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Auctions with heterogeneous entry costs
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If bidders have independent private values and homogeneous entry costs, a first- or second-
price auction with a reserve price equal to the seller’s value maximizes social surplus and seller
revenue. We show that if entry costs are heterogeneous and private information, then the revenue-
maximizing reserve price is above the seller’s value, a positive admission fee (and a reserve
price equal to the seller’s value) generates more revenue, and an entry cap combined with an
admission fee generates even more revenue. Social surplus and seller revenue may either increase
or decrease in the number of bidders, but they coincide asymptotically.

1. Introduction

� A classic result of the auction literature is that in a standard auction with an exogenously
fixed number of bidders who have independent private values, maximizing seller revenue requires
screening bidders; that is, the rules of the revenue-maximizing auction are such that a bidder
whose value is below the screening value will find it unprofitable to bid. Moreover, the revenue-
maximizing screening value is above the seller’s value and is independent of the number of bidders
(see Myerson, 1981; Riley and Samuelson, 1981). In first- and second-price sealed-bid auctions,
for example, the screening value is just the reserve price. Hence, the revenue-maximizing reserve
price is above the seller’s value and is independent of the number of bidders.

In many instances, however, the number of bidders is endogenously determined as the
result of costly entry decisions. As noted by Milgrom (2004), “auctions for valuable yet highly
specialized assets often fail because of insufficient interest by bidders . . . [because] buyers are
naturally reluctant to begin an expensive, time-consuming evaluation of an asset when they believe
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that they are unlikely to win at a favorable price.” Indeed, McAfee and McMillan (1987) and
Levin and Smith (1994) have shown that endogenous entry has important implications in first-
and second-price sealed-bid auctions. Specifically, when all buyers have the same (homogeneous)
entry cost, a reserve price equal to the seller’s value is optimal both for the seller and for society.
Henceforth, we use the term buyer to refer to an agent potentially interested in buying the object,
and the term bidder to refer to a buyer who has entered the auction.

We study standard auctions with endogenous entry, but where buyers have heterogeneous
privately known entry costs. In the sale of a firm, for example, buyers may face different regulatory
restrictions: some buyers may have to seek approval by regulatory authorities whereas others may
not. Hence, different buyers may have substantially different costs of discovering their value for
the firm. Another example is Internet auctions, where a buyer’s cost of discovering her value is
the opportunity cost of her time, and it varies across buyers.

In our setting, like in McAfee and McMillan (1987) and Levin and Smith (1994), buyers
simultaneously choose whether to enter the auction. Each buyer who enters the auction observes
her value for the object and then bids. Our setting differs in that each buyer’s entry cost is
an independent draw from a common distribution, and is privately observed prior to entry. Our
theoretical analysis provides a richer framework for empirical studies of auctions using data either
from the field or from experiments (see, e.g., Li and Zheng, 2009; Reiley, 2006).

Heterogeneity of entry costs leads to results substantially different from those obtained
when entry costs are homogeneous. We show that although a screening value equal to the seller’s
value remains socially optimal, the revenue-maximizing screening value is above the seller’s
value. (Thus, in first- and second-price sealed-bid auctions, for example, the revenue-maximizing
reserve price is above the seller’s value.) Nevertheless, it is always below the revenue-maximizing
screening value when the number of bidders is exogenously fixed. Moreover, the revenue-
maximizing screening value depends on the number of buyers as well as on the distribution
of values and entry costs.

When entry costs are homogeneous, the seller has no incentive to charge an admission fee
or subsidy (i.e., a fee which a buyer must pay, in addition to her entry cost, in order to learn
her value).1 We show that when entry costs are heterogeneous, if an admission fee is feasible,
then the revenue-maximizing screening value is, once again, the seller’s value, and the revenue-
maximizing admission fee is positive. In other words, if it is feasible to screen buyers by entry
costs, then it is suboptimal to screen bidders by values.

Paradoxically, although the seller always benefits, ceteris paribus, from an additional bidder
in the auction, we show that it is in his interest to limit entry via a cap on the number of
entrants. The seller obtains more revenue with an entry cap and an admission fee than he obtains
with an admission fee and/or a screening value alone, whether entry costs are homogeneous or
heterogeneous.2

Our next set of results concerns the comparative static and asymptotic properties of
equilibrium. For homogeneous entry costs, Levin and Smith (1994) show that seller revenue
decreases with the number of buyers in an entry equilibrium in mixed strategies. We describe
simple examples that show that this result does not hold when entry costs are heterogeneous:
an increase in the number of buyers may either increase or decrease seller revenue, depending
upon the distribution of values and entry costs. As the number of buyers grows large, auctions
with homogeneous and heterogeneous entry costs are closely related. We show that when the
screening value and admission fee are both zero, then seller revenue is asymptotically the same
when (i) buyers have a homogeneous entry cost c > 0, and (ii) when buyers have heterogeneous
entry costs and the lower bound of entry costs is c = c. Hence, heterogeneity of entry costs does

1 In the literature, “entry fee” usually refers to a fee paid by the bidder to submit a bid when she already knows her
value. Such a fee is captured in our setting through its effect on the screening value. An admission fee is paid by buyers
before learning their values, and does not affect the result of the auction for a given number of bidders.

2 Assuming, when entry costs are homogeneous, that bidders enter according to the mixed-strategy entry
equilibrium.
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not matter asymptotically. Moreover, asymptotic seller revenue equals the constrained maximum
social surplus (i.e., the maximum social surplus that can be obtained when all buyers enter
independently and with the same probability). Thus, seller revenue is asymptotically the same
whether the screening value and the admission fee are both set to zero or whether they are set to
maximize seller revenue.

An entry cap, in contrast, remains advantageous for the seller even as the number of buyers
grows large. When entry costs are homogeneous, the seller captures the entire unconstrained
maximum social surplus by capping entry at the number of bidders that maximizes social surplus
and simultaneously setting an admission fee which makes buyers indifferent between applying or
not applying for entry. When entry costs are heterogeneous and the lower bound c of entry costs
is positive, then the seller asymptotically captures the unconstrained maximum social surplus by
capping entry at the number of bidders that would maximize surplus if all buyers had the same
entry cost c and employing an admission fee. When the lower bound of entry costs is zero and
bidders’ values are distributed uniformly, there is asymptotically no advantage to employing an
entry cap: seller revenue is asymptotically the unconstrained maximum social surplus without
screening buyers by entry costs or by values, and without capping the number of entrants.

In order to understand the intuition for our results, it is useful to review the results and
intuition when entry costs are homogeneous. Let us assume for simplicity that the seller’s value
for the object is zero. A key result in this setting is that in a standard auction with a screening
value of zero the contribution to social surplus of an additional bidder is exactly equal to the
buyer’s utility to entering.3 Thus, when entry costs are homogeneous, the interests of an entrant
and of society are aligned: a buyer enters only if her expected utility to entering is above her entry
cost, that is, only if her contribution to social surplus is positive. Hence, the number of entering
buyers maximizes social surplus. If the auction is sufficiently competitive, then in equilibrium
each buyer is indifferent between entering or not. Therefore, buyer surplus is competed away and
the seller captures the entire social surplus. Hence, a screening value equal to zero maximizes
both seller revenue and social surplus.

When entry costs are heterogeneous, a version of the key result described above also holds:
we show that in a standard auction with a screening value of zero the contribution to social surplus
of a marginal increase of the entry threshold is proportional to a buyer’s utility to entering; that
is, the interests of buyers and society are also aligned when entry costs are heterogeneous.
Consequently, a standard auction with a zero screening value maximizes social surplus whether
entry costs are homogeneous or heterogeneous. With heterogeneous entry costs, however, not
all buyer surplus is competed away by entry: whereas the surplus of a buyer with an entry cost
equal to the equilibrium threshold is exactly zero, the surplus of buyers with lower entry costs
(who also enter) is positive. Therefore, buyers capture a positive share of the surplus. And even
though setting a positive screening value reduces social surplus (because it reduces entry below
the socially optimal level and also leads to ex post inefficiencies), it increases the seller’s share of
social surplus and, as we show, increases revenue.

If an admission fee is feasible, an even greater revenue can be obtained with a positive
admission fee and a screening value equal to the seller’s value (i.e., zero): reducing the screening
value to zero and introducing an admission fee that leaves unchanged the utility to a buyer to
entering the auction induces the same entry by buyers without incurring the ex post inefficiencies
of a positive screening value. Thus, seller revenue increases because social surplus increases,
whereas total buyer surplus is unchanged.

Because entry decisions are independent, with positive probability either too many or too
few buyers enter the auction. Thus, there is a tradeoff between competition and surplus creation,
which is not solved by setting a reserve price or admission fee. When entry costs are homogeneous
and buyers enter according to the symmetric mixed-strategy equilibrium, this tradeoff is most

3 A version of this result is established in Engelbrecht and Wiggans’s (1993) Proposition 1, and is also observed in
both McAfee and McMillan (1987) and Levin and Smith (1994).
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obvious as social surplus falls, as there are more buyers. In this case, an appropriate entry cap
and revenue-maximizing admission fee solve the problem, allowing the seller to capture the
unconstrained maximum social surplus.

When entry costs are heterogeneous, the tradeoff between competition and surplus creation
remains, even though social surplus may rise or fall as the number of buyers grows. An appropriate
entry cap reduces excessive entry and, ceteris paribus (i.e., holding entry decisions fixed), raises
social surplus. This entry cap combined with a revenue-maximizing admission fee raises social
surplus, reduces total buyer surplus, and hence raises seller revenue.

� Related literature. In our setting, buyers make entry decisions before they observe their
values, and entry costs (interpreted as valuation-discovery costs) are heterogeneous and private
information. Samuelson (1985) studies a procurement sealed-bid auction with entry where buyers
make entry decisions after observing their “values” (i.e., their procurement costs), and entry
costs (interpreted as bid-preparation costs) are homogeneous. Samuelson (1985) shows that if
the reserve is equal to the bidder’s value, then equilibrium is socially optimal. In this setting,
Menezes and Monteiro (2000) study the equilibria of first- and second-price sealed-bid auctions,
and provide an interesting characterization of the optimal auction. Tan and Yilankaya (2006) study
second-price auctions and provide conditions under which the entry equilibrium is unique (and
symmetric), and under which there are other (asymmetric) equilibria. (Stegeman, 1996, shows
that even if bidders are asymmetric, a second price auction with a reserve equal to the seller’s
value has an efficient entry equilibrium.)

In Samuelson’s setting, both reserve prices and entry fees screen bidders by values, and
are thus interchangeable. In our model, by contrast, reserve prices (and/or entry fees) screen
bidders by values, whereas admission fees screen buyers by entry costs. We show that when both
instruments are available, maximizing seller revenue entails screening buyers by entry costs (by
setting a positive admission fee), but not by values (i.e., the revenue-maximizing screening value
is the seller’s value).

Green and Laffont (1984) study the existence of equilibrium in a model where, as in our
setting, both entry costs and values are private information, but they assume, as in Samuelson
(1985), that a buyer makes entry decisions having observed both her entry cost and her value.
Kaplan and Sela (2003) study auctions where entry costs are private information but bidders’
values are commonly known. Lu (2010) provides an interesting characterization of the revenue-
maximizing admission fees in second-price sealed-bid auctions with heterogeneous entry costs.
Pevnitskaya (2003) studies endogenous entry in first-price sealed-bid auctions with heterogeneous
risk attitudes. In Ye (2004), upon entry each bidder observes her own value and a public signal
which is informative of her rivals’ values.

The article is organized as follows. In Section 2, we lay out the basic setting. Section 3
reviews the results for homogeneous entry costs. Section 4 presents our results for heterogeneous
entry costs. Section 5 develops a numerical example comparing screening values, admission
fees, and entry caps. Section 6 studies the effect of increasing the number of buyers. Section 7
concludes. Proofs are in the Appendix.

2. Preliminaries

� Consider a market for a single object for which there are N risk-neutral buyers and a risk-
neutral seller. In this market, the object is allocated using a standard auction (i.e., an anonymous
auction that allocates the object to the highest bidder) with a screening value v ∈ [0, v̄]. Each
buyer must decide whether to enter the auction, thereby incurring an entry cost. A buyer who enters
the auction learns her value, and becomes a bidder. Buyers’ values V 1, . . . , VN are independently
and identically distributed on [0, v̄] according to an increasing c.d.f. F with an increasing hazard
rate and p.d.f. f . The seller’s value for the object is zero.
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The screening value v is the minimum value for which bidding is worthwhile, that is, the
lowest bidder type that bids. The screening value captures everything about the rules of a standard
auction that is payoff relevant (e.g., the payment rule, the reserve price, the entry fee, etc.). The
impact on the entry game of any change in these rules can be captured as a change of the screening
value.

� Auctions with a fixed number of bidders. By the revenue equivalence theorem (Myerson,
1981; Riley and Samuelson, 1981), in an increasing symmetric equilibrium of a standard auction
with n ≥ 1 bidders, the revenue of the seller is

π (v, n) = n

∫ v̄

v

(y f (y) + F(y) − 1)Fn−1(y) dy,

the utility of a bidder is

u(v, n) =
∫ v̄

v

(∫ y

v

F(x)n−1 dx

)
f (y) dy,

and the social surplus is

s(v, n) =
∫ v̄

v

yd Fn(y).

We note that π (v, n) is increasing in n, u(v, n) is decreasing in both v and n, and s(v, n) is
decreasing in v and increasing in n.4 Also, it is easy to show that

s(v, n) = π (v, n) + nu(v, n).

Denote by V(n) the highest-order statistic of {V 1, . . . , Vn} . Then

s(0, n) = E(V(n)),

that is, a standard auction with a screening value equal to zero realizes the maximum surplus.
Proposition 1 below establishes that when the screening value is zero, the utility of each

bidder is equal to her contribution to social surplus. We provide a simple proof of this result in the
Appendix. Proposition 1 of Engelbrecht and Wiggans (1993) establishes a version of this formula
for second-price auctions.

Proposition 1. In a standard auction with a screening value of zero, the utility of a bidder is her
contribution to social surplus, that is, u(0, 1) = s(0, 1) and u(0, n) = s(0, n) − s(0, n − 1) for
n > 1.

As will be seen later, this fact is key to understanding the intuition for the results on entry
with homogeneous entry costs.

� The entry game. Assume that each buyer enters the auction with probability p. Then the
number of bidders follows a binomial distribution B(N , p). Write pN

n (p) for the probability that
the number of bidders is n ∈ {0, 1, . . . , N}. Also assume that the screening value v ∈ [0, v̄] is
independent of the number of bidders n. Then seller revenue is

�(v, p) =
N∑

n=1

pN
n (p)π (v, n),

the utility of a buyer to entering the auction is

U (v, p) =
N−1∑
n=0

pN−1
n (p)u(v, n + 1),

4 For brevity of exposition, throughout the article we omit the term expected when referring to expected seller
revenue, expected social surplus, and so forth.
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and the gross social surplus is

S(v, p) =
N∑

n=1

pN
n (p)s(v, n).

Because s(v, n) = π (v, n) + nu(v, n), then

S(v, p) = �(v, p) + N pU (v, p). (1)

It is easy to see that U(v, p) is decreasing in p: if p′′ > p′, then B(N , p′′) first-order stochastically
dominates B(N , p′), and therefore because u(v, n) is decreasing in n, we have U(v, p′ ′) < U(v,
p′). Also, because u(v, n) is decreasing in v, then U(v, p) is also decreasing in v.

We study the symmetric equilibria of the entry game. In this game, the payoff to a buyer
who enters, when every other buyer enters with the same probability p, is U(v, p) minus her entry
costs.

Our assumption that the screening value is independent of the number of bidders n is
appropriate when either (i) the rules of the auction are such that the screening value is the same
for every n, or (ii) bidders do not observe the number of bidders present in the auction so that
their bidding strategies are independent of n.5 The former holds in first-, second-, and kth-price
sealed-bid auctions, for example, where the screening value equals the reserve price regardless of
the number of bidders. In this case, whether bidders observe the number of entrants is irrelevant
(i.e., their payoffs in the entry game are the same). In contrast, in an all-pay auction with a fixed
reserve price, the formulae above describe the payoffs in the entry game only if bidders do not
observe the number of entrants.

3. Homogeneous entry costs

� In this section, we derive existing results identifying the revenue-maximizing screening
value when all buyers have the same fixed entry cost c > 0, and show that these results hold for
any standard auction. We assume that u(0, N ) < c < u(0, 1) to rule out uninteresting equilibria
in which either every buyer or no buyer enters.

If n buyers enter the auction, the maximum social surplus that can be realized is

E(V(n)) − nc = s(0, n) − nc.

Because u(0, n) = s(0, n) − s(0, n − 1) by Proposition 1, then the contribution to social surplus
of the nth buyer to enter is

s(0, n) − s(0, n − 1) − c = u(0, n) − c.

Because u(0, n) is decreasing in n, this contribution is decreasing in n.
Consider a standard auction with a zero screening value. In a pure-strategy equilibrium of

the entry game, the nth buyer enters if her payoff to entering, u(0, n), is above her cost, c, and
does not enter if it is below; that is, a buyer enters if and only if her entry raises social surplus.
Therefore, the number of entering buyers n∗ maximizes social surplus. If we ignore that n∗ must be
an integer, then buyers capture none of the surplus (i.e., u(0, n∗) − c = 0), and the seller captures
the entire social surplus. A positive screening value reduces the social surplus and, because seller
revenue is at most the social surplus, also reduces seller revenue. Hence, the revenue-maximizing
screening value is zero.6

The key insight above is that the private and social benefits of entry coincide in a standard
auction with a screening value equal to zero. Levin and Smith (1994) show that the same logic

5 The revenue equivalence theorem applies even when there is uncertainty about the number of bidders in the
auction, provided that bidders have symmetric expectations (see Krishna, 2002).

6 Because the number of entrants is an integer, however, bidder surplus will typically be positive, and may be
nonnegligible. We address this issue in Proposition 7.
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applies to symmetric entry equilibria in mixed strategies. If each buyer enters with probability
p, then the number of bidders follows a binomial distribution B(N , p), and the maximum social
surplus that can be achieved is

N∑
n=1

pN
n (p)E(V(n)) − N pc = S(0, p) − N pc. (2)

A standard auction with a screening value equal to zero attains this maximum. Note that this is a
constrained maximum surplus, that is, it is the maximum surplus when all buyers enter with the
same probability. Using Proposition 1, we can calculate

d S(0, p)

dp
= N

(
N∑

n=1

pN−1
n−1 (p)s(0, n) −

N−1∑
n=1

pN−1
n (p)s(0, n)

)

= N
N−1∑
n=0

pN−1
n (p)u(0, n + 1)

= NU (0, p),

that is, the marginal contribution to gross social surplus of an increase in the probability of entry
is proportional to the utility of an entering buyer. Because U is decreasing in p, then

d2 S(0, p)

dp2
= N

dU (0, p)

dp
< 0.

Hence, the social surplus, S(0, p) − Npc, is a concave function of p whose maximum on [0, 1] is
attained at the solution to the equation

N (U (0, p) − c) = 0.

In the symmetric mixed-strategy entry equilibrium, p∗, buyers are indifferent between
entering or not, that is, U(0, p∗) − c = 0. Therefore, the social surplus is maximized.7 Because
the seller captures the entire social surplus, the revenue-maximizing screening value is zero.

These results are summarized in the proposition below.

Proposition MM-LS. (Homogeneous entry costs; McAfee and McMillan, 1987; Levin and Smith,
1994.) In a standard auction with a screening value equal to zero, if buyers follow a (symmetric
mixed) pure-strategy entry equilibrium, then the (constrained) maximum social surplus is realized
and is captured by the seller. Hence, either a first- or a second-price sealed-bid auction with a
reserve price equal to zero maximizes seller revenue.

4. Heterogeneous entry costs

� In this section, we study the general case where buyers have heterogeneous entry costs.
Specifically, each buyer i has a privately known entry cost Zi. Buyers’ entry costs Z1, . . . , ZN

are independently and identically distributed according to a c.d.f. H with support [c, c̄], where
0 < c < c̄ ≤ ∞. As in the homogeneous entry cost case (i.e., the case where H is degenerate),
we assume that u(0, N ) < c̄ and c < u(0, 1) to rule out uninteresting equilibria. For simplicity,
we assume also that H is increasing, satisfies H (c) = 0, and has a p.d.f. h.

In this setting, an entry strategy for a buyer can be described by a threshold t ∈ [c, c̄]
indicating the maximum entry cost for which the buyer enters the auction; that is, a buyer enters
when her entry cost is less than t, and does not enter if it is greater than t—whether a buyer enters

7 The assumption u(0, N ) < c < u(0, 1) implies that 1 < n∗ < N , and that the unique symmetric entry equilibrium
p∗ satisfies p∗ ∈ (0, 1). The social surplus when bidders enter with probability p∗ is less than when exactly n∗ bidders
enter, because with positive probability either too many or too few bidders enter the auction. Thus, in the mixed-strategy
equilibrium, the social surplus is constrained maximized.
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when her entry cost is exactly t is inconsequential.8 If all buyers employ the same threshold t,
then the number of bidders follows a binomial distribution B(N , H(t)).

Consider any standard auction with a screening value v ∈ [0, v̄] and an admission fee (or
subsidy) φ ∈ R which a buyer must pay, in addition to her entry cost, in order to enter. When all
buyers enter according to a common threshold t, then the payoff to a buyer with entry cost z who
enters is U(v, H(t)) − z − φ. A symmetric entry equilibrium is a threshold t ∈ [c, c̄] such that
for all z ∈ [c, c̄]: U (v, H (t)) > z + φ implies t > z, and U (v, H (t)) < z + φ implies t < z; that
is, a buyer enters if her utility to entering exceeds the sum of her entry cost z and the admission
fee φ, and does not enter if it is below.

As we shall see, when entry costs are heterogeneous, an admission fee, if feasible, is
advantageous to the seller. We therefore introduce admission fees from the outset. For each
screening value v ∈ [0, v̄] and admission fee φ ∈ R, denote by t∗(v, φ) the symmetric equilibrium
threshold. Proposition 2 establishes that for every v and φ there is a unique symmetric entry
equilibrium, that is, t∗(v, φ) is a well-defined function.9

Proposition 2. For each screening value v ∈ [0, v̄] and admission fee φ ∈ R , there is a unique
symmetric entry equilibrium t∗(v, φ) ∈ [c, c̄]. The mapping t∗ is a continuous function. When
the equilibrium is interior, t∗(v, φ) solves

U (v, H (t)) = t + φ, (3)

and is decreasing in both v and φ.

Given a common entry threshold t ∈ [c, c̄], the social surplus generated in a standard auction
with a screening value of v is

W (v, t) = S(v, H (t)) − Nc(t), (4)

where

c(t) =
∫ t

c

zdH(z)

is the expected entry cost incurred by each buyer. Write

W ∗ = max
(v,t)∈[0,ω]×[c,c̄]

W (v, t) (5)

for the constrained maximum social surplus. W ∗ is a constrained maximum in the sense that
buyers enter independently according to a symmetric entry rule.

Recall that a standard auction in which the screening value and admission fee are both equal
to zero maximizes social surplus when entry costs are homogeneous. Proposition 3 establishes
that this result holds as well when entry costs are heterogeneous. In particular, the symmetric
entry equilibrium threshold t∗(0, 0) induces socially optimal entry.

Proposition 3. A screening value and an admission fee both equal to zero maximize social
surplus, that is, W (0, t∗(0, 0)) = W ∗.

If the entry equilibrium is interior, then U(v, H(t∗(v, φ))) − φ = t∗(v, φ). Hence, total buyer
surplus is

N

∫ t∗(v,φ)

c

[U (v, H (t∗(v, φ))) − φ − z]dH(z) = N

∫ t∗(v,φ)

c

[t∗(v, φ) − z]dH(z) > 0, (6)

8 In general, entry decisions are described by a mapping from [c, c̄] into [0, 1] indicating for each entry cost the
probability with which a bidder enters the auction. When H is atomless, however, in equilibrium buyers follow a threshold
strategy.

9 Tan and Yilankaya (2006) obtain an analogous result in their framework.
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that is, buyers have information rents. Thus, the seller does not capture the entire social surplus.
By Proposition 2, t∗ is decreasing in both v and φ, and hence total buyer surplus decreases with
both v and φ. Proposition 4 summarizes these results.

Proposition 4. In an interior entry equilibrium, total buyer surplus is positive and decreasing
in both the screening value and the admission fee, and seller revenue is less than the social
surplus.

In the rest of this section, we study revenue-maximizing screening values, admission fees,
and entry caps. Seller revenue is the sum of revenue from the auction, �(v, H(t∗(v, φ))), and
revenue from admission fees, NH(t∗(v, φ))φ. Using equation (1) evaluated at p = H(t∗(v, φ)),
the equilibrium condition (3), and equation (4) above, seller revenue can be written as

�(v, H (t∗(v, φ))) + NH (t∗(v, φ))φ = W (v, t∗(v, φ)) − N

∫ t∗(v,φ)

c

[t∗(v, φ) − z]dH (z). (7)

This equation has a clear interpretation: seller revenue is simply the difference between the social
surplus (“revenue”) and total buyer surplus (“cost”).

� Screening values. We begin by studying revenue-maximizing screening values when
admission fees are not feasible (i.e., assuming that φ = 0). It is well known that if the number of
bidders is exogenously given, then the revenue-maximizing screening value vF is positive and is
the solution to the equation

v = 1 − F(v)

f (v)
,

independently of the number of bidders (see Myerson, 1981; Riley and Samuelson, 1981). Recall
that when entry is endogenous and costs are homogeneous, the revenue-maximizing screening
value is zero. Proposition 5 establishes that when entry costs are heterogeneous, a revenue-
maximizing screening value is between these two values, that is, v∗ ∈ (0, vF), and optimally trades
off “revenue” and “cost” effects.

Proposition 5. A revenue-maximizing screening value v∗ exists, satisfies 0 < v∗ < vF , and is
characterized by the equation

∂W

∂v
+ ∂W

∂t

∂t∗

∂v
= NH (t∗(v, 0))

∂t∗

∂v
. (8)

The intuition for why a revenue-maximizing screening value is positive is as follows: when
the screening value is zero, a marginal increase in the screening value has a negative impact
on both social surplus and total buyer surplus. Because social surplus is maximized when the
screening value is zero (Proposition 3), the impact on social surplus is negligible. The impact on
total buyer surplus, however, is nonnegligible (see Lemma 2). Hence, seller revenue, which is
social surplus less total buyer surplus, increases.

A similar argument shows that a revenue-maximizing screening value is below vF : a marginal
decrease in the screening value from vF has a negative (direct) impact on revenue holding the
entry threshold t∗(vF , 0) fixed, and a positive (indirect) impact on revenue through increased entry.
Because for a fixed entry threshold seller revenue is maximized at vF , that is, ∂�(v,p)

∂v
|v=vF = 0,

the first effect is negligible. However, the effect on revenue of increasing the entry threshold is
nonnegligible (see Lemma 4).

Equation (8) shows the tradeoffs facing the seller: changing the screening value has an
impact on both social surplus, a revenue effect, and total buyer surplus, a cost effect. The
revenue-maximizing screening value balances these two effects, equating marginal revenue and
marginal cost. The solution to equation (8) depends on all the primitives: the distributions of
values and entry costs (F and H), and the number of buyers (N). In contrast, when all buyers
have the same entry cost c, the revenue-maximizing screening value is zero independent of F, N ,
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and c. And when entry is exogenous, the revenue-maximizing screening value depends on F but
is independent of N .

� Admission fees. Assume now that the seller may set an admission fee φ as well as a screening
value v. Whereas a buyer’s entry cost represents her own idiosyncratic cost of discovering her
value, the admission fee is an extra cost that the seller imposes on a buyer who chooses to enter
the auction. A buyer might, for example, need to view the item for auction in order to discover
her value, in which case the seller may charge the buyer for making the item available.

Proposition 6 establishes that an admission fee enables the seller to obtain more revenue
than he obtains by choosing a screening value alone. Indeed, when an admission fee is feasible,
then the revenue-maximizing admission fee is positive and the revenue-maximizing screening
value is zero; that is, it is optimal to screen buyers by entry costs, but it is suboptimal to screen
bidders by values. Proposition 6 characterizes the revenue-maximizing admission fee.

Proposition 6. If an admission fee is feasible, then the revenue-maximizing screening value is
zero, that is, if it is feasible to screen buyers by entry costs, then it is suboptimal to screen bidders
by values. Further, a revenue-maximizing admission fee φ∗ exists, is positive, and is characterized
by the equation

∂W

∂t

∂t∗

∂φ
= NH (t∗(0, φ))

∂t∗

∂φ
. (9)

Moreover, seller revenue is greater than when an admission fee is not feasible.

It is easy to see that the revenue-maximizing screening value is zero when an admission fee
is feasible: if the screening value is positive, then the seller can reduce the screening value to zero
and at the same time raise the admission fee so that the utility to a buyer to entering the auction
is unchanged. This admission fee (combined with a zero screening value) induces the same entry
by buyers without incurring the ex post inefficiencies of a positive screening value. Seller revenue
must increase because social surplus increases whereas total buyer surplus is unchanged.

Clearly, a negative admission fee is suboptimal because raising the fee to zero increases
social surplus (by Proposition 3) and decreases total buyer surplus (by Proposition 4), thereby
increasing seller revenue. An admission fee of zero is also suboptimal: increasing the admission
fee above zero reduces both social surplus and total buyer surplus; the effect on social surplus
is negligible because ∂W (0, t∗(0, 0))/∂t = 0 (Proposition 3), whereas the effect on total buyer
surplus is not nonnegligible because NH(t∗(0, 0))∂t∗/∂φ < 0; that is, seller revenue increases with
φ near zero. (A revenue-maximizing admission fee balances these two effects as equation (9)
requires.) Therefore, a revenue-maximizing admission fee is positive and induces less entry than
socially optimal.

Unlike a screening value, an admission fee only has an indirect effect on the social surplus
because it affects entry decisions but does not alter the social surplus generated in the auction,
taking as given the number of bidders.

� Entry caps. We examine now the consequences of introducing an entry cap n̄ < N , that is,
a cap on the number of bidders. In this new scenario, a buyer must decide whether to apply for
entry. Applying for entry entails a commitment to enter the auction and pay the admission fee if
admitted. When n̄ or fewer buyers apply for entry, each applicant is admitted. When more than
n̄ buyers apply, applicants are anonymously (i.e., symmetrically) rationed so that exactly n̄ are
admitted; hence, every buyer who applies has the same probability of being admitted. Because
the revenue-maximizing screening value is zero when an admission fee is feasible (Proposition
6), we assume the seller employs an admission fee but sets the screening value to zero.

When entry costs are homogeneous, an entry cap combined with an admission fee allows
the seller to capture the entire unconstrained maximum social surplus. Assume that all buyers
have the same entry cost c > 0. Recall that n∗ is the number of buyers that maximizes social
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surplus, that is, n∗ is the largest integer such that u(0, n∗) − c ≥ 0. In an auction with an entry
cap n̄ = n∗ and an admission fee φ = u(0, n̄) − c, the payoff to a buyer who is admitted if n < n̄
buyers apply is

u(0, n) − c − φ > u(0, n̄) − c − φ = 0,

and is zero if n̄ or more buyers apply. Hence, applying is a weakly dominant strategy. Further,
in equilibrium, n̄ or more buyers apply, and in a symmetric equilibrium, every buyer applies.
Therefore, in equilibrium, the number of bidders is n̄, total buyer surplus is zero, and the
unconstrained maximum social surplus is realized and captured by the seller. Moreover, varying
the number of buyers N does not affect either social surplus or seller revenue, so long as N > n∗.10

These results are summarized in Proposition 7.

Proposition 7. Assume that all buyers have the same entry cost c > 0. Then an entry cap n̄ = n∗

and an admission fee φ = u(0, n̄) − c (and a screening value of zero) maximize seller revenue
and social surplus. Moreover, the seller captures the unconstrained maximum social surplus. An
increase in the number of buyers N has no effect on either social surplus or seller revenue.

Thus, the entry cap n̄ = n∗ rules out the possibility that there are too many or too few
bidders, as occurs in the symmetric mixed-strategy entry equilibrium identified by Levin and
Smith (1994), and the admission fee φ = u(0, n̄) − c eliminates the rents that may be captured
by buyers in the pure-strategy equilibria identified by McAfee and McMillan (1987).

When entry costs are heterogeneous, a buyer’s decision whether to apply for admission
depends on her entry cost. Let n̄ ∈ {1, . . . , N − 1} be a binding entry cap. When each buyer
applies for admission with probability p, a buyer’s utility conditional on being admitted is

Ū (p) =
n̄−1∑
n=0

pN−1
n (p)

α(p)
u(0, n + 1) +

N−1∑
n=n̄

pN−1
n (p)

α(p)

n̄

n + 1
u(0, n̄),

where

α(p) =
n̄−1∑
n=0

pN−1
n (p) +

N−1∑
n=n̄

pN−1
n (p)

n̄

n + 1

is the probability that a buyer who applies is admitted.11 Note that α(0) = 1 and 0 < α(p) < 1 for
p > 0.

A symmetric equilibrium is a threshold t̄ ∈ [c, c̄] such that for all z ∈ [c, c̄]: Ū (H (t̄)) >

z + φ implies t̄ > z, and Ū (H (t̄)) < z + φ implies t̄ < z; that is, a buyer applies for admission
if her utility conditional on being admitted exceeds the sum of her entry cost and the admission
fee, and does not apply otherwise.

Denote by n∗(c) the largest integer n such that u(0, n) − c ≥ 0. Proposition 8 establishes that
an entry cap raises seller revenue.

Proposition 8. Assume that N > n∗(c). Then an entry cap n̄ = n∗(c) combined with a revenue-
maximizing admission fee and a zero screening value generates more revenue than any admission
fee and/or screening value alone.

The intuition for this result is as follows: suppose in the absence of an entry cap that the seller
sets a revenue-maximizing admission fee φ∗ and screening value v = 0 (see Proposition 6). Let
t∗(0, φ∗) denote the equilibrium entry threshold. If the seller introduces an entry cap n̄ = n∗(c),
then a buyer whose entry cost is z and who is not admitted to the auction (as a result of more than

10 Without an entry cap, both social surplus and seller revenue decrease with N in the symmetric mixed-strategy
entry equilibrium (see Levin and Smith, 1994).

11 For n < n̄, the ratio pN−1
n (p)/α(p) is the probability a bidder assigns to the event that n of the N − 1 other bidders

are admitted when she herself is admitted.
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n > n̄ buyers applying) obtains a payoff of zero and makes a social contribution of zero. Had she
been admitted, her contribution to social surplus, u(0, n) − z, would have been negative, because

u(0, n) − z ≤ u(0, n̄ + 1) − c < 0.

Also, the buyer is better off as a result of being excluded because her entry cost z exceeds her
utility, u(0, n), if admitted to an auction with n > n̄ bidders. Hence, ceteris paribus (i.e., if buyers
apply to the auction according to the threshold t∗(0, φ∗)), both total buyer surplus and social
surplus increase as a result of the entry cap.

Proposition 8 shows that if, in addition to the entry cap, the admission fee is raised (from
φ∗) until the equilibrium threshold for applying for entry equals t∗(0, φ∗), then total buyer surplus
decreases below its level without the entry cap. Thus, the introduction of the entry cap n̄ = n∗(c),
combined with an increase of the admission fee that leaves the threshold t∗(0, φ∗) unchanged,
increases social surplus and decreases total buyer surplus, thereby leading to an increase in seller
revenue.

5. An example

� Assume that N = 2, and that values and entry costs are distributed uniformly with v̄ =
1, c = 1/4, and c̄ = 1/2. We calculate the equilibrium outcomes for a standard auction in
four scenarios. In scenario (i), both the screening value and the admission fee are zero. In
scenario (ii), the screening value is set to maximize revenue assuming that no admission fee
is feasible. In scenario (iii), both the screening value and admission fee are set to maximize
revenue. In scenario (iv), there is an entry cap and a revenue-maximizing screening value and
admission fee.

By Proposition 2, in scenarios (i)–(iii) the equilibrium threshold t solves equation (3), which
in this example is

(1 − H (t))u(v, 1) + H (t)u(v, 2) = t + φ,

where H(t) = 4t − 1, u(v, 1) = (1 − v)2/2, and u(v, 2) = (2v + 1)(1 − v)2/6. Solving for t yields

t∗(v, φ) = (5 − 2v)(1 − v)2 − 6φ

8(1 − v)3 + 6
.

Seller revenue is �(v, H(t∗(v, φ))) + NH(t∗(v, φ))φ , which becomes

2(1 − H (t∗(v, φ)))H (t∗(v, φ))π (v, 1) + H (t∗(v, φ))2π (v, 2) + 2H (t∗(v, φ))φ,

where π (v, 1) = v(1 − v) and π (v, 2) = (1 − v)(4v2 + v + 1)/3. Total buyer surplus is N[H(t∗(v,
φ))t∗(v, φ) − c(t∗(v, φ))], which becomes

2

(
H (t∗(v, φ))t∗(v, φ) −

∫ t∗(v,φ)

1/4

4zdz

)
.

We use these formulae to calculate the equilibrium in each scenario.
In scenario (i), we have v = φ = 0. In order to calculate the revenue-maximizing screening

value of scenario (ii), we set φ = 0 and solve d�(v, H(t∗(v, 0)))/dv = 0 to obtain v∗ = 0.0972.
In scenario (iii), by Proposition 6, the revenue-maximizing screening value is v = 0 and the
revenue-maximizing admission fee solves

d

dφ
[�(0, H (t∗(0, φ))) + N H (t∗(0, φ))φ] = 0,

which yields φ∗ = 0.075. Applying the values of v and φ for scenarios (i)–(iii) to the formulae
above, we calculate the equilibrium threshold, seller revenue, total buyer surplus, and social
surplus. The numerical results are given in Table 1.
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TABLE 1 Equilibrium Outcomes in Scenarios (i)–(iv)

Scenario (v, φ) Equilibrium Threshold Seller Revenue Total Buyer Surplus Social Surplus

(i) (0, 0) .3571 .06122 .04592 .10714
(100.00) (100.00) (100.00)

(ii) (.0972, 0) .3295 .07261 .02529 .09790
(118.60) (55.06) (91.37)

(iii) (0, .0750) .3250 .07500 .02250 .09750
(122.50) (49.00) (91.00)

(iv) (0, .1443) .3557 .09623 .03522 .13145
(n̄ = 1) (157.16) (76.70) (122.68)

Scenario (iv) requires a separate analysis. By Proposition 8, we set n̄ = n∗(c) = 1 and
v = 0.12 The equilibrium threshold t̄ for applying to the auction solves

u(0, 1) = t̄ + φ.

Solving for t̄ yields t̄∗(φ) = 1
2
− φ. Because there is at most one bidder and the screening value is

zero, the auction generates no revenue. Thus, seller revenue is φ when at least one buyer applies
and is zero otherwise, that is, seller revenue is [1 − (1 − H (t̄∗(φ)))2]φ. The revenue-maximizing
admission fee is φ̄∗ = 0.1443.

Table 1 describes the equilibrium outcomes in scenarios (i)–(iv). The values in parentheses
in the last three columns are percentages of the baseline scenario (i) values. In scenario (ii), where
no admission fee is feasible, a revenue-maximizing screening value increases seller revenue by
18%, whereas total buyer surplus and social surplus decrease by nearly 45% and 9%, respectively.
If an admission fee is feasible—scenario (iii)—then seller revenue increases by 22%, whereas
total buyer surplus and social surplus decrease by 51% and 9%, respectively. An entry cap
together with a revenue-maximizing admission fee—scenario (iv)—increases seller revenue by
57%, decreases total buyer surplus by 24%, and increases social surplus by 22%. Social surplus
exceeds the constrained maximum social surplus (i.e., the social surplus in scenario (i)), because
buyers no longer enter independently; in particular, if one buyer is admitted to the auction then
the other is not. Interestingly, introducing an entry cap raises the expected number of bidders
from 2H(t∗(0, φ∗)) = .6 to [1 − (1 − H (t̄∗(φ̄∗)))2] = .66.

6. Market thickness

� In this section, we study the impact on seller revenue and social surplus of an increase in
the number of buyers N . Consider a standard auction with a screening value and an admission
fee both equal to zero, and assume that bidders’ values are distributed uniformly on [0, 1]. The
thick continuous curve in Figure 1 shows seller revenue as a function of N when buyers have a
homogeneous entry cost of c = 1/4. Seller revenue decreases with N . (Levin and Smith, 1994,
show that this is a general feature when entry costs are homogeneous.) The thin continuous curve
in Figure 1 shows seller revenue when entry costs are distributed uniformly on [1/4, 1/2]. Seller
revenue increases with N . The two curves approach each other as N becomes large and seem to
converge to a common limit.

That seller revenue increases with N when entry costs are heterogeneous is not a general
feature; for example, seller revenue and social surplus decrease from N = 1 to N = 2 when entry
costs are uniformly distributed on [.49, .5].13 The convergence of seller revenue to a common
limit observed in Figure 1, however, holds in general.

12 Recall that n∗(c) is the largest integer n such that u(0, n) ≥ c. Because u(0, 1) = 1/2 > c = 1/4 > u(0, 2) = 1/6,
then n∗(c) = 1.

13 Introducing an additional buyer has two effects: it worsens the entry coordination problem, as in Levin and Smith
(1994), but also favors a better entry cost selection. Which effect dominates depends on the distribution of entry costs.
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FIGURE 1

SELLER REVENUE AND THE NUMBER OF BUYERS (V i ∼ U[0, 1], c = 1/4, Z i ∼ U[1/4, 1/2])

Proposition 9 establishes that as N grows large, a screening value and an admission fee
both equal to zero asymptotically generate the same seller revenue and social surplus when all
buyers have the same entry cost c > 0 as when the lower bound of buyers’ heterogeneous entry
costs is c = c. Hence, despite the different comparative static properties of equilibrium with
homogeneous and heterogeneous entry costs, the equilibrium outcomes are asymptotically the
same.

For each integer N , write W ∗
N (Ŵ ∗

N ) for the constrained maximum social surplus when buyers
have heterogeneous (homogeneous) entry costs. Also denote by �0

N (�̂0
N ) seller revenue in a

standard auction with a screening value and admission fee both equal to zero when buyers have
heterogeneous (homogeneous) entry costs.

Proposition 9. A screening value and an admission fee both equal to zero asymptotically generate
the same seller revenue and social surplus whether buyers have homogeneous or heterogeneous
entry costs, so long as c = c; that is,

lim
N→∞

�0
N = lim

N→∞
W ∗

N = lim
N→∞

�̂0
N = lim

N→∞
Ŵ ∗

N > 0.

Hence, a screening value and an admission fee equal to zero asymptotically maximize seller
revenue when buyers have heterogeneous entry costs.

Proposition 9 has several implications: when entry costs are heterogeneous, seller revenue
is asymptotically invariant to changes in the distribution of entry costs that preserve the lower
bound of its support. Seller revenue and social surplus coincide asymptotically, and hence total
buyer surplus is asymptotically zero. Finally, seller revenue is asymptotically the same whether
the screening value and the admission fee are both set equal to zero or whether they are set to
maximize seller revenue.

Proposition 10 establishes that an entry cap and admission fee allow the seller to
asymptotically capture the unconstrained maximum social surplus, s(0, n̄) − n̄c, where n̄ = n∗(c)
is the socially optimal number of bidders when all buyers have the lowest possible entry cost c.
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This is illustrated in Figure 1, where the thin dashed line shows seller revenue when entry costs are
heterogeneous and distributed uniformly on [1/4, 1/2], and there is an entry cap of n̄ = 1 and an
optimal admission fee. Seller revenue asymptotically approaches 1/4, the unconstrained maximum
social surplus. The thick dashed line shows seller revenue when buyers have a homogeneous entry
cost of c = 1/4, and there is an entry cap of n̄ = 1 and an optimal admission fee. Consistent with
Proposition 7, seller revenue is constant in N and equal to the unconstrained maximum social
surplus.

Proposition 10. An entry cap n̄ = n∗(c), a revenue-maximizing admission fee, and a zero
screening value allow the seller to asymptotically capture the unconstrained maximum social
surplus, s(0, n̄) − n̄c.

By Proposition 8, the introduction of the entry cap n̄ = n∗(c) increases seller revenue.
Proposition 10 implies that the revenue advantage of an entry cap persists asymptotically, that
is, s(0, n̄) − n̄c > limN→∞ �0

N . To see why this holds, first observe that for any fixed N , we
have s(0, n̄) − n̄c > Ŵ ∗

N and, because Ŵ ∗
N decreases with N (by Levin and Smith, 1994), then

s(0, n̄) − n̄c > limN→∞ Ŵ ∗
N . Hence, s(0, n̄) − n̄c > limN→∞ �0

N by Proposition 9.
An interesting case not covered by Propositions 9 and 10 occurs when the lower bound of

the support of entry costs is zero, that is, c = 0. Proposition 11 establishes that if values are
uniformly distributed, then in a standard auction with a screening value and an admission fee
both equal to zero, seller revenue and social surplus are asymptotically equal to v̄ (the asymptotic
maximum gross social surplus). An immediate implication of this result is that the total entry costs
incurred by buyers, as well as total buyer surplus, are asymptotically zero. More significantly,
seller revenue is the unconstrained maximum social surplus without screening buyers by entry
costs or bidders by values, and without capping the number of entrants.

Proposition 11. If c = 0 and values are distributed uniformly on [0, v̄], then a screening value and
an admission fee both equal to zero asymptotically generate a seller revenue and social surplus
equal to v̄; that is,

lim
N→∞

�0
N = lim

N→∞
W ∗

N = v̄.

Hence, a screening value and an admission fee equal to zero asymptotically maximize seller
revenue.

7. Conclusions

� The results obtained when entry costs are homogeneous, namely that a standard auction
realizes the maximum social surplus and that this surplus is captured by the seller without
screening bidders by value, are not robust to the introduction of heterogeneity in entry costs. In
the generic case of heterogeneous entry costs, we show that maximizing seller revenue entails
screening bidders by values or by entry costs if it is feasible, thereby inducing less entry than
is socially optimal (and generating ex post inefficiencies when screening bidders by value). In
addition, whether entry costs are homogeneous or heterogeneous, an admission fee combined
with an entry cap that appropriately trade off competition and surplus creation generate more
revenue. As the number of buyers grows large, asymptotic seller revenue depends only on the
lower bound of entry costs c and is the same as when entry costs are homogeneous and equal to c,
that is, asymptotically there is no advantage to screening buyers by entry cost or values. However,
the revenue advantage of an entry cap persists asymptotically so long as the lower bound of entry
costs is positive.

Appendix

We provide formal proofs of our results, except for Propositions 4 and 7, which are established by arguments in the text
above.
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Proof of Proposition 1. For n = 1, we have

u(0, 1) =
∫ v̄

0

y f (y) dy = E(V(1)) = s(0, 1).

For n > 1, by interchanging the order of integration, we obtain

u(0, n) =
∫ v̄

0

(∫ y

0

F(x)n−1 dx

)
f (y) dy

=
∫ v̄

0

(∫ v̄

x

f (y) dy

)
F(x)n−1 dx

=
∫ v̄

0

(1 − F(x))F(x)n−1 dx .

Integrating by parts, we get ∫ v̄

0

F(x)n dx = x Fn(x)|v̄0 −
∫ v̄

0

nx F(x)n−1 f (x) dx

= v̄ − E(V(n)).

Hence,

u(0, n) =
∫ v̄

0

F(x)n−1 dx −
∫ v̄

0

F(x)n dx

= (v̄ − E(V(n−1))) − (v̄ − E(V(n)))

= s(0, n) − s(0, n − 1).

Proof of Proposition 2. Consider a standard auction with a screening value v ∈ [0, v̄] and an admission fee φ ∈ R. We
show that there is the unique symmetric entry equilibrium t∗(v, φ).

Assume that u(v, 1) ≤ c + φ. Because pN−1
0 (0) = 1 and pN−1

n (0) = 0 for n > 0, then

U (v, 0) =
N−1∑
n=0

pN−1
n (0)u(v, n + 1) = u(v, 1).

Because U is decreasing in p, we have

U (v, H (t)) ≤ U (v, 0) = u(v, 1) ≤ c + φ ≤ z + φ

for all t, z ∈ [c, c̄]. Therefore, in equilibrium, no buyer enters, that is, t∗(v, φ) = c is the unique symmetric entry
equilibrium.

Assume that u(v, N ) ≥ c̄ + φ. Because pN−1
n (1) = 0 for n < N − 1 and pN−1

N−1(1) = 1, then

U (v, 1) =
N−1∑
n=0

pN−1
n (1)u(v, n + 1) = u(v, N ).

Because U is decreasing in p, we have

U (v, H (t)) ≥ U (v, 1) = u(v, N ) ≥ c̄ + φ ≥ z + φ

for all t, z ∈ [c, c̄]. Therefore, in equilibrium, every buyer enters, that is, t∗(v, φ) = c̄ is the unique symmetric entry
equilibrium.

Assume that u(v, 1) > c + φ and u(v, N ) < c̄ + φ. Then

U (v, H (c)) = U (v, 0) = u(v, 1) > c + φ

and

U (v, H (c̄)) = U (v, 1) = u(v, N ) < c̄ + φ.

Because U(v, H(·)) is continuous and decreasing on [c, c̄] (because U(v, p) is decreasing and continuous in p and H
is continuous and increasing in t), there is a unique t∗(v, φ) ∈ (c, c̄) solving equation (3), U(v, H(t)) = t + φ. Hence,
U (v, H (t∗(v, φ))) > z + φ implies t∗(v, φ) > z, and U (v, H (t∗(v, φ))) < z + φ implies t∗(v, φ) < z, and therefore t∗(v,
φ) is a symmetric entry equilibrium. To see that t∗(v, φ) is the unique symmetric entry equilibrium, note that for
t̄ ∈ [c, t∗(v, φ)) and z ∈ (t̄, t∗(v, φ)), we have

U (v, H (t̄)) > U (v, H (t∗(v, φ))) = t∗(v, φ) + φ > z + φ.

Hence, t̄ is not a symmetric entry equilibrium. An analogous argument establishes that no t̄ ∈ (t∗(v, φ), c̄] is a symmetric
entry equilibrium either.
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Because U(v, p) is continuous in v (because each u( ·, n) for n ∈ {1, . . . , N} is continuous), then t∗(v, φ) is also
continuous.

Finally, we show that t∗(v, φ) is decreasing in v and φ . Differentiating (3) implicitly and noticing that U(v, p) is
decreasing in both v and p yield

∂t∗

∂φ
= −

(
1 − ∂U

∂ p
h(t)

)−1

< 0

and

∂t∗

∂v
= ∂U

∂v

(
1 − ∂U

∂ p
h(t)

)−1

= − ∂U

∂v

(
∂t∗

∂φ

)
< 0.

The following lemma is key in proving Proposition 3.

Lemma A1. W ∗ = W (0, tW ), where t W ∈ (c, c̄) uniquely solves U(0, H(t)) − t = 0.

Proof . Because W (v, t) is decreasing in v, then W ∗ = max(v,t)∈[0,ω]×[c,c̄] W (v, t) = maxt∈[c,c̄] W (0, t). We have

dW (0, t)

dt
=

N∑
n=1

dpN
n (H (t))

dt
s(0, n) − Nth(t).

Writing pN
n for pN

n (H (t)), we have

dpN
n (H (t))

dt
= N

(
pN−1

n−1 − pN−1
n

)
h(t),

for n ≤ N − 1, and

dpN
N (H (t))

dt
= N pN−1

N−1h(t).

Substituting these expressions and using Proposition 1, we have

dW (0, t)

dt
= Nh(t)

(
pN−1

N−1s(0, N ) +
N−1∑
n=1

(
pN−1

n−1 − pN−1
n

)
s(0, n) − t

)

= Nh(t)

(
N−1∑
n=0

pN
n u(0, n + 1) − t

)

= Nh(t)(U (0, H (t)) − t).

By assumption, we have U (0, H (c)) − c = U (0, 0) − c = u(0, 1) − c > 0, and U (0, H (c̄)) − c̄ = U (0, 1) − c̄ =
u(0, N ) − c̄ < 0. Because U is continuous and decreasing in p, there is a unique t W ∈ (c, c̄) such that U(0, H(t)) −
t = 0. Moreover, because h(t) > 0 on [c, c̄], then dW (0, t)/dt > 0 for t ∈ [c, t W ) and dW (0, t)/dt < 0 for t ∈ (t W , c̄].
Hence, tW is the unique maximizer of W (0, t) on [c, c̄].

Proof of Proposition 3. Proposition 3 follows directly from Lemma A1 by simply noting that the equation U(0, H(t)) −
t = 0 is identical to equation (3) for v = φ = 0; that is, tW = t∗(0, 0). Hence, W ∗ = W (0, t∗(0, 0)).

Lemmas A2, A3, and A4 are useful in the proof of Proposition 5.

Lemma A2. d�(v,H (t∗ (v,0)))
dv

∣∣
v=0

> 0.

Proof . For φ = 0, differentiating equation (7) with respect to v, we have

d�(v, H (t∗(v, 0)))

dv

∣∣∣∣
v=0

= dW (v, t∗(v, 0))

dv

∣∣∣∣
v=0

− NH(t∗(v, 0))
dt∗(v, 0)

dv

∣∣∣∣
v=0

.

Because W (v, t∗(v, 0)) is maximized at v = 0 by Proposition 3, we have

∂W (0, t∗(0, 0))

∂t
= 0.

Taking the right derivative of W (v, t) with respect to v at v = 0, we get

∂W (v, t)

∂v

∣∣∣∣
v=0

= 0.

Then we have

dW (v, t∗(v, 0))

dv

∣∣∣∣
v=0

= ∂W (0, t∗(0, 0))

∂v
+ ∂W (0, t∗(0, 0))

∂t

dt∗

dv
= 0.
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Because t∗(0, 0) = tW by Proposition 3 and t W ∈ (c, c̄) by Lemma A1, t∗(v, 0) is decreasing at v = 0, and therefore

d�(v, H (t∗(v, 0)))

dv

∣∣∣∣
v=0

= −NH(t∗(0, 0))
dt∗(0, 0)

dv
> 0.

Recall that vF , the solution to the equation v = (1 − F(v))/f (v), maximizes π (·, n) on [0, v̄]; see Proposition 5 in
Riley and Samuelson (1981).

Lemma A3. If t∗(vF , 0) > c, then �(vF , H(t∗(vF , 0))) > �(v, H(t∗(v, 0))) for v > vF .

Proof . For v > vF , then t∗(vF , 0) > c implies t∗(vF , 0) ≥ t∗(v, 0) by Proposition 2. Hence, the c.d.f. of the binomial
B(N , H (t∗(vF , 0))) first-order stochastically dominates the c.d.f. of the binomial B(N , H(t∗(v, 0))). Because π is strictly
increasing in n and π (vF , n) > π (v, n) for v ∈ (vF , v̄], we have

�(vF , H (t∗(vF , 0))) =
N∑

n=1

pN
n (H (t∗(vF , 0)))π (vF , n)

>

N∑
n=1

pN
n (H (t∗(v, 0)))π (vF , n)

>

N∑
n=1

pN
n (H (t∗(v, 0)))π (v, n)

= �(v, H (t∗(v, 0))).

Lemma A4. If t∗(vF , 0) ∈ (c, c̄), then d�(v,H (t∗ (v,0)))
dv

|v=vF < 0.

Proof . Assume that t∗(vF , 0) ∈ (c, c̄). We have

d�(v, H (t∗(v, 0)))

dv

∣∣∣∣
v=vF

=
N∑

n=1

dpN
n (H (t∗(v, 0)))

dv

∣∣∣∣
v=vF

π (vF , n)

+
N∑

n=1

pN
n (H (t∗(vF , 0)))

dπ (v, n)

dv

∣∣∣∣
v=vF

.

For all n ≥ 1, because vF maximizes π (·, n) ∈ [0, v̄], we have

dπ (v, n)

dv

∣∣∣∣
v=vF

= 0.

Hence,

d�(v, H (t∗(v, 0)))

dv

∣∣∣∣
v=vF

=
N∑

n=1

dpN
n (p)

dp

∣∣∣∣
p=H (t∗(vF ,0))

d H (t)

dt

∣∣∣∣
t=t∗(vF ,0)

dt∗(v, 0)

dv

∣∣∣∣
v=vF

π (vF , n)

= h(t∗(vF , 0))
dt∗(vF , 0)

dv

N∑
n=1

dpN
n (p)

dp

∣∣∣∣
p=H (t∗(vF ,0))

π (vF , n).

In this expression, h(t∗(vF , 0)) > 0 and dt∗(vF ,0)
dv

< 0 (by Proposition 2). The term

N∑
n=1

dpN
n (p)

dp

∣∣∣∣
p=H (t∗ (vF ,0))

π (vF , n)

is positive: an increase in the binomial probability induces a new binomial distribution whose c.d.f. first-order stochastically
dominates the c.d.f. of B(N , H(t∗(vF , 0))) which, because π is increasing in n, increases seller revenue. Therefore,

d�(v, H (t∗(v, 0)))

dv

∣∣∣∣
v=vF

< 0.

Proof of Proposition 5. Because φ = 0, then for v ∈ [0, v̄] seller revenue is �(v, H(t∗(v, 0))), which is continuous on
[0, v̄]. Hence, an optimal screening value v∗ exists. We have 0 < v∗ by Lemma A2. We show that v < vF . Assume that
t∗(vF , 0) = c; then for all v ∈ [vF , v̄], we have

�(v, H (t∗(v, 0))) = 0 < �(0, H (t∗(0, 0))) < �(v∗, H (t∗(v∗, 0))).

Hence, v∗ < vF . Assume that t∗(vF , 0) > c. Then, v∗ ≤ vF by Lemma A3. Because t∗(0, 0) = tW by Proposition 3
and t W ∈ (c, c̄) by Lemma A1, then t∗(v, 0) is decreasing at v = 0 by Proposition 2. Hence, vF > 0 implies t∗(vF , 0) <

t∗(0, 0) < c̄. Hence, t∗(vF , 0) ∈ (c, c̄), and Lemma A4 implies v∗ �= vF . Hence, v∗ < vF . Because v∗ ∈ (0, v̄), it solves
equation (8).
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Proof of Proposition 6. Assume that (v∗, φ∗) maximize seller revenue. We show that v∗ = 0 and φ∗ > 0.
We begin by showing that t∗(v∗, φ∗) > c; that is, there is entry. Because seller revenue is positive for (v, φ) = (0,

0), and seller revenue is zero when there is no entry, that is, when the equilibrium threshold is c, then t∗(v∗, φ∗) > c.
We prove now that v∗ = 0. Assume that v∗ > 0, and define

φ̂ = U (0, H (t̂)) − t̂,

where t̂ = t(v∗, φ∗) > c. Then

U (0, H (t̂)) = t̂ + φ̂.

Hence, t∗(0, φ̂) = t̂ = t∗(v∗, φ∗), that is, the equilibrium threshold is the same for (0, φ̂) and for (v∗, φ∗), and therefore
total buyer surplus is also the same. Social surplus is greater for (0, φ̂) than for (v∗, φ∗), because for v = 0 the auction is ex
post efficient, whereas for v∗ > 0 it is not. Thus, seller revenue is greater for (0, φ̂), contradicting that (v∗, φ∗) maximizes
seller revenue.

We show that φ∗ �= 0. Because v∗ = 0, if φ∗ = 0, then the maximum seller revenue is �(0, H(t∗(0, 0))). By
Proposition 5, however, when no admission fee is feasible (i.e., when φ = 0), the revenue-maximizing screening value is
positive; that is, seller revenue with a positive screening value is larger than �(0, H(t∗(0, 0))). Hence, φ∗ �= 0.

We show that φ∗ ≥ 0. Assume that φ < 0. Because social surplus is uniquely maximized at (v, φ) = (0, 0) by
Proposition 3, raising the admission fee to zero while maintaining the screening value equal to zero increases social
surplus, and does not increase buyer surplus (because the entry threshold is weakly decreasing in φ). Hence, seller
revenue increases; that is, φ < 0 does not maximize seller revenue.

Finally, the existence of an optimal admission fee φ∗ is guaranteed because for v = 0, seller revenue, given in
equation (7), is continuous on [0, φ̄], where φ̄ = u(0, 1) − c, and it is zero for φ > φ̄, as shown in the proof of Proposition
2 above. Moreover, φ∗ ∈ (0, φ̄) and hence must satisfy equation (9).

Proof of Proposition 8. Consider a standard auction with a screening value equal to zero, an admission fee φ, and an
entry cap n̄ ≥ 1. We first show that the entry game has a unique symmetric equilibrium threshold. For z, t ∈ [c, c̄] define

ϕ(φ, z, t) := α(H (t)) (Ū (H (t)) − (z + φ));

that is,

ϕ(φ, z, t) =
n̄−1∑
n=0

pN−1
n (H (t)) (u(0, n + 1) − z − φ)

+
N−1∑
n=n̄

pN−1
n (H (t))

n̄

n + 1
(u(0, n̄) − z − φ)

=
N−1∑
n=0

pN−1
n (H (t))ū(φ, z, n + 1),

where

ū(φ, z, n) =
⎧⎨
⎩

u(0, n) − z − φ if n ≤ n̄

n̄

n + 1
(u(0, n̄) − z − φ) if n > n̄.

For each (φ, z) ∈ R × [c, c̄], we have that ū is decreasing in n. Thus, ϕ(φ, z, t) is decreasing in t because for t ′ > t , B(N
− 1, H(t′)) first-order stochastically dominates B(N − 1, H(t)). Also for z, z′ ∈ [c, c̄], we have

ϕ(φ, z′, t) − ϕ(φ, z, t) = −α(H (t))(z′ − z).

Define ψ(φ, t) := ϕ(φ, t, t). We show that ψ is decreasing in t. Let t ′ > t . Then

ψ(φ, t ′) − ψ(φ, t) = ϕ(φ, t ′, t ′) − ϕ(φ, t, t)

= ϕ(φ, t, t ′) − ϕ(φ, t, t) + ϕ(φ, t ′, t ′) − ϕ(φ, t, t ′)

= ϕ(φ, t, t ′) − ϕ(φ, t, t) − α(H (t ′))(t ′ − t) < 0.

Because α is decreasing in p and α(H (c̄)) = α(1) = n̄/N > 0, we have α(H(t)) > 0 for all t ∈ [c, c̄]. Let t ∈ [c, c̄].
Then for t ′, z ∈ [t, c̄], we have

ψ(φ, t) = ϕ(φ, t, t)

≥ ϕ(φ, t, t ′)

= α(H (t ′))(Ū (H (t ′)) − (t + φ))

≥ α(H (t ′))(Ū (H (t ′)) − (z + φ)).
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If ψ(φ, c) < 0, then Ū (H (t ′)) − (z + φ) < 0 for all t ′, z ∈ [c, c̄], and therefore t̄∗(φ) = c is the unique equilibrium.
Likewise, if ψ(φ, c̄) > 0, then t̄∗(φ) = c̄ is the unique equilibrium.

Finally, if ψ(φ, c) > 0 > ψ(φ, c̄), because ψ(φ, t) is decreasing in t, then there is a unique t̄ ∈ (c, c̄) such that
ψ(φ, t̄) = 0; hence, α(H (t̄)) > 0 implies Ū (H (t̄)) = t̄ + φ. Moreover, Ū (H (t̄)) < z + φ for all z ∈ (t̄, c̄] and Ū (H (t̄)) >

z + φ for all z ∈ [c, t̄). Therefore, t̄ is an equilibrium. Let t ∈ [c, t̄). We have ψ(φ, t) > 0, that is, Ū (H (t)) > t + φ.

Hence, for z = t + 1
2
(Ū (H (t)) − t − φ), we have Ū (H (t)) > z + φ and z > t, and therefore t is not an equilibrium.

Likewise, no t ∈ (t̄, c̄] is an equilibrium either. Hence, t̄∗(φ) = t̄ is the unique equilibrium.
We establish Proposition 8 by showing that a standard auction with an entry cap n̄ = n∗(c), a screening value of

zero, and the admission fee

φ̄ = φ∗ + Ū (H (t∗(0, φ∗))) − U (0, H (t∗(0, φ∗)))

generates more seller revenue than the auction with no entry cap, a revenue-maximizing admission fee φ∗, and screening
value v = 0. This is established by showing that total buyer surplus in the auction with entry cap n̄ = n∗(c) and admission
fee φ̄, denoted by B̄, is less than total buyer surplus in the auction with no entry cap and admission fee φ∗, denoted by B,
whereas social surplus in the former, denoted by W̄ , is greater than in the latter; that is, W̄ > W (0, t∗(0, φ∗)). We have

ψ(φ̄, t∗(0, φ∗)) = α(H (t∗(0, φ∗))) (Ū (H (t∗(0, φ∗))) − φ̄ − t∗(0, φ∗))

= α(H (t∗(0, φ∗))) U (0, H (t∗(0, φ∗))) − φ∗ − t∗(0, φ∗))

= 0.

Hence, t∗(0, φ∗) = t̄∗(φ̄); that is, the equilibrium threshold is the same in the auction with no entry cap and admission fee
φ∗ as in the auction with entry cap n̄ and admission fee φ̄. Write t̄ = t∗(0, φ∗) = t̄∗(φ̄).

We show that B̄ < B. In the auction with entry cap n̄ = n∗(c) and admission fee φ̄, the (ex ante) surplus of a
bidder whose entry cost is z < t̄ is equal to the probability of being admitted to the auction, α(H (t̄)), times her payoff
conditional on being admitted, Ū (H (t̄)) − φ̄ − z. We have

B̄ = N

∫ t̄

c

α(H (t̄)) (Ū (H (t̄)) − φ̄ − z) dH(z)

< N

∫ t̄

c

(Ū (H (t̄)) − φ̄ − z) dH (z)

= N

∫ t̄

c

(U (0, H (t̄)) − φ∗ − z) dH (z)

= B,

where we use the equation Ū (H (t̄)) − φ̄ = U (0, H (t̄)) − φ∗, and where the inequality holds because N > n̄ and
α(H (t̄)) < α(H (c)) = α(0) = 1.

Finally, we show that W̄ > W (0, t̄). By Proposition 1, we have

s(0, n) =
n∑

k=1

u(0, k).

Because u(0, n) − E[z|z ≤ t̄] ≤ u(0, n̄ + 1) − c < 0 for n ≥ n̄ + 1, we have

W̄ =
n̄∑

n=1

pN
n (H (t̄)) (s(0, n) − nE[z|z ≤ t̄]) +

N∑
n=n̄+1

pN
n (H (t̄)) (s(0, n̄) − n̄E[z|z ≤ t̄])

=
n̄∑

n=1

pN
n (H (t̄)) (s(0, n) − nE[z|z ≤ t̄]) +

N∑
n=n̄+1

pN
n (H (t̄))

n̄∑
k=1

(u(0, k) − E[z|z ≤ t̄])

>

n̄∑
n=1

pN
n (H (t̄)) (s(0, n) − nE[z|z ≤ t̄]) +

N∑
n=n̄+1

pN
n (H (t̄))

n∑
k=1

(u(0, k) − E[z|z ≤ t̄])

=
N∑

n=1

pN
n (H (t̄))

(
s(0, n) − n

c(t̄)

H (t̄)

)

=
N∑

n=1

pN
n (H (t̄))s(0, n) − Nc(t̄)

= W (0, t̄),

because the sum immediately after the inequality includes the negative terms u(0, k) − E[z|z ≤ t̄] for k > n̄ and because
pN

n (H (t̄)) > 0 for n ∈ {n̄ + 1, . . . , N }.
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Proof of Proposition 9. Assume c = c > 0. By Proposition 9 in Levin and Smith (1994), the sequence {Ŵ ∗
N } ⊂ [0, v̄] is

decreasing. Hence, it has a limit. Moreover, because �̂0
N = Ŵ ∗

N for each N , we have

limN→∞ �̂0
N = limN→∞ Ŵ ∗

N .

For each N , we use the notation �N , UN , SN , t∗
N , WN and to refer to the functions �, U , S, t∗, W defined in Sections

2 and 4 for fixed N . Also, we write p∗
N for the equilibrium entry probability when entry costs are homogeneous and the

screening value and admission fee are both equal to zero.
By Lemma A1 t̂ ∈ (c, c̄), and by Proposition 3 t∗

N (0, 0) = t̂ . Hence, E[z|z ≤ t∗
N (0, 0)] > c = c. Again by Proposition

3, W ∗
N = WN (0, t∗

N (0, 0)). We have

Ŵ ∗
N = max

p∈[0,1]
SN (0, p) − N pc

≥ SN

(
0, H

(
t∗

N

(
0, 0

))) − NH
(
t∗

N (0, 0)
)
c

> SN

(
0, H

(
t∗

N (0, 0)
)) − NH

(
t∗

N (0, 0)
)
E

(
z | z ≤ t∗

N (0, 0)
)

= W ∗
N ;

that is, for each N , the constrained maximum social surplus is greater when entry costs are homogeneous than when they
are heterogeneous.

We show

lim
N→∞

W ∗
N = lim

N→∞
Ŵ ∗

N .

For each N , let t̂N ∈ [c, c̄] be such that H (t̂N ) = p∗
N . Then

WN (0, t̂N ) = SN (0, p∗
N ) − N p∗

N E(z | z ≤ t̂N ).

Because Ŵ ∗
N ≥ 0 and S(0, p∗

N ) ≤ v̄, then 0 ≤ N p∗
N ≤ v̄/c for each N , and hence limN→∞ p∗

N = limN→∞ H (t̂N ) = 0.
Therefore, limN→∞ t̂N = c = limN→∞ E(z | z ≤ t̂N ). Because

0 < Ŵ ∗
N − WN (0, t̂N ) = N p∗

N (E(z | z ≤ t̂N ) − c),

and {N p∗
N } is a bounded sequence, then

lim
N→∞

(Ŵ ∗
N − WN (0, t̂N )) = 0,

and therefore

lim
N→∞

WN (0, t̂N ) = lim
N→∞

Ŵ ∗
N − lim

N→∞
(Ŵ ∗

N − WN (0, t̂N )) = lim
N→∞

Ŵ ∗
N .

By Proposition 3 and the inequality above, we have

WN (0, t̂N ) ≤ W ∗
N < Ŵ ∗

N

for all N . Hence,

lim
N→∞

W ∗
N = lim

N→∞
Ŵ ∗

N .

Next, we show that limN→∞ �0
N = limN→∞ W ∗

N . Because c = c, we have

UN

(
0, H

(
t∗

N (0, 0)
)) = t∗

N (0, 0) ≥ c = UN

(
0, p∗

N

)
.

Hence, 0 ≤ H (t∗
N (0, 0)) ≤ p∗

N for all N . Because limN→∞ p∗
N = 0, then limN→∞ H (t∗

N (0, 0)) = 0 and

lim
N→∞

t∗
N (0, 0) = lim

N→∞
E(z | z ≤ t∗

N (0, 0)) = c.

Further, because 0 ≤ N p∗
N ≤ v̄/c (as shown above), then 0 ≤ NH(t∗

N (0, 0)) ≤ N p∗
N ≤ v̄/c; that is, the sequence

{NH(t∗
N (0, 0))} is bounded. Hence, the asymptotic total buyer surplus is

limN→∞ NH
(
t∗

N (0, 0)
)[

t∗
N (0, 0) − E

(
z | z ≤ t∗

N (0, 0)
)] = 0.

Thus, the asymptotic seller revenue is limN→∞ �0
N = limN→∞ W ∗

N .

Proof of Proposition 10. For each N we denote by ŪN , αN , and t̄∗
N the functions Ū , α, and t̄∗ defined in Section 4 for an

auction with an entry cap n̄ = n∗(c) and fixed N . Let ε > 0 be arbitrary, and let the admission fee be φ̄ = u(0, n̄) − c − ε

2n̄
.

We show that for N sufficiently large, seller revenue is greater than s(0, n̄) − n̄c − ε, which establishes Proposition 10.

C© RAND 2011.



334 / THE RAND JOURNAL OF ECONOMICS

We have

ŪN

(
H

(
t̄∗

N

)) =
n̄−1∑
n=0

pN−1
n

(
H (t̄∗

N )
)

αN (H (t̄∗
N ))

u(0, n + 1) +
N−1∑
n=n̄

pN−1
n

(
H

(
t̄∗

N

))
αN (H (t̄∗

N ))

n̄

n + 1
u(0, n̄)

≥
n̄−1∑
n=0

pN−1
n

(
H (t̄∗

N )
)

αN (H (t̄∗
N ))

u(0, n̄) +
N−1∑
n=n̄

pN−1
n

(
H

(
t̄∗

N

))
αN

(
H (t̄∗

N )
) n̄

n + 1
u(0, n̄)

= u(0, n̄),

where the inequality follows because u(0, n) is decreasing in n. Hence, for z ∈ [c, c + ε

2n̄
), we have

ŪN (H (t̄∗
N )) − z − φ̄ ≥ u(0, n̄) − z − φ̄ > 0,

that is, in equilibrium a buyer whose entry cost is z ∈ [c, c + ε

2n̄
) enters. Therefore, t̄∗

N ≥ c + ε

2n̄
and H (t̄∗

N ) ≥ H (c + ε

2n̄
) >

0.
The equilibrium probability of at least n̄ applicants is

∑N
n=n̄ pN

n (H (t̄∗
N )). Because

N∑
n=n̄

pN
n (H (c + ε

2n̄
)) ≤

N∑
n=n̄

pN
n (H (t̄∗

N ))

for each N , and limN→∞
∑N

n=n̄ pN
n (H (c + ε

2n̄
)) = 1, then

lim
N→∞

N∑
n=n̄

pN
n (H (t̄∗

N )) = 1

and

lim
N→∞

n̄−1∑
n=0

pN−1
n (H (t̄∗

N )) = 0.

Social surplus is

W̄ ∗
N =

n̄−1∑
n=0

pN
n (H (t̄∗

N ))

[
s(0, n) − n

c(t̄∗
N )

H (t̄∗
N )

]
+

[
s(0, n̄) − n̄

c(t̄∗
N )

H (t̄∗
N )

] N∑
n=n̄

pN
n (H (t̄∗

N )).

For each N , we can calculate total buyer surplus, B̄N , as

B̄N =
n̄−1∑
n=1

pN
n (H (t̄∗

N ))n

[
u(0, n) − c(t̄∗

N )

H (t̄∗
N )

− φ

]

+ n̄

[
u(0, n̄) − c(t̄∗

N )

H (t̄∗
N )

− φ

] N∑
n=n̄

pN
n (H (t̄∗

N )).

Hence, seller revenue is

W̄ ∗
N − B̄N =

n̄−1∑
n=0

pN
n (H (t̄∗

N ))[s(0, n) − n(u(0, n) − φ̄)]

+ [s(0, n̄) − n̄(u(0, n̄) − φ̄)]
N∑

n=n̄

pN
n (H (t̄∗

N ))

= s(0, n̄) − n̄c − ε

2
− AN ,

where

AN =
n̄−1∑
n=0

pN
n (H (t̄∗

N )){[s(0, n̄) − n̄(u(0, n̄) − φ̄)] − [s(0, n) − n(u(0, n) − φ̄)]}.

Let N̄ be sufficiently large that AN < ε/2 for N > N̄ . Then, for N > N̄ , we have

W̄ ∗
N − B̄N ≥ s(0, n̄) − n̄c − ε

2
− ε

2
= s(0, n̄) − n̄c − ε.
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Proof of Proposition 11. Assume without loss of generality that v̄ = 1. We first establish that limN→∞ W ∗
N = 1 by showing

that for every ε > 0 there is N̄ sufficiently large that W ∗
N > 1 − ε for all N ≥ N̄ .

Fix ε > 0. Let λ be such that 1 − 1
λ
(1 − e−λ) > 1 − ε, that is, 1

λ
(1 − e−λ) < ε. Such a λ exists because limλ→∞

1
λ
(1 −

e−λ) = 0. For each N > λ, let tN ∈ [0, c̄] be such that H (tN ) = λ

N
. Note tN exists and is unique because H is continuous

and increasing. Moreover, because H(0) = 0 and H is continuous, then limN→∞tN = 0.
Because values are uniformly distributed, then s(0, n) = n/(n + 1). We have

WN (0, tN ) =
N∑

n=0

pN
n (H (tN ))

n

n + 1
− N

∫ tN

0

zdH(z).

Because NH(tN ) = λ for all N and limN→∞tN = 0, we have

lim
N→∞

N

∫ tN

0

zdH(z) = lim
N→∞

NH(tN )
∫ tN

0

z

H (tN )
dH(z)

= λ lim
N→∞

∫ tN

0

z

H (tN )
dH(z)

= 0.

Because the limit of a binomial distribution as N goes to infinity, holding NH(tN ) = λ fixed, is the Poisson distribution,
we have

lim
N→∞

N∑
n=0

pN
n (H (tN ))

n

n + 1
=

∞∑
n=0

e−λλn

n!

n

n + 1

=
∞∑

n=0

e−λλn

n!

(
1 − 1

n + 1

)

= 1 − 1

λ

∞∑
n=0

e−λλn+1

n!

1

n + 1
.

Letting k = n + 1, that is, n = k − 1, we have

1 − 1

λ

∞∑
n=0

e−λλn+1

n!

1

n + 1
= 1 − 1

λ

(
−e−λ +

∞∑
k=0

e−λλk

k!

)
= 1 − 1

λ
(−e−λ + 1).

Hence,

lim
N→∞

WN (0, tN ) = 1 − 1

λ
(−e−λ + 1).

Let δ such that 0 < δ < ε − 1
λ
(1 − e−λ) and N̄ be sufficiently large that for all N > N̄ ,

WN (0, tN ) ≥ 1 − 1

λ
(1 − e−λ) − δ > 1 − ε.

By the definition of W ∗
N , we have

W ∗
N ≥ WN (0, tN ) > 1 − ε

for all N > N̄ . Hence, limN→∞ W ∗
N = 1.

It remains to be shown that total buyer surplus is asymptotically zero. By Proposition 3, we have

W ∗
N = WN (0, (t∗

N (0, 0))) =
N∑

n=0

pN
n (H (t∗

N (0, 0)))
n

n + 1
− N

∫ t∗N (0,0)

0

zdH(z).

Because 0 <
∑N

n=0 pN
n (H (t∗

N (0, 0))) n
n+1

≤ 1 and N
∫ t∗N (0,0)

0 zdH(z) > 0 for all N , then limN→∞ W ∗
N = 1 implies

lim
N→∞

N∑
n=0

pN
n (H (t∗

N (0, 0)))
n

n + 1
= 1.

Total buyer surplus satisfies

0 ≤ N

∫ t∗N (0,0)

0

(UN (0, t∗(0, 0)) − z) dH(z) < NH(t∗
N (0, 0))UN (0, t∗(0, 0)).
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336 / THE RAND JOURNAL OF ECONOMICS

Because values are distributed uniformly on [0, 1], then u(0, n) = 1
n(n+1)

and

NH(t∗
N (0, 0))UN (0, t∗

N (0, 0)) = NH(t∗
N (0, 0))

N−1∑
n=0

pN−1
n (H (t∗

N (0, 0)))u(0, n + 1)

=
N∑

n=1

pN
n (H (t∗

N (0, 0)))
1

n + 1

<

N∑
n=0

pN
n (H (t∗

N (0, 0)))
1

n + 1
.

Using that n
n+1

= 1 − 1
n+1

, we can write

lim
N→∞

N∑
n=0

pN
n (H (t∗

N (0, 0)))
n

n + 1
= lim

N→∞

N∑
n=0

pN
n (H (t∗

N (0, 0)))

(
1 − 1

n + 1

)

= 1 − lim
N→∞

N∑
n=0

pN
n (H (t∗

N (0, 0)))
1

n + 1
,

provided that this last limit exists. Because
∑N

n=0 pN
n (H (t∗

N (0, 0))) 1
n+1

∈ [0, 1] for each N , and every convergent
subsequence has a limit of zero, then the sequence itself has a limit of zero, that is,

lim
N→∞

N∑
n=0

pN
n (H (t∗

N (0, 0)))
1

n + 1
= 0.

Hence,

lim
N→∞

NH(t∗
N (0, 0))t∗

N (0, 0) = 0.

Therefore, total buyer surplus is asymptotically zero, and by (7) seller revenue is asymptotically the entire social surplus,

that is, limN→∞ �N (0, t∗
N (0, 0)) = 1.
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