UNIVERSIDAD CARLOS III DE MADRID

 

CURSO 2008/2009, FIRST TERM

 

PROGRAMME of

ECONOMETRIA I

 

LICENCIATURA EN ECONOMÍA

LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS

ESTUDIOS SIMULTÁNEOS EN ECONOMÍA/ADM. DE EMPRESAS Y DERECHO

ESTUDIOS COMBINADOS EN ECONOMÍA Y PERIODISMO

 

Página Web: http://www.eco.uc3m.es/~EI/

 

Departamento de Economía

TRONCAL
CURSO:
CREDITOS: 7
CREDITOS ECTS: 6
CUATRIMESTRE:
HORAS/SEMANA: 4

COURSE DIRECTOR: César Alonso-Borrego


OBJECTIVES:

Understand the consequences about estimation and inference when any of the assumptions of the classical regression model fails. Propose well-behaved estimators (in terms of consistency and efficiency) in such situations. Introduce the problem of estimation and inference with discrete choice models. At the end of the course, the student must be able to know:
- The consequences of omitting relevant variables.
- The concepts of endogeneity and simultaneity and their implications.
- The instrumental variable estimator.
- How to test whether an explanatory variable is exogenous or endogenous.
- The consequences of heteroskedasticity and how to make inference in such context.
- The generalized least squares estimator.
- The modelling of discrete choices of economic agents and the inference about parameters in such context.

 

PROGRAMME:

1.    INTRODUCTION. Review of main concepts. Economic data and econometric modelling. Classical regression model. OLS estimator and its properties. Inference.

2.    REGRESSION ANALYSIS WITH QUALITATIVE INFORMATION: BINARY OR DUMMY VARIABLES. Describing qualitative information. A single dummy independent variable. Dummy variables for multiple categories. Interactions involving dummy variables.

3.    MORE ON SPECIFICATION AND DATA PROBLEMS. Functional form misspecification. Using proxy variables for unobserved explanatory variables. Properties of OLS under measurement error. Missing Data. Nonrandom samples and outlying observations.

4.    INSTRUMENTAL VARIABLES ESTIMATION AND TWO STAGE LEAST SQUARES. Motivation: omitted variables. IV estimation of the multiple regression model. Two stage least squares. IV solutions to errors-in-variables problems. Testing for endogeneity and testing overidentifying restrictions.
Simultaneous equations models. The nature of simultaneous equations models. Simultaneity bias in OLS. Identifying and estimating a structural equation.

5.    HETEROSKEDASTICITY. Consequences of heteroskedasticity for OLS. Heteroskedasticity-robust inference after OLS estimation. 2SLS with heteroskedasticity.

6.    LIMITED DEPENDENT VARIABLE MODELS. The linear probability model. Logit and Probit models for binary response. Economic explanation. Interpretation.

ASSESSMENT CRITERIA:
A final exam and individual student’s work produced in lectures and classes.

PRACTICAL SESSIONS:
Practical classes are a core part of the course. Most practical classes require computer use with the programs E-Views and Gretl. The topics that are covered in the course are illustrated by means of econometric models that are well-known in empirical economics. Such models are estimated and tested with real economic data.

BASIC BIBLIOGRAPHY:

The main textbook is Wooldridge (2006).

ADDITIONAL BIBLIOGRAPHY:

- CARRASCAL, U, Y. GONZALEZ y B. RODRÍGUEZ.: Análisis Econométrico con E-views. Ra-Ma. 2001.
- GOLDBERGER, A.S. Introducción a la Econometría. Ariel Economía.
2001.
- GOLDBERGER, A.S. Introductory Econometrics. Harvard University Press, 1999.
- GREENE, W.H.:   Análisis Econométrico, Prentice Hall, Madrid, 1998.
- WOOLDRIDGE, J.M. Introductory Econometrics. A modern approach. South-Western College Publishing.
2003. (Traducido por Thomson, 2006).

COURSE ORGANIZATION:

 

The course is scheduled in 12 weeks, leaving the last one to compensate unexpected delays.

 

 

CLASES DE TEORÍA

 

TOPIC

 

 

1.    Introduction. Economic data and econometric modeling. The classical regression model. OLS estimation. Interpretation. Inference.

Weeks 1 to 3

2.    Regression analysis with qualitative information.

Weeks 3 to 4

 

3.    Specification problems.

Weeks 5 to 6

 

4.    Instrumental variable estimation. Simultaneous equations models.

Weeks 7 to 9

 

5.    Heteroskedasticity.

Week 10

 

6.    Models with binary dependent variables.

Weeks 11 to 12