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MOTIVATION

e Implementation theory has produced many mechanisms.

Not easy to know which is more relevant.
e Dynamic approach to test their robustness and simplicity/learnability.

e Recent research (Cabrales 1999, Cabrales and Ponti 2000, Sandholm 2002) showed:

Canonical mechanism (when implementing in strict Nash) stable and learnable.
Integer games nonessential

More ‘“refined” mechanism (in iterative deletion of WD strategies) can stabilize
“bad” equilibria.
e Are negative results purely mechanism-driven?

Negative (but qualified) answer in this paper.
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RESULTS

e Quasimonotonicity necessary for implementation when all kinds of mutations are
allowed.

e Quasimonotonicity plus 3 players and e—security also sufficient.

e More permissive sufficient conditions with other assumptions on mutations:
“Regret” makes more serious mistakes less likely.

Mutations are all same order of magnitude (and exploit myopy heavily).

e For incomplete information environments:

Bayesian quasimonotonicity plus incentive compatibility ncessary (and sufficient
with 3 players and e—security).
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PRELIMINARIES
e N={1,...,n}: set of agents.
e Environment: exchange economy.
e X, i's consumption set, grid in §Rl+
e w; € X;: ¢'s initial endowment.

e Set of allocations:

4 = {(xi)ieN c HXZ : sz < sz}

€N €N
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PREFERENCES
e 0;: 1's preference ordering.

e Assumptions:
1. No externalities.
2. 0 is worst bundle.

3. Increasing preference: For all ¢« and for all z; € X;, if y; > x;, vy >f ;.
o 0= (0:);cy € ©: preference profile.

e f:© — Z: social choice function (SCF).
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MECHANISMS AND IMPLEMENTATION

G = ((Mi);en,9): mechanism, where M; is i's message set and g : [[,.y Mi — Z is
the outcome function.

e Played simultaneously every period by boundedly rational agents.

e Better-response dynamics (unperturbed Markov process):
Let m(t) message vector at time ¢.

m;(t 4+ 1) (if chosen to update) puts positive probability on any m/ such that
g (mj,m—i(¥)) Z¢ g(m(t))

e Better-response dynamics with mistakes (perturbed Markov process):

Irreducible and aperiodic perturbation of better-response dynamics.

e An SCF is implementable in stochastically stable strategies if there is a mechanism
G such that a perturbation of the better response dynamics applied to its induced
game when the preference profile is 8 has f (6) as the unique outcome supported by
stochastically stable message profiles.
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PROPERTIES OF SCF
e An SCF is e—secure if for each 6, and for each i € N, f(8) > (eg,...,€).

e An SCF is quasimonotonic if, whenever it is true that for every i € N, f(0) =¢ 2
implies that f (8) = z, we have that f(0) = f (¢) for all 6,6 € ©.
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NECESSITY AND SUFFICIENCY

Theorem 1: If f is implementable in SSS of any perturbed better-response dynamics, f
IS quasimonotonic.

Proof:
e Let true preference profile be 6.

e f implementable in SSS implies only f (0) is in set of recurrent classes.

e Let ¢ such that for all i, f () =? z implies that f(6) =7 z.

e Since f(6) is only outcome in recurrent class when preference is 6, when message
profile gives 6:

Unilateral deviations for ¢ must give either f (6) again,
or z with f(0) ¢ z.

e But this implies f (#) must also be in recurrent class when preferences are ¢.

e And therefore f(0) = f(¢), thus f is quasimonotonic.
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Theorem 2: Letn > 3. If an SCF f is e—secure and quasimonotonic, it is implementable
in SSS of any perturbed better-response dynamics.

Proof: Canonical mechanism
e Message set: M; = © X Z.

e Outcome function:
i If Vi, mi = (6, f(0)), g(m) = f(0).
i If Vj 714, m; = (0, f (0)) and m; = (¢, 2) 7= (0, f (0)) :
Xa) If 2 =7 f(0), g(m) = (fi(0) —e, f-i (0)).
(b) If £(0) =02, g(m) = 2.

iii In all other cases, g (m) = 0.
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et 0 be the true preference profile.

Step 1 No message profile in rule (iii) is part of a recurrent class.
e W.l.0.g., suppose mi1 = (¢,z) 7= (0, f(0)).
e Change one by one strategies of ¢ = 1, to (0, f(0)).
e Outcome is still 0, so better response, until (n — 1) messages are (6, f(0)).
e Then outcome switches to either z or (f1(0) — 3, f-1(6)), both better-response.
e In last step agent 1 switches from (¢,z) to (6, f(8)). This yields f(6), a better

response and contradiction.

Step 2 No message profile under rule (ii.a) is part of a recurrent class.
o m; = (¢, f(¢)), for all 5 # i, and m; = (¢',2’) such that 2’ tf’ f(o), leading to
fi(¢) — B for 4.

e Agent ¢ switches to (¢,z), where z; = fi(¢) — 3 (for 8/ < 3) and z; = 0 for every
3 #= 1, which yields outcome z.

e From here each j # i can switch to (¢/, z7) (for some (¢7,27) # (¢, f(9))), leading
to rule (iii), contradiction.
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Step 3 No recurrent class contains profiles under rule (ii.b).

/

e Forall j #im; = (¢, f(¢)), whereas m; = (¢', 2'), satisfying that f;(¢) >f zl. This
implies outcome is Z2'.

e Agent ¢ switches, if necessary, to (¢',z), where z; = 2! and for all j # 4, z; = 0,
after which the outcome is z.

e As before, any of the other agents can switch to rule (iii), and contradiction.
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Step 4 Only the truthful profile (0, f(0)) is a member of a recurrent class.

Thus, all recurrent classes contain only profiles under rule (i). One cannot aban-
don rule (i) to get to another without passing through rule (ii). Thus, recurrent
classes are singletons.

Each recurrent class, a singleton under rule (i), must consist of a Nash equilibrium
of the game when true preferences are 6, by better-response dynamics.

One such Nash equilibrium is the truthful profile (6, f(6)) reported by every agent.
Unilateral deviations lead to rule (ii.a) or rule (ii.b). Not possible under better-
response dynamics.

One may have other (non-truthful) Nash equilibria under rule (i). Let (¢, f(¢))
be such NE.

For this to be a NE, for all i €¢ N, f(¢) >f’ z implies that f(¢) =Y 2.

Moreover, since profile is a absorbing state of the dynamics, we must also have
for all i € N, f(¢) =% z implies that f(¢) > z.

Thus, because f is quasimonotonic, we must have that f(0) = f(¢).
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PERMISSIVE RESULTS
1. REGRET DYNAMICS

e Suppose agent ¢« moves at time t.

e 22: bundle at period ¢.

e y;. bundle that ¢ proposes.

e z;: bundle that he receives in new outcome.

e Resistance of such transition:
[wi(2P) — wi (20)] = A [wiys) — wi (20)],

where O < A < 1 is small enough. Call these better-response regret dynamics.
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Theorem 3: Let n > 3. Then, any e—secure SCF f is implementable in SSS of any
perturbed better-response regret dynamics.

e Proof based on (modified) canonical mechanism of Theorem 2.
e Quasimonotonicity of f implies again recurrent classes are singletons under rule (i).
e Let § denote the true preferences.

e We classify recurrent classes of unperturbed process into:
Eo truth-telling profile, for each i € N, m; = (0, f(6)).

E; for 5 = 1,...,J is coordinated lie on profile 6/: for each i € N, m; = (¢/, f(67)),
a N'ash equilibrium of the mechanism under 6. These require that for all 1 € N,
£(09) =% z implies that f(¢7) =9 2.
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e Modify outcome function of proof of Theorem 2:
(ii.a’.) Replace g with (A,0,...,0), punishment is smallest unit of nummeraire.

e Profile in Ey is only stochastically stable profile:

[a] To get out of Eg, through rule (ii.a") paying (1 4+ X)A or through (ii.b) paying no
less than (1 4+ \)A.

After that, a mistake to rule (iii), costs K, takes us to O.
From there for free to any equilibria in E;.

[b] To get out of any E;, two paths but cheapest under rule (ii.a") again.

In this case, resistance is strictly smaller than (1 + \)A, because of the relief
term.

After that, to rule (iii) paying also K, and from there for free to Ej.
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2. UNIFORM MUTATIONS

e An SCF f is (strongly) Pareto efficient if for all & and for all z = f(6), there exists
an i(0,z) such that f(0) =9, , =.

e For every 6 and ¢, there is an j(0,¢) and z(6,¢) and y(0,¢) such that

£(0,0) =l v(0,¢)  and  y(0,8) =5, ©(0,6). (%)

Denote by J(0, ¢) the set of agents 5(0, ¢) for whom there exists a preference reversal
between a pair of alternatives across states 6 and ¢, as specified in (*).

(5) For each # and ¢, there is j(0,¢) € J(0,¢) such that j5(0,¢) %= i(0,2(0,¢)), where
(0, ¢) is an alternative for which agent j(6,¢) has a preference reversal as in (*).
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Theorem 4. Suppose environment satisfies (1), (2) and (5). Let n > 5. Any e-secure
and strongly Pareto efficient SCF f is implementable in SSS, when mutations are uniform.

Proof: Let M; = © x Z, m; = (m},m?), m = (m!, m?).
(i.) If for every i € N, m} =6, g(m) = f(0).

(ii.a.) If exactly (n — 1) messages m; are such that m; = 6 and my .(9.4)) = (¢, (0, $)),
g(m) — (aji(e,x(e,qﬁ))(e) ¢)7 xj(@,gb)(e) ¢)7 07 Oa ) O)

(ii.b.) If exactly (n — 1) messages m; are such that m; = 6, but the odd man out, say
agent k, does not satisfy the requirements of rule (ii.a), g(m) = (fL(0) — 3, f_1(0)),

where fr(0) > fi(0) — B > (e,...,€).

(iii.a.) If exactly (n —2) messages m; are such that m} = 6, mMi0.0(0.6)) — (¢, 2(0,¢)) and
mi,¢) — (gba y(ea ¢))1 g(m) — (yi(G,x(9,¢))(97 gb)v yj(0,¢)(97 Qb), 0,0,..., O)

(iii.b.) If exactly (n —2) messages m; are such that m} = 6, but we are not under rule
(iii.a), for all k € N, gr(m) = (¢, ..., €).

(iv.) In all other cases, g(m) = 0.
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E7 All n agents report the true state 6 as the first part of their announcement.

O .

FE7 Agents’ reported state is not 0, the true state.

= .

[a] To get out of EZ, i(0,z(6,¢))
e imposes one reversal xz(0,¢$) — one mistake.
e Next, j(60,¢) imposes y(0,¢) — second mutation.
e Finally, anyone changes to (iv) where 0 is the outcome — third mutation.

e From 0O, for free to any other absorbing state.

[b] To get out of an untruthful profile, say m! = ¢:

o (¢, z(0,0)) can impose x(p,0). If f(d) >?(¢:c(¢9)) x(¢,0), this requires a first
mutation. If z(¢,0) Z $(6.2(6.0)) f(o), zero resistance.

e Next, j(¢,0) changes to y(¢,0) for free.

e Finally, someone changes to 0 under rule (iv), at most a second mutation.

e From there,for free to any other absorbing state.
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ENVIRONMENT
e Each agent knows 6; € ©,.
e Let ©=][yOiand ©_;, =]].0O;.
e \We assume the set of states with ex-ante positive probability is ©.
o Let ¢;(0_;|0;) be type 6;'s interim probabilityover 6_; .
e An SCF is a mapping f: © — 7 .
e Let A denote the set of SCFs.

e We shall 6;'s interim expected utility over an SCF f:

Ui(f10:) = Z qi(0—-i|0:)ui (f(0:,0-:),(6:,0-;)).

0_.€O_;

o G = ((Mi)iENag)y m; . ©; — Mi), and g : ©— Z.
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e Strategy revision using the interim better-response logic. That is, letting m! profile
at period t, type 0; switches from m!(6;) to any m/ such that:

Y ai(0-il0)ui(g(mi,mb;(6-0)), (0:5,6-)) > > qi(0-i|6:)us(m"(6),6).

0_,c0_,; 0_,c0_,;

e An SCF f is implementable in asymptotically stable strategies if there exists G such
that interim better-response process has f as unique outcome of the recurrent classes
of the process.

e An SCF f is implementable in stochastically stable strategies if there exists G such
that a perturbation of the interim better-response process has f as unique outcome
supported by stochastically stable strategy profiles.
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NECESSITY

An SCF f is strictly incentive compatible if for all + and for all 6;,
> @(0-i10)u(£(0),0) > > qi(0-il0:)ui(£(6},0-:), (6:,0-:))
0_.€0_; 0_,€cO_,;
for every 0, # 0;.
Theorem 5. If f is implementable in SSS of any perturbation of interim better-response

dynamics, f is incentive compatible. If at least one recurrent class is a singleton, f is
strictly incentive compatible.
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e Consider a mapping «a; = (ai(0;))sco, : ©; — ©;. A deception a = («;)ien IS a
collection of such mappings where at least one differs from the identity mapping.

e Given an SCF f and a deception «, let [f o a] denote the following SCF: [foa](8) =
f(x(0)) for every 6 € ©.

e Finally, for a type 6. € ©;, and an arbitrary SCF vy, let yg(0) = y(0},0-;)) for all 6 € ©.

e An SCF f is Bayesian quasimonotonic if for all deceptions «, for all « € N, and for
all 9; € ©;, whenever
Ui(f | 0:) > Ui(yg | 0:)V0; € ©; implies  Ui(foa|6;)>U(yoa|6;),  (x*)
one must have that foa = f.

Theorem 6. If f is implementable in asymptotically stable strategies of an unperturbed
interim better-response dynamic process, f is Bayesian quasimonotonic.
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SUFFICIENCY

Theorem 7. Suppose the environments satisfy Assumptions (1) and (2) in each state.
Let n > 3. If an SCF f is e-secure, strictly incentive compatible and Bayesian quasimono-

tonic, f is implementable in asymptotically stable strategies of interim better-response
dynamics.

Proof: G = ((M;)ien,9), M; = ©; x A. m; = (m},m?). Outcome function g is:
(i.) If for every agent i € N, m? = f, g(m) = f(m?).

ii.) If for all j =4 m? = f and m?2 =y % f, one can have two cases:
7 7

(ii.a.) If there exist types 0;,0; € ©; such that Ui(ys | 6;) > Ui(f | 0:), g(m) =
(film!) = B, f-i(m1)), where fi(m') > fi(m') — 8 € Xi.

(ii.b.) If for all 9@9; € O, Ui(ygg | 92') < Uz(f | 97;), g(m) = y(ml).

(iii.) In all other cases, g(m) = 0.
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