Prepared with SEVISCIDSS

Networks - Fall 2005
Chapter 2
Play on networks 2: Strategic complements

Ballester, Calvo-Armengol and Zenou 2005

October 31, 2005

A=


http://www.econ.upf.es/~sevimora/

Summary

Introduction

Nash equilibrium in pure strategies.
Example

Interpretation: Counting path length
Policy: The Key Player
Generalization of above set-up.




Introduction (1/4)

o Let network g with g;; € {0, 1}.

e For all : € N, action z; > 0.

82 ) o . _
o Wg;?j = g;;b"(x; +7;) <0 in Bramoullé-Kranton.

92w .
° Wg;:j = g;;A =2 0 here. Local strategic complements.

e Linear-quadratic utilities

1
w;(x1,...,Tn,9) = ax; — 5:13,&2 +2 ) gijrizi; A > 0,a > 0.

JEN




Introduction (2/4)

e With A =0, no interdependence and z; = a.

e With A > 0O, interdependence.

o FOC:
8u7;
8%-

:(X—LEZ—I—AZQZ]@?:O
JEN

e FOC (z; — AXjen gijTj = ) in general gives a system of equations

[I - )\G] 2 = al.

e Determinant of [I — AG] is a polynomial in A\, thus generically invertible
matrix.




Introduction (3/4)

e \We study this more in depth later.

e Now, suppose you have a regular network, where for all i € N, > ;en gij =
k.

e Then an equilibrium exists with z; = « for all : € N. We must have
a —x + Akx = 0, thus z* = 5 (assuming Ak < 1).

e For A > 0, z*(\) is increasing in A (when equilibrium exists).

e In general, outcome will depend on the network, when there is hetero-
geneity.




Nash equilibrium In pure strategies. (1/5)

Remark 1 We show here there is a generically unique Nash equilibrium in
pure strategies.

2.0
U — _1 < 0. This implies:
ox;

e Notice that u;(x1,...,zn; g) is such that

e =¥ is a Nash equilibrium iff for all ¢ € N either

1(a) zf =0 and gg?(o,xii) <0

(b) ¥ > 0 and g_;;;@*) = 0.

e But notice that if z* =0, g;Z(O,azii) = o+ A jen gij7) > 0.

e Thus only (b) is relevant and x* is a Nash equilibrium iff:

[I —\G] T* =aT, and z; > 0 for all ¢ € N.




Nash equilibrium In pure strategies. (2/5)

e Solution of former equation exists and is unique iff det [l — AG] # 0.

e There exists a finite number of values of X\ such that [I — AG] is degen-
erate, and it has Lebesgue measure zero, thus generically unigue Nash
equilibrium.

e When a solution exists, is it necessarily in Rt 7

e Debreu and Herstein (1953), the matrix [I — AG]~! = M(g, \) is well-
defined and non-negative iff A is smaller than the largest eigenvalue of
G.

e If )\ is small enough

[I—2G]t= Y NGF
k>0




Nash equilibrium In pure strategies. (3/5)

w1 ... O
e To see this diagonalize G=P 1| ... u, .. | P
0 un
HeY L 0 |
e Thus MGk = p—1 ()\,ui)k P.
0 OV L

e So if Amax;{u;} <1, Yp>0 A*GF converges and

T =a[]—)\G]_1T

e Summarizing the above we have:

Proposition 2 Let 11(g) be the largest positive eigenvalue of G. If A\u1(g) <
1, the game has a unique interior pure strategy equilibrium given by

%k
L,

«




Nash equilibrium In pure strategies. (4/5)

with M(g,\) = |m;j(g,\)] = [I = A\G]™1 = S50 AFGE.

Notice differences with previous model:
1. Equilibrium unique with complement - multiplicity with substitutes.

2. Equilibrium interior with complement - interior equilibria unstable with
substitutes.




Example (1/3)

Suppose a 3 person network, with 1 connected to 2 and 3.

01 1 2 00 0 2 2
eG=|100|=2G?=|011|,G3=|200
|1 0 0| |0 1 1] |2 0 0|
(2P 0 0 | Q0 2P 2P |
e By induction G2p = | 0 2r—1 op-1 | G2+l =|2r 0 0O
0 2or—-1 op—l | 2P 0 0
* — |00 2pop 2p+1op 2p+1op| — 1 42X  _ 142X
* 1= p=0[>‘ 28+ A 28+ A 2]_1—2A2+1—2A2_1—2>\2

o x5 =a% =50 |A2PT1oP 4 \2pop—1 4 3\2pop-l] = 44,




Example (2/3)

e Condition for existence 1 —2X2 >0, A < 1/v/2.

e In general for a star with n nodes, largest eigenvalue of G = v/n — 1.




Interpretation: Counting path length (1/3)

e How many paths are there (in example) starting at node i between in-
dividuals 7 and 7 with length 2 (not repeating traveled through nodes)?

e Between 1&1 - 2, between 1&2 or 1&3 - 0.

e Between 2&1 - 0, between 2&2 or 2&3 -1.

e Between 3&1 - 0, between 3&2 or 3&3 -1.

e Notice that G2 =

O ON
— = O
— = O

e This is general. For Gk = [gz[;?]]counts total number of paths in g of
length k starting at node ¢ between individuals z and j.




Interpretation: Counting path length (2/3)

e NOow > ;>0 A’fgz[f] is the total number of paths in g of all lengths between
individuals ¢ and 5 but discounting paths of length k£ by 2\

k
e Remember m;;(g,\) = Yi>0 )\kgz[j].

Definition 3 Bonacich (1987). Take network g and parameter A small
enough. The network centrality of individual © in g of parameter \ is

n
bi(g,\) = D mi(g,A) =m(g,A) + > my;i(g,A)
j=1 self-loops ~ J#i
outeﬁrpaths

7

o Since 7t = Y7 my;(g,\) = b;j(g,\), the equilibrium action is propor-
tional so Bonacich centrality.




Policy: The Key Player (1/7)

In first place one must propose a planner’'s objective.

1. F(gi\a) =%"_qa7 =aXl_1b(g,\). This may be the measure if the
network is simply a “factor of production” of a “good” or a “bad”
(the model was originally created to study crime.)

2. G(g, \,a) = ;L:l u;(z*; g). This is more useful if we think of a “public
good” setup.

For the second measure notice that by FOC o — z} + )\ZjeNgijx;f = 0.
Thus

1 1 1 .2
ui(z*; g) =z} (04 - 533;6 + 2> gij:E;) = z; (O‘|‘§5L’f) = 533;;6
JEN




Policy: The Key Player (2/7)

And thus
1
Glgi A ) = Zbig, A)2.

PLANNER'S TOOLS-THE KEY PLAYER
e Classical public economics tools (tax subsidy) modify: A, «a.

e [0 the extent she can control it — Modify g
Reshuffle network.
Eliminate link(s).

Definition 4 Node : is a Key Player iff

i € arg max{ PIRACRIEDY bk(gj,)\)}
—y




Policy: The Key Player (3/7)

e Notice that

> b(g: M= Y blg ™l N = bi(g) + > (brg: M) = b(g ™7, V).
k=1 k#j i's direct contribution k#Jj )

1'S indirectzontribution

e [hus Key Player need not be the player with highest centrality, since
indirect contribution also matters.

e Example:

Proposition 5 Node i is a Key Player iff

bi(g,\)?2
ieargmax{J(g )}
jeN | m;;(g)

To show this we first prove:




Policy: The Key Player (4/7)

Lemma 6 m;;(g) - mi(9) = mii(g) [mr(9) —myu(g™ )]
B

Proof. m;;i(g) = > ,>0 Apgz-[f]

. . -1\ __ p [p] [p]
m(g) —mjE(g™ ") = 2;0 A [gjk ~ 9i(—i)k
p= h N g
p>2 (at least need 2 steps) g[p]
3 (4)k

paths jk through ¢

Thus

_ [r] . L8]
B=) M| > g "Ik
=2 r+s=p
_7“20,322




Policy: The Key Player (5/7)

Notice that (szl Apa:p) (szl Apyp) = 2 p>o A (Zr—|—32p ZCT?J3>

Thus
YN % dilals (z Apg%]) (z Apgﬁ‘?)
p= rt4st=p

|

Now to prove the proposition. By lemma:

> (bkg: ) = bklg™ ) = X3 [m(e) —my(g )]
k£ Jj7=t k

m;i(g) - m(g)
%;ZZ,; m;i(g)

- zZng;zm@k(g)
j7Fiw

bi(g,\)




Policy: The Key Player (6/7)

Thus:
(@) + Y (e D) (g N) = bilo) |1+ mi{gg;]
k#~j L j£q Vg
— b(9) mi;(g) + 2 i mij(9)

| m;;(g)

b;(9)?

m;;(g)

bi(9)? _ 1 - my;(g)
o Note that [ "oy = bi(g9) |1+ 22 ety |

e [ hus what matters is not only centrality, but also the composition of
the contribution.

e If the relative weight of outer paths to self loops is larger, more likely
to be Key Player.




Generalization of above set-up.

et
u;(x1,...,xn; 9) = ax; + Z oijxiri; A > 0,a > 0.
jEN
— mi e .. ..-32’%_ .. 0
0= MIN;jcq 04,0 = MaX;jcqg 045, 92 Oii <
1

Conditions: ¢;; = 0 < min{0,c}, concavity on myself is highest.

- . 9%y _ Ou; .
In Bramoullé-Kranton: ax? = b"(z; + ;) = Wg;j, if g;j 7 0.
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