0, i.e., the indirect e¤ect is also
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negative, and therefore the total e¤ect is negative, i.e., d �S(r; k�(r))=dr < 0. Hence

the expected surplus decreases with the price cap at r�(c): Even though decreasing

the price cap below r�(c) decreases capacity, it discourages capacity withholding and

increases surplus. Thus, the optimal price cap is below r�(c):

For r 2 [0; 1]n[r�(c); r+(c)] the �rst term in (2) is zero: Changes in the price

cap have only an indirect e¤ect on surplus via their impact on capacity invest-

ment, and the sign of d �S(r; k�(r))=dr is that of dk�(r)=dr: Thus, when r�(c) 2
(r(c); �r(c))n[r�(c); r+(c)] the optimal price cap is r�(c) �see the proof of Proposi-
tion 3 in the Appendix.

Proposition 3 summarizes these results.

Proposition 3. Assume that hazard rate of X is increasing and its p.d.f. is di¤er-

entiable. If r�(c) 2 [r�(c); r+(c)] then the expected surplus decreases with the price
cap above and around r�(c), whereas if r�(c) 2 (r(c); �r(c))n[r�(c); r+(c)], then r�(c)
maximizes the expected surplus.

5 Capacity Payments

In the absence of capacity precommitment a price cap equal to the unit cost of

capacity eliminates all ine¢ ciencies. With capacity precommitment, however, the

optimal price cap has to trade o¤ the incentives for capacity investment and capacity

withholding, and cannot eliminate ine¢ ciencies: as we show, capacity investment is

inadequately low and underused.

In order to see this, we calculate the surplus realized when k 2 [0; 1] units of

capacity are installed and supplied unconditionally, denoted by S�; which is given by

S�(k) =
1

2

Z k

0

x2f(x)dx+
1

2

Z 1

k

(2x� k)kf(x)dx� ck:

Di¤erentiating S� yields d2S�(k)=dk2 = �[1 � F (k)] < 0: Hence S� is a concave

function, and since it is increasing near k = 0, the socially optimal capacity, denoted

by kW ; solves the equation dS�(k)=dk = 0:

Proposition 4 establishes that an optimal price cap alone fails to provide incentives

to install the optimal level of capacity; that is, kW > k�(r�(c)). In addition, price caps

alleviate, but do not eliminate the ine¢ ciencies arising from capacity withholding. Of

course, taking control of the �rm, and then installing and supplying unconditionally

kW units would eliminate ine¢ ciencies. However, such intervention likely involves

a large subsidy with a prohibitively large opportunity cost, be it in terms of the
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distortions created in raising such revenue, or in terms of the bene�ts of its alternative

use.

Investment adequacy is a traditional theme of the literature on market regulation.

This literature regards capacity payments as a useful instrument to restore invest-

ment adequacy. In the electricity industry, for example, capacity markets have been

introduced in the US, Central and South America and, more recently, the United

Kingdom. Also, Sweden and Finland incentivize strategic reserves, and Spain, Portu-

gal, Italy and Ireland provide capacity subsidies �Joskow (2007) and Briggs and Kleit

(2013) study of the impact of capacity subsidies in competitive electricity markets.

Let us then examine the impact on the social surplus of a marginal capacity

payment combined with a price cap set up to maximize the surplus. A capacity

payment z amounts to reducing the cost of capacity to the monopoly from c to c� z.
Let us denote by ~k�(r; z) the monopoly�s capacity choice with a price cap r 2 [0; 1]
and a capacity payment z 2 [0; c], and by ~r�(z) the price cap that maximizes the
expected surplus, ~S(r; z); which is given by

~S(r; z) = E(S(r; ~k�(r; z); X))� c~k�(r; z):

In Proposition 4 we show that when the cost of capacity is large introducing

a small capacity payment increases surplus. We establish this result by evaluating

d ~S(~r�(z); z)=dz and showing that is positive near z = 0 �see the Appendix. The

sign of this derivative is unclear when the cost of capacity is small. In the example

discussed in the next section, however, a small capacity payment has a positive impact

on surplus both when the cost of capacity is large and when it is small.

Proposition 4. Assume that hazard rate of X is increasing and its p.d.f. is dif-

ferentiable. Then the equilibrium capacity with an optimal price cap alone is below

the optimal level of capacity kW . Moreover, if the cost of capacity is large, i.e., the

optimal price cap maximizes capacity, then a marginal capacity payment increases the

net surplus and the installed capacity.

6 An Example

Assume that X is uniformly distributed. Hence its p.d.f., which is given by f(x) = 1;

is di¤erentiable, and its hazard rate, h(x) = (1 � x)�1; is increasing. Since E(X) =
1=2, we consider values of the unit costs of capacity c 2 (0; 1=2).
We calculate the equilibrium capacity. By Proposition 1,

kA(r) = F
�1(1� c

r
)� r = 1� c

r
� r:
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Figure 4: Equilibrium Capacity

The expected marginal revenue is MR(r; k) = (k2 + 2 (1� 2k) r� r2)=2 in region B;
and MR(r; k) = (1� 2k)2 =2 in region C �see equations (4) and (5) in the proof of
Lemma 1 in the Appendix. Solving equation (1) yields

kB(r) = 2r �
p
2c� r (2� 5r); and kC =

�
1�

p
2c
�
=2:

The function r; which is the solution to the equation c =MR(r; 0) = r (2� r) =2,
is r(c) = 1 �

p
1� 2c. The functions r� and r+, which are the smaller and larger

solutions to the equation c =MR(r; r) = r(1� 2r); are readily calculated as r�(c) =
(1�

p
1� 8c)=4. These functions are well de�ned for c 2 (0;M�), where M� = 1=8.

(For c � 1=8 the equation has no solution on [0; 1], i.e., the interval [r�(c); r+(c)]

is empty.) The function �r; which is the solution to equation c = MR(r; 1 � r) =
(1� 2r)2 =2; is �r(c) = (1 +

p
2c)=2.

Figure 4 provides a description of the function k�(r) for c 2 (0; 1=2). For c � 1=9
the equilibrium capacity k�(r) reaches its maximum at the price cap r�A =

p
c 2

[r�(c); r+(c)]. For c > 1=9; the equilibrium capacity k�(r) reaches its maximum at

r�B = (1 + 2
p
10c� 1)=5 2 (r(c); �r(c))n[r�(c); r+(c)]. Interestingly, for c 2 (1=9; 1=8)

the equilibrium capacity k�(r) is increasing in the interval (r�(c); r+(c)]; and reaches

its maximum at r�(c) 2 (r+(c); �r(c)):
The expected surplus is �S(r; k�(r)) = 0 on [0; r(c)),

�S(r; k�(r)) =
r

2
(4� 9r)� c(1 + 2r) +

�
c+ 2r � 1

2

�p
2c� r (2� 5r):
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Figure 5: Capacity, Expected Output, and Surplus for c = 1=32

on [r(c); �r(c))n[r�(c); r+(c)],

�S(r; k�(r)) =
r3 (1 + 4r3) + 3r2 (c (c� 2r (1� r))� r3)� c3

6r3
:

on [r�(c); r+(c)]; and

�S(r; k�(r)) =
1� 6c
8

+

p
2c3

2
:

on [�r(c); 1]: When c � 1=8; the interval [r�(c); r+(c)] is empty.
Figure 5 displays the equilibrium capacity, and the expected output and surplus

as functions of the price cap when the unit cost of capacity is c = 1=32; note that

maximum capacity is reached at a price cap-capacity pair in regionA and, consistently

with Proposition 3, the price cap that maximizes the expected surplus is below the

price cap that maximizes capacity, i.e., rW ' :11 < r� ' :17: The grey curves in

this �gure provide graphs of these functions with a capacity payment z = 1=100; this

small capacity payment has a positive impact on surplus even though in this example

the cost of capacity is small.

Figure 6 shows the corresponding graphs for c = 3=20; the maximum capacity is

reached at a price cap-capacity pair in region B; and consistently with Proposition

3, the expected surplus is maximal at this price cap. The grey curves in this �gure

provide graphs of these functions with a capacity payment z = 1=100; consistently

with Proposition 4 a small capacity payments has a positive impact on the surplus.

It is interesting to observe that whether the cost of capacity is large or small,
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Figure 6: Capacity, Expected Output, and Surplus for c = 3=20:

introducing a small capacity payment reduces the optimal price cap: having a com-

plementary instrument to provide incentives for capacity investments allows a more

e¤ective use of the price cap to discourage capacity withholding.

Figure 7 illustrates the e¤ectiveness of price caps as measured by the ratio �S�(c)=

S�(kW (c)); where �S�(c) := �S(rW (c); k�(rW (c))) is the expected surplus with an opti-

mal price cap, and S�(kW (c)) is the maximum expected surplus that can be realized

assuming that the socially optimal capacity kW (c) is installed and supplied uncon-

ditionally. A price cap is very e¤ective when the unit cost of capacity is small,

but its e¤ectiveness decreases as the unit cost of capacity increases. The graph

k�(rW (c))=kW (c) illustrates the e¤ectiveness of a price cap to provide incentives for

capacity investment. In the absence of a binding price cap the monopoly installs

kW (c)=2 units of capacity, and the expected surplus realized is 3S�(kW (c))=4: Thus,

the dashed lines at 1=2 and 3=4 in Figure 7 describe, respectively, the (constant)

ratios of installed capacity to socially optimal capacity, and expected surplus realized

to maximum expected surplus.

This example also illustrates the di¤ering e¤ects of price caps in our setting and

in the model studied by Earle et al. (2007) and Grimm and Zoettl (2010), in which

the monopoly cannot withhold capacity. Simple calculations show that when the

monopoly cannot withhold capacity the socially optimal price cap yields the level

of capacity k̂�(c) = kw(c)=2: Thus, a price cap is a poor instrument to provide in-

centives for capacity investment when the monopoly cannot withhold capacity and,

consequently, the expected surplus realized with a socially optimal price cap Ŝ�(c) is
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Figure 7: Price Cap E¤ectiveness with and without Capacity Withholding

well below the maximum expected surplus S�(kw(c)): Moreover, as Figure 7 shows

the ratio Ŝ�(c)=S�(kw(c)) is uniformly below �S�(c)=S�(kw(c)); and the di¤erence be-

tween these ratios is considerably large for small values of the unit cost of capacity.

(See Lemus and Moreno (2015), Appendix B, for a treatment of this model and ex-

ample.) These conclusions suggest that disallowing capacity withholding may not be

an advisable regulatory policy.

7 Appendix: Proofs

Proof of Lemma 1. Using the results described in tables A, B and C we readily
calculate the monopoly�s expected marginal revenue as

MR(r; k) =

Z 1

r+k

rf(x)dx = r[1� F (r + k)] (3)

for (r; k) 2 A;

MR(r; k) =

Z r+k

2k

(x� 2k) f(x)dx+
Z 1

r+k

rf(x)dx (4)

for (r; k) 2 B; and

MR(r; k) =

Z 1

2k

(x� 2k)f(x)dx (5)

for (r; k) 2 C. Since (3) and (4) coincide for k = r, and (4) and (5) coincide for

r > 1=2 and k = 1� r, then MR is continuous on A [B [ C.
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Di¤erentiating MR we get

@MR(r; k)

@k
= �rf(r + k) < 0 (6)

for (r; k) 2 A;

@MR(r; k)

@k
= �kf (r + k)� 2 [F (r + k)� F (2k)] < 0 (7)

for (r; k) 2 B; and
@MR(r; k)

@k
= �2 [1� F (2k)] < 0 (8)

for (r; k) 2 C:Moreover, since (6) and (7) coincide for k = r; thenMR is di¤erentiable
on A [ B [ C, except perhaps in the boundary of B. Hence the expected marginal
revenue function MR is strictly decreasing, and therefore the monopoly�s expected

revenue is a strictly concave function on A [B [ C. �

Proof of Lemma 2 . We calculate the equilibrium capacity k�(r): The expected

marginal revenue when capacity is zero is

MR(r; 0) =

Z r

0

xf(x)dx+ r (1� F (r)) :

Hence dMR(r; 0)=dr = 1�F (r) > 0 on (0; 1); and therefore the functionMR(�; 0) has
an inverse, which we denote by r: For r 2 [0; r(c)) we have MR(r; 0) < c; and since
MR(r; k) is decreasing in k; then MR(r; k) < c for all k: Hence ��(r; �) is decreasing,
and therefore k�(r) = 0:

Let us consider price caps r 2 [r(c); 1=2): Then ��(r; �) takes values in regions A
and B: Solving the equation (1) for MR given by (6) yields

kA(r) = F
�1(1� c

r
)� r:

Hence

kA(r) + r = F
�1(1� c

r
) < 1;

and therefore kA(r) < 1 � r. In order for (r; kA(r)) 2 A, we must have r � kA(r).

This inequality is equivalent to

c �MR(r; r) = r (1� F (2r)) :

Denote by kB(r) the solution to equation (1) for MR given by (4). In order

for (r; kB(r)) 2 B; the inequalities 0 < kB(r) < r must hold. (Recall that we

are identifying the monopoly capacity for r < 1=2; and therefore kB(r) < r implies
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kB(r) < 1�r.) The inequality kB(r) < r is equivalent to c > MR(r; r): The inequality
kB(r) > 0 is equivalent to c < MR(r; 0);i.e., r � r(c):
Let us now consider price caps r 2 [1=2; 1]: Then ��(r; �) takes values in regions B

and C: If r < r(c), then k�(r) = 0 as shown above. For r � r(c); ��(r; �) reaches its
maximum in region B provided kB(r) < 1� r: This inequality is equivalent to

MR(r; 1� r) =
Z 1

2(1�r)
xf(x)dx� 2 (1� r) [1� F (2 (1� r))] < c:

Note that
dMR(r; 1� r)

dr
= 2(1� F (2 (1� r))) > 0:

Hence the functionMR(r; 1� r) has an inverse on (1=2; 1) ; which we denote by �r(c),
and therefore we may write the above inequality as r < �r(c): Note that for r = 1

we have MR(r; 1 � r) = MR(1; 0) = E(X). Hence, since c < E(X) by assumption,
we have �r(c) < 1. For r 2 [�r(c); 1), ��(r; �) increases with k in region B and reaches

its maximum in region C. Denote by kC the solution to the condition (1) for MR

given by equation (5). Clearly kC is independent of the price cap r. Also, since

MR(r; 1=2) = 0; then kC < 1=2 for all c 2 (0;E(X)). Since the expected marginal
revenue decreases with k; then kC > 1� r implies c < MR(r; 1� r): Moreover, since
r > 1=2 and MR is decreasing, then MR(r; 1 � r) < MR(r; r): Hence kC solves the
monopoly problem if r � �r(c).
Assume that the hazard rate of X, h (�) = f (�) =[1 � F (�)]; is increasing. Di¤er-

entiating yields

dMR(r; r)

dr
= (1� F (2r))� 2rf(2r) = (1� F (2r)) (1� 2rh(2r)) ;

which is positive for values of r close to zero and negative for values of r close to 1=2.

Since h is increasing, then the function MR(r; r) is strictly concave and reaches its

maximum value M� on (0; 1=2): If c < M�; then the equation MR(r; r) = c has two

solutions on (0; 1=2), which we denote by r�(c) and r+(c) with r�(c) < r+(c). Thus,

for r 2 [r�(c); r+(c)]; we have c �MR(r; r); and hence k�(r) = k�A(r): Since c < r(c)
and 1=2 < �r(c) < 1; then for c < M�, c < r(c) < r�(c) < r+(c) < 1=2 < �r(c) < 1: �

The following lemma will be useful in the proof of Proposition 1.

Lemma 3. Let g be a real valued function on R, di¤erentiable on some interval
(a; b); and satisfying g0(a) > 0 > g0(b); and g00(y) < 0 for all y 2 (a; b) such that
g0(y) = 0. Then g has a unique global maximizer on [a; b]; y� 2 (a; b), and g0 is

positive on (a; y�) and negative on (y�; b):
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Proof. Let y� = supfy 2 (a; b) j g0(y) > 0g and y�� = inffy 2 (a; b) j g0(y) < 0g:
Since g0 is continuous on (a; b) ; then g0(y�) = g0(y��) = 0; and therefore a < y�� �
y� < b. We show that y� = y��; which establishes the lemma. Suppose by way

of contradiction that y�� < y�: Since both g00(y�) and g00(y��) are negative, then for

" 2 (0; y� � y��) su¢ ciently small

g0(y�� + ") < 0 < g0(y� � "):

Hence g0(�y) = 0 for some �y 2 (y���"; y�+"), and g0 is negative (positive) for y below
(above) and near �y: Hence g00(�y) > 0; which is a contradiction. �

Proof of Proposition 1. Let r 2 (r(c); �r(c)): Since the expected marginal revenue
MR(r; k) is di¤erentiable in regions A [B; we can di¤erentiate equation (1) to get

@MR(r; k)

@k
dk +

@MR(r; k)

@r
dr = 0:

And since MR is decreasing, i.e., @MR(r; k)=@k < 0; then

dk�

dr
= �@MR(r; k)

@r

�
@MR(r; k)

@k

��1
;

and
dk�

dr
T 0, @MR(r; k)

@r
T 0:

Since f is di¤erentiable, then MR is twice di¤erentiable, and

d2k�

dr2
= �

�
@MR(r; k)

@k

��1
d

dr

�
@MR(r; k�(r))

@r

�
+
@MR(r; k)

@r

�
@MR(r; k)

@k

��2
d

dr

�
@MR(r; k�(r))

@k

�
= �

�
@MR(r; k)

@k

��1�
d

dr

�
@MR(r; k�(r))

@r

�
+
dk�

dr

d

dr

�
@MR(r; k�(r))

@k

��
:

Hence, for r such that dk�=dr = 0; we have

d2k�

dr2
T 0, d

dr

�
@MR(r; k�(r))

@r

�
T 0:

If (r; k�(r)) 2 A, then di¤erentiating MR given in (3) yields

@MR(r; k)

@r
= 1� F (r + k)� rf(r + k) = (1� F (r + k)) (1� rh (r + k)) ;
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and

d

dr

�
@MR(r; k�(r))

@r

�
= �f(r + k)

�
1 +

dkA
dr

�
(1� rh (r + k))

� (1� F (r + k)) (h (r + k) + rh0 (r + k))
�
1 +

dkA
dr

�
:

Assume that dkA=dr = 0. Then 1� rh (r + k�(r)) = 0, and

d

dr

�
@MR(r; k�(r))

@r

�
= � (1� F (r + k�(r))) (h (r + k�(r)) + rh0 (r + k�(r))) :

If the hazard rate is increasing (i.e., h0 > 0), then we have d2kA=dr2 < 0; and therefore

every critical point of kA is a local maximum.

If (r; kB(r)) 2 B; then di¤erentiating MR given in (4) yields

@MR(r; k)

@r
= 1� F (r + k)� kf(r + k) = (1� F (r + k)) (1� kh(r + k)) ;

and

d

dr

�
@MR(r; k�(r))

@r

�
= �f(r + k�(r)) (1� k�(r)h(r + k�(r)))

�
1 +

dkB
dr

�
� (1� F (r + k�(r))) k�(r)h0(r + k�(r))

�
1 +

dkB
dr

�
� (1� F (r + k�(r)))h(r + k�(r))dkB

dr
:

Assume that dkB=dr = 0. Then 1� k�(r)h (r + k�(r)) = 0, and

d

dr

�
@MR(r; k�(r))

@r

�
= � (1� F (r + k�(r))) k�(r)h0(r + k�(r)):

If the hazard rate is increasing (i.e., h0 > 0) we have d2kB=dr2 < 0; and therefore

every critical point of kB is a local maximum.

Thus, for r 2 (r(c); �r(c)); d2k�(r)=dr2 < 0 whenever dk�(r)=dr = 0: Moreover,

since kB(�r(c)) = 1� �r(c), and

@MR(r; 1� r)
@r

����
r=�r(c)

= 1� F (�r(c) + (1� �r(c)))� (1� �r(c)) f (�r(c) + (1� �r(c)))

= � (1� �r(c)) f(1) < 0;

then dkB(�r(c))=dr < 0: And since kB(r(c)) = 0, and

@MR(r; 0)

@r

����
r=r(c)

= 1� F (r(c)) > 0;
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then dkB(r(c))=dr > 0: Hence k� has a global maximum at some r�(c) 2 (r(c); �r(c)) ;
and satis�es dk�=dr > 0 on (r(c); r�(c)) and dk�=dr < 0 on (r�(c); �r(c)) by Lemma

3. Since k� is continuous on [0; 1], is equal to zero on [0; r(c))) and is equal to kC on

[�r(c); 1); this implies that k� is quasi-concave, i.e., single peak, on [0; 1]. �

Proof of Proposition 2. The expected output is

E(Q(r; k�(r); X) =
Z 2r

0

x

2
f(x)dx+

Z r+k�(r)

2r

(x� r)f(x)dx+
Z 1

r+k�(r)

k�(r)f(x)dx;

for r 2 [r�(c); r+(c)]; and

E(Q(r; k�(r); X) =
Z 2k�(r)

0

x

2
f(x)dx+

Z 1

2k�(r)

k�(r)f(x)dx

for r 2 (r(c); �r(c))n[r�(c); r+(c)]. Hence

dE(Q(r; k�(r); X)
dr

= �[F (r + k�(r))� F (2r)] + dk
�

dr
(1� F (r + k�(r)))

for r 2 [r�(c); r+(c)], and

dE(Q(r; k�(r); X)
dr

=
dk�

dr
(1� F (2k�(r)))

for r 2 (r(c); �r(c))n[r�(c); r+(c)]. Thus,

dk�

dr
� 0) dE(Q(r; k�(r); X)

dr
< 0

for r 2 [r�(c); r+(c)], that is, the expected output decreases with the price cap beyond
the price cap that maximizes capacity, and therefore the price cap that maximizes

output is below r�(c). Moreover,

dE(Q(r; k�(r); X)
dr

R 0, dk�

dr
R 0:

for r 2 [r(c); �r(c))n[r�(c); r+(c)], that is, the expected output increases with the price
cap for r 2 (r(c); r�(c)); and decreases for r 2 (r�(c); �r(c)).
Likewise for r 2 [r�(c); r+(c)] the expected price is

E(P (r; k�(r); X) =
Z 2r

0

x

2
f(x)dx+

Z 1

2r

rf(x)dx;

and for r 2 (r(c); �r(c))n[r�(c); r+(c)] it is

E(P (r; k�(r); X) =
Z 2k�(r)

0

x

2
f(x)dx+

Z r+k�(r)

2k�(r)

(x� k�(r))f(x)dx+
Z 1

r+k�(r)

rf(x)dx:
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Hence, for r 2 [r�(c); r+(c)]

dE(P (r; k�(r); X)
dr

= 1� F (2r) > 0:

Also, for r 2 (r(c); �r(c))n[r�(c); r+(c)];

dE(P (r; k�(r); X)
dr

= �dk
�

dr
[F (r + k�(r))� F (2k�(r))] + [1� F (r + k�(r))];

and therefore
dk�

dr
� 0) dE(P (r; k�(r); X)

dr
> 0: �

Proof of Proposition 3. Table 3A describes the function S for (r; k) in region A.

X [0; 2r) [2r; r + k) [r + k; 1]

S(r; k; x) 3
8
x2 1

2
(x2 � r2) 1

2
(2x� k) k

Table 3A: Gross Surplus in Region A:

Table 3BC below describes the gross surplus in region B [ C:

X [0; 2k) [2k; 1]

S(r; k; x) 3
8
x2 1

2
(2x� k) k

Table 3BC: Gross Surplus in Regions B and C.

The expected gross surplus is

E(S(r; k;X)) =
3

8

Z 2r

0

x2f(x)dx+
1

2

Z r+k

2r

(x2 � r2)f(x)dx (9)

+
1

2

Z 1

r+k

(2x� k)kf(x)dx:

for (r; k) 2 A; and is

E(S(r; k;X)) =
3

8

Z 2k

0

x2f(x)dx+
1

2

Z 1

2k

(2x� k) kf(x)dx: (10)

for (r; k) 2 B [ C. For r 2 [0; 1] the net surplus is �S(r; k�(r)) = E(S(r; k�(r); X)) �
ck�(r):

For price caps r 2 [r�(c); r+(c)] the price cap-equilibrium capacity pair (r; k�(r))

is in region A: Di¤erentiating �S given in (9) yields

d �S(r; k�(r))

dr
=
dk�(r)

dr

�Z 1

r+k�(r)

(x� k�(r))f(x)dx� c
�
� r[F (r + k�(r))� F (2r)];
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Recall that r�(c) is the capacity maximizing price cap identi�ed in Proposition 1. If

r�(c) 2 [r�(c); r+(c)]; then dk�(r�(c))=dr = 0 and k�(r�(c)) = kA(r�(c)) > r�(c) imply

d �S(r�(c); k�(r�(c)))

dr
= �r�(c)[F (r�(c) + k�(r�(c)))� F (2r�(c))] < 0:

Hence the optimal price cap is below r�(c):

For r 2 (r(c); �r(c))n[r�(c); r+(c)] we have (r; k�(r)) 2 B [ C: Di¤erentiating �S
given in (10) yields

d �S(r; k�(r))

dr
=
dk�(r)

dr

�Z 1

2k�(r)

(x� k�(r))f(x)dx� c
�
:

Since (r; k�(r)) 2 B, then k�(r) < r, and

MR(r; k�(r)) =

Z r+k�(r)

2k�(r)

(x� 2k�(r)) f(x)dx+
Z 1

r+k�(r)

rf(x)dx = c:

HenceZ 1

2k�(r)

(x�k�(r))f(x)dx�c =
Z r+k�(r)

2k�(r)

k�(r)f(x)dx+

Z 1

r+k�(r)

(x�k�(r)�r)f(x)dx > 0;

and therefore
d �S(r; k�(r))

dr
= 0, dk�(r)

dr
= 0:

Di¤erentiating d �S(r; k�(r))=dr we get

d2 �S(r; k�(r))

dr2
=

d2k�(r)

dr2

�Z 1

2k�(r)

(x� k�(r))f(x)dx� c
�

�
�
dk�(r)

dr

�2
[1� F (2k�(r))]� 2k�(r)f(2k�(r)):

If d �S(r; k�(r))=dr = 0; then dk�(r)=dr = 0; which as shown above implies d2k�(r)=dr2 <

0. Hence d2 �S(r; k�(r))=dr2 < 0: Thus, by Lemma 3 if r�(c) 2 (r(c); �r(c))n[r�(c); r+(c)];
then r�(c) is the unique global maximizer of �S(r; k�(r)) on (r(c); �r(c)). �

Proof of Proposition 4. By the Envelope Theorem

d ~S(~r�(z); z)

dz
=

@E(S(r; k;X))
@r

dr�

dz
+

�
@E(S(r; k;X))

@k
� c
� 

@~k�

@r

dr�

dz
+
@~k�

@z

!

=

�
@E(S(r; k;X))

@k
� c
� 

@~k�

@r

dr�

dz
+
@~k�

@z

!
:
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Moreover, when the cost of capacity is su¢ ciently large that (~r�(z); ~k�(~r�(z); z)) 2 B;
then ~r�(z)maximizes ~k�(r; z) as well, and therefore the Envelope Theorem also implies

d ~S(~r�(z); z)

dz
=

�
@E(S(r; k;X))

@k
� c
�
@~k�

@z
:

We show that kW > k�(~r�(z)) � k�(r�(c)) for all r 2 [0; 1]. Let us �x c and reduce
notation by writing k� and r� for k�(r�(c)) and r�(c); respectively. Di¤erentiating S�

we get
dS�(k)

dk

����
k=k�

=

Z 1

k�
(x� k�) f(x)dx� c:

If r� 2 [r�(c); r+(c)], then k� solves

MR(r�; k�) =

Z 1

r�+k�
r�f(x)dx = c;

and therefore

dS�(k)

dk

����
k=k�

=

Z 1

k�
(x� k�) f(x)dx�

Z 1

r�+k�
r�f(x)dx

=

Z r�+k�

k�
(x� k�)f(x)dx+

Z 1

r�+k�
(x� r� � k�)f(x)dx > 0:

If r� 2 (r(c); �r(c))n[r�(c); r+(c)], then k� � r� solves

MR(r�; k�) =

Z r�+k�

2k�
(x� 2k�)f(x)dx+

Z 1

r�+k�
r�f(x)dx = c;

and therefore

dS�(k)

dk

����
k=k�

=

Z 1

k�
(x� k�)f(x)dx�

�Z r�+k�

2k�
(x� 2k�)f(x)dx+

Z 1

r�+k�
rf(x)dx

�
=

Z 2k�

k�
(x� k�) f(x)dx

+

Z r�+k�

2k�
k�f(x)dx+

Z 1

r�+k�
(x� r� � k�)f(x)dx > 0:

Hence k� < kW in either case.

Assume that (~r�(0); ~k�(~r�(0); 0)) 2 B: Di¤erentiating the equation MR(r; k) =
c� z and noticing equations (6) and (7) we get

@~k�

@z
= �@MR(r; k)

@k
> 0:
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Also

@E(S(r; k;X))
@k

=

Z 1

2k

(x� k)f(x)dx

>

Z r+k

2k

(x� 2k)f(x) +
Z 1

r+k

rf(x)dx

= MR(r; k)

for (r; k) 2 B. Since MR(~r�(z); ~k�(~r�(z); z)) = c� z; then

@E(S(r; k;X))
@k

����
(r;k)=(~r�(0);~k�(~r�(0);0))

> c:

Therefore
d ~S(~r�(z); z)

dz

�����
z=0

> 0:
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