UNIVERSIDAD CARLOS III DE MADRID EXAMEN DE ECONOMETRÍA I

Convocatoria Ordinaria, 23 de Enero de 2012

Instrucciones. Lea atentamente el enunciado de cada problema antes de contestar a las preguntas relacionadas. Al final del documento con los enunciados de los problemas, se adjuntan algunos valores críticos que podrían necesitarse para completar el examen. Cada problema debe responderse en un pliego de papel. Todas las preguntas valen 1 punto. Alguna información contenida en las salidas es redundante. TIEMPO TOTAL 2 HORAS Y 30 MINUTOS.

PROBLEMA 1

En un estudio reciente se examinó el efecto del atractivo físico sobre la remuneración salarial (wage) (medida como dólares por hora) en una población de EE.UU. Para medir el atractivo físico se elaboró un ranking de 1 a 5 de atractivo físico, basado en diferentes características de los individuos como belleza, altura, complexión e incluso simetría facial. En base a este ranking se construyó la variable belav, que toma valor 1 si el individuo está por debajo de la media de atractivo físico y cero en caso contrario. Utilizando una muestra representativa de la población analizada se estimó la siguiente ecuación:

(Modelo 1)
$$\log(wage) = 0.55 - 0.066 educ - 0.041 Exp + 0.001 Exp^2 - 0.453 female -0.152 belavg (0.029) (0.041)$$

$$R^2 = 0.3597 \quad n = 1260$$

donde educ son los años de educación, Exp son los años de experiencia laboral y female es una variable ficticia que toma valor 1 si el individuo es mujer. (medido en número de miembros). Alternativamente, también se estimó el siguiente modelo:

$$(\text{Modelo 2}) \ \log(wage) \ = \ \begin{array}{rcl} 0.57 - 0.065 \, educ - 0.041 \, Exp + 0.001 \, Exp^2 \\ (0.08) & (0.006) & (0.004) \, Exp + 0.001 \, Exp^2 \\ -0.461 \, female - 0.208 \, belavg - 0.011 \, belav fem - 0.005 \, belaveduc \\ (0.031) & (0.074) & (0.084) & (0.014) \\ \hline R^2 \ = \ 0.3598 \quad n = 1260 \\ \end{array}$$

En este caso, belavfem es la interacción entre belavg y female, mientras que belaveduc es la interacción entre belavg y educ.

- (a) A un nivel de significación del 5%, ¿qué modelo elegiría? Justifique su respuesta.
- (b) Basado en su respuesta al apartado (a), eliga el modelo apropiado, y explique en base a qué lo elige, para interpretar el efecto parcial de tener un atractivo físico por debajo de la media sobre el salario. ¿Es este efecto estadísticamente significativo?

PROBLEMA 2

Un investigador social desea analizar si el nivel de ingresos anuales recibidos por una mujer, w, depende de dos factores: si la mujer es una madre trabajadora (medido con la variable binaria m, que toma el valor 1 si lo es), y si está o no casada (c, que toma el valor 1 si está casada). Se han propuesto las siguientes especificaciones:

$$\begin{array}{lll} \mbox{(Modelo 1)} & w & = & \beta_0 + \beta_1 m + \beta_2 c + \beta_3 (m \cdot c) + \epsilon \\ \mbox{(Modelo 2)} & w & = & \beta_0 + \beta_1 m + \beta_2 c + \beta_3 (m \cdot c) + \beta_4 (1 - m) + \epsilon \\ \mbox{(Modelo 3)} & w & = & \beta_1 m + \beta_2 c + \beta_3 (m \cdot c) + \beta_4 (1 - m) + \epsilon \\ \mbox{(Modelo 4)} & w & = & \beta_1 (m \cdot c) + \epsilon \end{array}$$

(a) Atendiendo exlusivamente a problemas de multicolinaliedad, ¿Cuál o cuáles de las 4 especificaciones planteadas no son estimables por MCO? Justifique su respuesta.

En una segunda parte del mismo estudio se desea analizar los determinantes de la decisión de ser madre trabajadora (m). Se cree que la decisión de ser madre trabajadora depende del salario (w), del salario de la pareja con la que vive (sm), de si está casada o no (c) y de los años de educación (x_1) . Se cree que el salario puede estar determinado conjuntamente con la decision de ser madre y trabajar, con lo que se plantea un modelo de ecuaciones simultáneas como el siguiente:

$$m = \gamma_0 + \gamma_1 w + \gamma_2 s m + \gamma_3 c + \gamma_4 x_1 + u_1$$

$$w = \alpha_0 + \alpha_1 m + \alpha_2 c + \alpha_3 (m \cdot c) + u_2$$

- (b) De acuerdo al modelo propuesto, ¿está identificada la ecuación de m? ¿Por qué sí o por qué no?
- (c) ¿Cuál es la ecuación en forma reducida de w?

PROBLEMA 3

Utilizando una muestra de mujeres de Bostwana se ha estimado un modelo que relaciona la fertilidad con diferentes variables explicativas. El modelo poblacional es:

Modelo (1):
$$children = \beta_0 + \beta_1 educ + \beta_2 urban + \beta_3 age + u$$

donde los βs son parámetros desconocidos y u es un término de error. La descripción del resto de variables es la siguiente:

Variable	Definición
children	número de hijos vivos
educ	años de educación
urban	Urbana (1 si vive en una ciudad y 0 en otro caso)
age	Edad de la mujer

Estamos interesados principalmente en cuantificar el efecto de la educación de la mujer sobre el número de hijos en este país. Sin embargo, existen serias dudas de que en el modelo propuesto educ sea exógena debido a factores omitidos, principalmente la renta familiar (income). Por otro lado, las variables urban y age son exógenas en el modelo (1).

Tenemos una posible variable instrumental para educ que es frsthalf, que toma valor 1 si la mujer nació entre enero y junio y 0 en caso contrario. Utilizando este instrumento se propone utilizar el estimador MC2E en el modelo (1) para solucionar la posible endogeneidad de educ.

- a. ¿Cuáles son las propiedades que ha de cumplir frsthalf para ser un instrumento válido? Contraste al 5% de significación una de estas condiciones a partir de las salidas ofrecidas al final del problema.
- b. Contraste al 5% de significación si *educ* es una variable exógena (no correlacionada con el término de error).
- c. ¿Cómo afecta, según las estimaciones realizadas, los años de educación sobre el número de niños que hay en el hogar? ¿Es este efecto significativo desde el punto de vista estadístico? Utilize las salidas adecuadas para contestar a esta pregunta.

Salida 1: MCO, usando las observaciones 1-4361 Variable dependiente: children Coeficiente Desv. Típica Estadístico t Valor p

	Coeficiente	Desv. Tipi	ca Estadístico t	Valor p
const	-1,92082	0,0950729	$-20,\!2036$	0,0000
educ	-0,0836423	0,00611155	-13,6859	0,0000
urban	-0,218651	0,0457737	-4,7768	0,0000
age	$0,\!174836$	0,00269831	64,7946	0,0000
Media de la v	ble. dep.	2,267828	D.T. de la vble. d	ep. 2,222032
Suma de cuad. residuos		$9433,\!222$	D.T. de la regresi.	\tilde{A}^3 n 1,471419
R^2		0,561799	R^2 corregido	0,561498
F(3, 4357)		1861,978	Valor p (de F)	0,000000
Log-verosimil	itud	$-7870,\!326$	Criterio de Akaike	15748,65
Criterio de Schwarz		15774,17	Hannan-Quinn	15757,66

Salida 2: MCO, usando las observaciones 1–4361 (n = 4356) Se han quitado las observaciones ausentes o incompletas: 5 Variable dependiente: childi

Variable dependiente: children				
	Coeficiente	Desv. Típ	ica Estadístico t	Valor p
const	$-2,\!11347$	0,0981688	$-21,\!5290$	0,0000
educ	-0,0741325	0,0064628	8 -11,4705	0,0000
urban	-0,144970	0,0470342	-3,0822	0,0021
age	$0,\!177492$	0,0027288	0 65,0440	0,0000
tv	-0,230221	0,0927664	-2,4817	0,0131
bicycle	$0,\!296705$	0,0499646	5,9383	0,0000
electric	-0,244708	0,0780355	-3,1358	0,0017
Media de la v	ble. dep.	2,268365	D.T. de la vble. de	p. 2,222073
Suma de cuad	l. residuos	9305,786	D.T. de la regresiÃ	3 n 1,462789
R^2		0,567239	R^2 corregido	0,566642
F(6, 4349)		950,0703	Valor p (de F)	0,000000
Log-verosimili	itud -	-7834,177	Criterio de Akaike	$15682,\!35$
Criterio de Sc	hwarz	$15727,\!01$	Hannan-Quinn	$15698,\!12$

Salida 3: MCO, usando las observaciones 1–4361 (n = 4356) Se han quitado las observaciones ausentes o incompletas: 5

Variable dependiente: educ				
	Coeficiente	Desv. Típi	ica Estadístico t	Valor p
const	$9,\!10072$	$0,\!194343$	$46,\!8282$	0,0000
urban	0,839189	0,109096	7,6922	0,0000
age	-0,142201	0,00599619	9 -23,7151	0,0000
tv	2,64766	$0,\!212871$	$12,\!4379$	0,0000
bicycle	$0,\!226739$	$0,\!116637$	1,9440	0,0520
electric	1,94879	$0,\!179828$	10,8370	0,0000
frsthalf	-0,671785	0,104140	-6,4508	0,0000
Media de la v	ble. dep.	5,854224	D.T. de la vble. de	p. 3,926256
Suma de cuad	. residuos	50742,99	D.T. de la regresiÃ	3 n $3,415807$
R^2		$0,\!244158$	R^2 corregido	0,243116
F(6, 4349)		234,1419	Valor p (de F)	6,3e-260
Log-verosimili	tud -	$-11528,\!36$	Criterio de Akaike	23070,73
Criterio de Sc	hwarz	$23115,\!38$	Hannan-Quinn	23086,49

Salida 4: MCO, usando las observaciones 1-4361 Variable dependiente: educ

variable dependiente, educ				
	Coeficiente	Desv. Típ	ica Estadístico t	Valor p
const	9,08319	$0,\!202358$	$44,\!8867$	0,0000
urban	1,58564	$0,\!110225$	14,3855	0,0000
age	-0,132025	0,0063416	1 -20,8189	0,0000
frsthalf	-0,792281	0,110328	$-7,\!1812$	0,0000
Media de la vi	ole. dep.	5,855996	D.T. de la vble. de	ep. 3,927075
Suma de cuad.	residuos	$57287,\!51$	D.T. de la regresi <i>A</i>	\tilde{A}^3 n 3,626070
R^2		$0,\!148009$	R^2 corregido	0,147422
F(3, 4357)		252,3012	Valor p (de F)	5,8e-151
Log-verosimilit	tud	-11803,61	Criterio de Akaike	23615,22
Criterio de Sch	nwarz	23640,74	Hannan-Quinn	23624,23

Salida 5: MCO, usando las observaciones 1-4361 Variable dependiente: children

	Coeficiente	Desv. Típi	ca Estadístico t	Valor p
const	-1,19619	0,496737	-2,4081	0,0161
educ	-0,167121	0,0564996	-2,9579	0,0031
urban	-0,0837805	$0,\!101635$	-0,8243	0,4098
age	0,163690	0,00796979	20,5389	0,0000
vhat	0,0844670	0,0568329	1,4862	$0,\!1373$
Media de la v	ble. dep.	2,267828	D.T. de la vble. d	lep. $2,222032$
Suma de cua	d. residuos	9428,441	D.T. de la regresi	\tilde{A}^3 n 1,471215
R^2		$0,\!562021$	R^2 corregido	0,561619
F(4, 4356)		$1397,\!423$	Valor p (de F)	0,000000
Log-verosimil	itud -	-7869,221	Criterio de Akaike	e 15748,44
Criterio de Se	chwarz	15780,34	Hannan-Quinn	15759,70

Nota: vhat son los residuos del modelo de la salida 4

VALORES CRÍTICOS

VILLOIGED CIGIT.	1000		
$Z_{0.025} = 1,96$	$Z_{0.05} = 1,645$	$Z_{0.01} = 2,326$	$Z_{0.005} = 2,576$
$Z_{0.1} = 1,282$	$\chi^2_{3,0.01} = 11,34$	$\chi_{3,0.05}^2 = 7,82$	$\chi^2_{5,0.05} = 11,07$
$\chi^2_{2,0.05} = 5,99$	$\chi_{2,0.01}^{2} = 9,21$	$\chi_{6,0.05}^{2} = 12,59$	$\chi_{2,0.1}^{2} = 4,61$
$\chi_{6,0.01}^{2} = 16,81$	$\chi_{4,0.05}^{2} = 9,49$	$\chi_{3,0.1}^{2^{\circ}} = 6,25$	$\chi_{4,0.01}^{2} = 13,28$

Z es la normal de media cero y varianza uno y χ_q^2 es la chi cuadrado con q grados de libertad, $Pr(Z>Z_\alpha)=\alpha$, $Pr(\chi_q^2>\chi_{q,\alpha}^2)=\alpha$. Nótese que la distribución F se puede aproximar por la de la χ_q^2 . Esto es, $\chi_q^2\sim q\cdot F_{q,n}$ cuando n es grande, $Pr(\chi_q^2>\chi_{q,\alpha}^2)\simeq Pr(q\cdot F_{q,n}>\chi_{q,\alpha}^2)$, con lo que el estadístico F puede aproximarse como un estadístico de W ald W tal que Q tal Q tal Q tal Q tal que Q tal Q tal