Econometrics II - EXAM

Answer each question in separate sheets in three hours

1. Consider the panel data model

$$y_t = \mathbf{z}'_t \boldsymbol{\beta} + u_t, \quad t = 1, \dots, T$$
$$\mathbb{E} \left[u_t | \mathbf{z}_t, u_{t-1}, \mathbf{z}_{t-1}, \dots \right] = 0 \quad t = 1, \dots, T$$
$$\mathbb{E} \left[u_t^2 | \mathbf{z}_t \right] = \mathbb{E} \left[u_t^2 \right] = \sigma_t^2, \quad t = 1, \dots, T,$$

where σ_t^2 may vary in each time period.

- (a) Show that $\Omega := \mathbb{E}[\mathbf{u}\mathbf{u}']$ is diagonal, $\mathbf{u} = (u_1, \ldots, u_T)'$.
- (b) Write down the GLS estimator when Ω is known.
- (c) Show that

 $\mathbb{E}\left[\mathbf{Z}\otimes\mathbf{u}\right]=\mathbf{0}.$

does not necessarily hold under the assumptions made.

(d) Show that the GLS estimator of (b) is consistent for β . Is

$$\mathbb{E}\left[\mathbf{Zu}\right] = \mathbf{0},$$

 $\mathbf{Z} = (\mathbf{z}_1, \dots, \mathbf{z}_T)$, necessary or sufficient for consistency of GLS?

- (e) Explain how to estimate consistently each $\sigma_t^2 \ (n \to \infty)$.
- (f) Under the previous assumptions, is valid the inference based on usual OLS diagnostics for Pooled OLS estimates? Propose a solution if the answer is negative.
- (g) How would you test for $\sigma_t^2 = \sigma^2$ for all t = 1, ..., T? Discuss the asymptotic properties of FGLS if this is true.

2. Suppose y_t is generated by the Autoregressive Moving Average model of order (1,1), ARMA(1,1),

$$y_t = \theta_0 y_{t-1} + e_t + \phi_0 e_{t-1} \tag{1}$$

where: (i) $|\theta_0| < 1$, (ii) $|\phi_0| < 1$; (iii) $\theta_0 \neq \phi_0$; (iv) $e_t \sim iid(0, \sigma_e^2)$.

(a) Show that y_t has the following infinite order moving average representation

$$y_t = e_t + \sum_{i=1}^{\infty} (\phi_0 \theta_0^{j-1} + \theta_0^j) e_{t-i}.$$

(b) Define

$$\gamma(k) = \text{Cov}[y_t, y_{t-k}] \text{ for } k = 0, 1, 2....$$

Show that

$$\gamma(k) = \theta_0 \gamma(k-1) + E[e_t y_{t-k}] + \phi_0 E[e_{t-1} y_{t-k}]$$

and hence that the autocovariance function of y_t is given by:

$$\begin{split} \gamma(0) &= \frac{\sigma_e^2(1+\phi_0^2+2\phi_0\theta_0)}{1-\theta_0^2} \\ \gamma(1) &= \frac{\sigma_e^2(1+\phi_0\theta_0)(\phi_0+\theta_0)}{1-\theta_0^2}. \\ \gamma(k) &= \theta_0\gamma(k-1), \text{ for } k>1. \end{split}$$

- (c) Is y_t covariance stationary? Is y_t strictly stationary? Explain your answers briefly.
- (d) Now suppose that a researcher is only interested in the autoregressive parameter θ_0 . A first solution is to run a least squares regression

$$y_t = \theta y_{t-1} + error_t.$$

What is the probability limit of the OLS estimate $\hat{\theta}$? When is this consistent?

(e) Define $z_t(k) = [y_t, y_{t-1}, ..., y_{t-k}]'$ for some finite positive integer k. Show that

$$E[z_t(k)(y_t - \theta_0 y_{t-1})] \neq 0$$

but

$$E[z_{t-i}(k)(y_t - \theta_0 y_{t-1})] = 0$$
(2)

for i > 1.

- (f) Deduce conditions on θ_0 and ϕ_0 under which θ_0 is identified by (2).
- (g) Now suppose that the data are generated by (1) but the researcher overestimates the AR order to be two. Denote the (autoregressive) parameter vector of this model by the 2×1 vector ψ . Note that the true value of ψ is $\psi_0 = (\theta_0, 0)'$. Suppose that the researcher proposes estimating ψ_0 via GMM based on

$$E[z_{t-i}(k)(y_t - \psi'_0 x_t)] = 0$$
(3)

where $x_t = (y_{t-1}, y_{t-2})'$. Show that if i = 2 then ψ_0 is identified by (3) but that if i > 2 then ψ_0 is under-identified by (3).

3. Consider the model:

$$y_t - y_{t-1} = \beta_0(y^* - y_{t-1}) + \alpha_0 x_t + u_t$$
$$u_t = \rho_0 u_{t-1} + e_t$$

where y^* represents the desired level of the process y_t , x_t is a scalar, and e_t is an i.i.d. process with mean zero. Let $\theta = (\beta, \rho, y^*, \alpha)'$, and suppose it is desired to estimate θ_0 based on the population moment condition

$$E[z_t e_t(\theta_0)] = 0$$

where

$$e_t(\theta) = y_t - \beta(1-\rho)y^* - (1+\rho-\beta)y_{t-1} - (\beta-1)\rho y_{t-2} - \alpha x_t + \rho \alpha x_{t-1}$$

and z_t is a vector of instruments. Note that this model is nonlinear in θ .

- (a) Derive the condition for local identification in this model, and isolate conditions on the matrix of cross-moments of the vector $\tilde{x}_t = (1, y_{t-1}, y_{t-2}, x_t, x_{t-1})'$ with z_t , and on the parameters $\theta = (\beta, \rho, y^*, \alpha)'$.
- (b) In particular, consider the identification under these two situations: (i) $\rho = 0$; (ii) $\alpha = 0$; (iii) $\beta = 0$.
- (c) If θ_0 is identified, describe the asymptotic properties of the corresponding GMM estimate, stating any additional conditions you may require.
- (d) Verify that θ_0 is globally identified if the condition in part (a) is satisfied by using the reduced form version of the model,

$$y_t = \mu_0 + \mu_1 y_{t-1} + \mu_2 y_{t-2} + \mu_3 x_t + \mu_4 x_{t-1} + e_t, \tag{4}$$

which is linear in the parameters $\tilde{\mu} = (\mu_0, \mu_1, \mu_2, \mu_3, \mu_4)'$, assuming that x_t and x_{t-1} are exogeneous.

- (e) How is the identification affected if $\alpha = 0$? Explain briefly.
- (f) Discuss how would you make inference on θ from OLS estimation of equation (4).