September 6, 2010

Total Time: 2 Hours.

Important Remark: Note that some information contained in the outputs below is redundant.

Question 1 One of the most widely used production function is CES (Constant Elasticity of Substitution) function, because it nests as special cases other production functions commonly used in the empirical literature such as the Cobb-Douglas or Leontieff. The expression of the CES function is:

$$Y = \gamma \left(\delta K^{\rho} + (1 - \delta) L^{\rho} \right)^{\nu/\rho},$$

where Y, K and L denote output, capital and labor, γ is the efficiency parameter, δ is the rate at which the two factors enter the production function, ρ is the parameter that defines the elasticity of substitution, and v is the parameter measuring the returns to scale, so that v = 1, v > 1, v < 1 indicate, respectively, constant returns, increasing returns and decreasing returns to scale.

One researcher has specified an econometric model to estimate the above technology using data on 25 manufacturing companies based on first-order linear approximation of the CES function (expressed in logarithms):

$$\begin{split} \log Y &= \log \gamma + \delta v \log K + (1 - \delta) v \log L - 1/2\rho \log(1 - \delta) v [\log(K/L)]^2 + \epsilon \\ &= \beta_0 + \beta_1 \log K + \beta_2 \log L + \beta_3 [\log(K/L)]^2 + \epsilon. \end{split}$$

- (a) Test the hypothesis of constant returns to scale in the CES technology. You should clearly establish the null hypothesis and the method of the test.
 - (b) Investigate the significance of the parameter β_3 in the OLS estimation.
 - (c) Consider now that the true model to represent technology companies in a given sector is

$$\log(Y/L) = \beta_0 + \beta_1 \log(K/L) + \beta_2 [\log(K/L)]^2 + \epsilon$$

where the error term satisfies the assumptions of linear regression model: $E(\epsilon|K, L) = 0, Var(\epsilon|K, L) = \sigma^2$, and where $\beta_2 > 0$ and $Cov(\log(K/L), [\log(K/L)]^2) > 0$.

If you omit $[\log(K/L)]^2$, get the sign and magnitude of the bias of the inconsistency (or asymptotic bias) of the estimator of β_1 in the simple regression of $\log(Y/L)$ on $\log(K/L)$. What would be the bias in the case of conditional heteroskedasticity?

Output 1. Dependent variable: $\log Y$

Method	: Least	Squares	5
Sample:	$1 \ 25$		
			.,

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-1.9602	2.2051	-0.89	0.384
$\log K$	0.6501	0.0303	21.47	0.000
$\log L$	0.5592	0.2075	2.69	0.013
$[\log(K/L)]^2$	0.0879	-	-	-

R-squared 0.9912

Adjusted R-squared 0.9900

S.E. of regression 0.0266

Sum squared resid 0.0148

Method: Le	-	ariable. log(1	/_/			
Sample: 1 2	5					
Included ob	servations: 2	5				
Variable	Coefficie	nt Std. Erro	or t-Statis	tic Prob.		
С	0.0155	0.0084	1.84	0.079		
	0.6262	0.0144	43.51	0.000		
$[\log(K/L)]$	2 0.0379	0.0323	1.17	0.253		
R-squared 0	.9921					
Adjusted R-	-squared 0.99	14				
S.E. of regre	ession 0.0264					
Sum square	d resid 0.015	4				
Output 3.	Dependent V	Variable: $\log Y$,			
Output 3. Dependent Variable: $\log Y$ Method: Least Squares						
Sample: 1 25						
	5					
Sample: 1 2	5 servations: 2	5				
Sample: 1 2		5 Std. Error	t-Statistic	Prob.		
Sample: 1 2 Included ob	servations: 2	-	t-Statistic 0.56	Prob. 0.576		
Sample: 1 2 Included obs Variable	servations: 2 Coefficient	Std. Error				
$\frac{\text{Sample: 1 2}}{\frac{\text{Included obs}}{\text{Variable}}}$	servations: 2 Coefficient 0.6394	Std. Error 1.1255	0.56	0.576		
$\frac{\text{Sample: 1 2}}{\text{Included obs}}$ $\frac{\text{Included obs}}{\text{C}}$ $\frac{\text{Included obs}}{\text{C}}$	servations: 2 Coefficient 0.6394 0.6130 0.3214	Std. Error 1.1255 0.0135	$\begin{array}{c} 0.56 \\ 45.44 \end{array}$	$\begin{array}{c} 0.576 \\ 0.000 \end{array}$		
$\begin{array}{c} \text{Sample: 1 2} \\ \text{Included obs} \\ \hline \\ \hline \\ \text{Variable} \\ \hline \\ \hline \\ \\ \text{log } K \\ \hline \\ \\ \text{log } L \\ \hline \\ \hline \\ \text{R-squared 0} \end{array}$	servations: 2 Coefficient 0.6394 0.6130 0.3214	Std. Error 1.1255 0.0135 0.1142	$\begin{array}{c} 0.56 \\ 45.44 \end{array}$	$\begin{array}{c} 0.576 \\ 0.000 \end{array}$		

Output 2. Dependent Variable: $\log(Y/L)$

S.E. of regression 0.0271 Sum squared resid 0.0161

- Question 2 We want to understand what are the determinants of participation in physical activity. We have information for adults with ages ranging between 25 and 55 years. The dummy variable *sport* takes the value one if the individual participated in any physical activity during the previous week and zero otherwise. The explanatory variables that we have in our model are: dummy variable *female* which takes the value one if the individual is female, and the continuous variables age (age), age squared (age2), and years of education (yedu).
 - (a) Interpret the coefficient of the variable *female*. Propose a model where the effect of education and age on the decision to participate in a physical activity depends on gender. Discuss whether this model is more general or not than estimating two different linear models for male and female.
 - (b) Obtain an expression for the conditional variance of *sport* in terms of the variables *female*, *age* and *yedu*. Test if there is conditional heteroskedasticity in the linear model using the information provided in Output 1.
 - (c) Using the estimated linear probability model, indicate whether the probability of participating in physical activity always decreases with age. Explain in detail how one can test that for individuals with 20 years old this probability decreases with age.

Output 1: OLS estimates using 4986 observations from 1-4993
Missing and incomplete observations that have been removed: 7
Dependent variable: <i>sport</i>

Standard Deviations robust to heteroscedasticity

Variable	Coefficie	nt	Std. Dev	t-Statistic	Prob.
const	0.793		0.141	5.624	0.000
female	-0.276		0.0127	-21.725	0.000
age	-0.020		0.0074	-2.701	0.007
age2	0.0002		1.086e-04	1.841	0.066
yedu	0.0148		0.0017	8.768	0.000
Mean var. dependen	ıt	0,359807			
Std. Dev. of var. de	pendent	0,479992			
Sum squared resid		$1021,\!94$			
Std. Dev of resid ($\hat{\sigma}$)	$0,\!452955$			
R-squared		0,110198			
Adjusted R - square	ed	0,109483			
F(4, 4981)		$173,\!525$			
log-likelihood		-3123,6			

Question 3 The following is a simultaneous equation model that we consider to examine whether the openness of an economy (open) leads to lower rates of inflation (inf),

$$inf = \delta_{10} + \gamma_{12}open + \delta_{11}\log(pcinc) + u_1$$

$$open = \delta_{20} + \gamma_{21}inf + \delta_{21}\log(pcinc) + \delta_{22}\log(land) + u_2.$$

It is assumed that (the logarithms of) pcinc (income per capita) and land (agricultural land) are exogenous throughout the year. Various estimates have been obtained using OLS and 2SLS and are provided below.

- (a) Get the reduced form of the system. How can its parameters be estimated consistently?
- (b) Study the identification of simultaneous equations using the provided estimation results. Are there any potentially overidentified equation?
- (c) Test whether the variable open is an endogenous regressor in the first equation. Depending on the result, discuss which parameter estimates of γ_{12} and δ_{11} would be preferable.
- (d) If you know that $\delta_{11} = 0$, how would it change your answer to question (b)? What if alternately one knows that $\delta_{21} = 0$ (but it ignores the value of δ_{11} or of any other parameter in the system)?

	Outp	at 1. OLD commates using 114		
Dependent Variable: inf				
Variable	Coefficient	Std. Dev.	t-Statistic	Prob.
const	$25,\!1040$	$15,\!2052$	$1,\!6510$	0,1016
open	-0,215070	0,0946289	-2,2728	0,0250
lpcinc	$0,\!0175673$	1,97527	0,0089	0,9929
		Mean var. dependent	17,2640	
		Std. Dev. of var. dependent	$23,\!9973$	
		Sum squared resid	62127,5	
		Std. Dev of resid $(\hat{\sigma})$	$23,\!6581$	
		R-squared	0,0452708	
		Adjusted R-squared	0,0280685	
		F(2, 111)	$2,\!63167$	
		Prob. for $F()$	0,0764453	

Output 1: OLS estimates using 114 observations 1-114

Variable	Coefficient	Dependent Variable: a Std. Dev.	t-Statistic	Prob.
const	116,226	$15,\!8808$	7,3187	0,0000
\inf	-0,0680353	0,0715556	-0,9508	0,3438
lpcinc	0,559501	1,49395	0,3745	0,7087
lland	-7,3933	0,834814	-8,8563	0,0000
		Mean var. dependent	37,0789	
		Std. Dev. of var. dependent	23,7535	
		Sum squared resid	34865,3	
		Std. Dev of resid $(\hat{\sigma})$	17,8033	
		R-squared	$0,\!453162$	
		Adjusted R-squared	$0,\!438249$	
		F(3, 110)	30,3855	
		Prob. for $F()$	< 0,00001	

Output 2: OLS estimates using 114 observations 1-114 Dependent Variable: *open*

Output 3: OLS estimates using 114 observations 1-114 Dependent Variable: *inf*

Variable	Coefficient	Dependent Variable: Std. Dev.	t-Statistic	Prob.
const	$-12,\!615$	21,0313	-0,5998	0,5498
lpcinc	0,191394	1,98158	0,0966	0,9232
lland	2,55380	1,08049	2,3635	0,0198
		Mean var. dependent	17,2640	
		Std. Dev. of var. dependent	23,9973	
		Sum squared resid	61903,2	
		Std. Dev of resid $(\hat{\sigma})$	$23,\!6154$	
		R-squared	0,0487174	
		F(2, 111)	2,84229	
		Prob. for $F()$	0,0625432	

Output 4: OLS estimates using 114 observations 1-114 Dependent Variable: *open*

Variable	Coefficient	Std. Dev.	t-Statistic	Prob.
const	117,085	$15,\!8483$	7,3878	0,0000
lpcinc	0,546479	1,49324	0,3660	0,7151
lland	-7,5671	0,814216	-9,2937	0,0000
		Mean var. dependent	37,0789	
		Std. Dev. of var. dependent	23,7535	
		Sum squared resid	$35151,\!8$	
		Std. Dev of resid $(\hat{\sigma})$	17,7956	
		R-squared	0,448668	
		F(2, 111)	45,1654	
		Prob. for $F()$	$< 0,\!00001$	

		Dependent variable.	ung	
Variable	Coefficient	Instruments: <i>llana</i> Std. Dev.	l t-Statistic	Prob.
const	$26,\!8993$	15,4012	1,7466	0,0807
open	-0,337487	0,144121	-2,3417	0,0192
lpcinc	0,375823	2,01508	$0,\!1865$	0,8520
		Mean var. dependent	17,2640	
		Std. Dev. of var. dependent	$23,\!9973$	
		Sum squared resid	63064,2	
		Std. Dev of resid $(\hat{\sigma})$	$23,\!8358$	
		F(2, 111)	2,62498	
		Prob. for $F()$	0,0769352	

Output 5: 2SLS estimates using 114 observations 1-114 Dependent Variable: *inf*

Hausman Test-

Null Hypothesis: The OLS estimates are consistent

Asymptotic Test Statistic: $\chi_1^2 = 1,35333$ with p-value = 0,244697

First-stage F(1, 111) = 86,3734

CRITICAL VALUES: Z is normal with zero mean and variance one and χ_q^2 is a chi-square with q degrees of freedom; $\Pr(Z > Z_\alpha) = \alpha$; $\Pr(\chi_q^2 > \chi_{q;\alpha}^2) = \alpha$. Note that the distribution F can be approximated by the χ^2 . That is, $\chi_q^2 \sim q \cdot F_{q,n}$ for n large; $\Pr(\chi_q^2 > \chi_{q;\alpha}^2) \simeq \Pr(q \cdot F_{q,n} > \chi_{q;\alpha}^2)$.

$Z_{0,025} = 1,96$	$Z_{0,05} = 1,645$	$Z_{0,01} = 2,326$	$Z_{0,005} = 2,576$	
$Z_{0,1} = 1,282$	$\chi^2_{3;0,01} = 11,34$	$\chi^2_{3;0,05} = 7,82$	$\chi^2_{5;0,05} = 11,07$	
$\chi^2_{2;0.05} = 5,99$	$\chi^2_{2;0,01} = 9,21$	$\chi^2_{6;0,05} = 12,59$	$\chi^2_{2;0,1} = 4,61$	$\chi^2_{1;0,05} = 3,84$
$\chi^2_{6;0,01} = 16,81$	$\chi^2_{4;0,05} = 9,49$	$\chi^2_{3;0,1} = 6,25$	$\chi^2_{4;0,01} = 13,28$	$\chi^2_{1;0,01} = 6,64$