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Introduction (1/7) ➣➟ ➠ ➪

• Spillovers between different agents generate incentives for “linking.”

• Research and development.

• Labor Market Information.

• Friendships and “Social Capital.”

• If linking is done “non-cooperatively,” inefficiencies arise (overlinking -

underwork), so role for policy.
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Introduction (2/7) ➢➣➟ ➠ ➪

• Previous “purely economic” work does not look very much at endoge-

nous and costly network formation.

• The (more game-theoretic) work that does, simplifies away the game

after forming the network.

• Reason: Analytical intractability.
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Introduction (3/7) ➢➣➟ ➠ ➪

Model

• We analyze a network formation game with two choices:

• Socialization effort.

• Productive effort.

• The key simplification is: undirected socialization.

• Each link created with probability equal to product of socialization
efforts.

• Thus random network.

• Strategy space much simpler (one dimensional for each player - rather
than n− 1-dimensional), so equilibrium is a smaller-sized fixed point.
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Introduction (4/7) ➢➣➟ ➠ ➪

• As a result we can:

• Discuss welfare and policies.

• We can also replicate some-fat tails, short distance-(but not all-

clustering) features of available data.

• We can (and do) perform statistical (regression) analysis.
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Introduction (5/7) ➢➣➟ ➠ ➪

Results

• Equilibrium: for “large” groups - two stable (and one unstable).

• The equilibria are “ordered”: both in actions and in welfare.

• An increase in returns increases (decreases) actions at Low (High)

equilibrium.

• This increase in returns has stronger relative effect on socialization

effort.

• An explanation for the explotion of R&D collaboration.

• Perhaps also for the decrease in social capital.
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Introduction (6/7) ➢➣➟ ➠ ➪

• Heterogeneity: A mean preserving spread in rewards, increases (de-

creases) payoffs at Low (High) equilibrium.

• Results robust to cost structure.
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Introduction (7/7) ➢➟ ➠ ➪

Prior work:

• Spillovers (theory): Marshall (1920), D’Aspremont and Jacquemin
(1988), Bénabou (1993).

• Spillovers (empirics): Ciccone, Hall (1996); Cassiman, Veugelers (2002).

• Spillovers (policy): Motta (1996), Leahy and Neary (1997).

• Networks: Myerson (1981), Jackson and Wolinsky (1996).

• Replicating the features of data: Jackson and Rogers (2006).

• Play on fixed networks: Calvó-Armengol and Jackson (2004), Bra-
moullé and Kranton (2005).
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The game (1/5) ➣➟ ➠ ➪

The replica game

• N = {1, ..., n} finite set of players, T = {1, . . . , t} finite set of types.

• There are exactly m players of each type τ ∈ T .

• For each i ∈ N , τ (i) ∈ T is his type.

• Simultaneous move game of network formation and investment.

• Returns to investment are the sum of a private component and a

synergistic component.
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The game (2/5) ➢➣➟ ➠ ➪

• Private returns are heterogeneous: b = (b1, ..., bt) where 0 < b1 ≤ b2 ≤
... ≤ bt.

• The synergistic returns depend on the network.
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The game (3/5) ➢➣➟ ➠ ➪

Network formation

• Each player i selects ki ≥ 0 a level of socialization effort. k = (k1, ..., kn).

• Then, i and j interact with link intensity (gij = gji):

gij(k) = ρ (k) kikj; gi(k) =
n∑

j=1

gij(k); ρ (k) =

{
1/

∑n
j=1 kj, if k 6= 0

0, if k = 0

• When maxi k2
i < 1/ρ (k), network interpretable as random graph where

gij(k) probability of ij edge.

• Random graph model with expected degrees k = (k1, ..., kn) in Chung

and Lu (2002) (can replicate Poisson distributions, power laws etc.)
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The game (4/5) ➢➣➟ ➠ ➪

Investment

• Each player i selects an investment level si ≥ 0 and s = (s1, ..., sn).

• The choices of ki and si are simultaneous.

• Individual investment yields private return and synergistic return.

• Private returns: bτ(i) si − s2i /2.

• Synergistic returns: ∂2ui(s,k)
∂si∂sj

= agij(k), a ≥ 0
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The game (5/5) ➢➟ ➠ ➪

Payoffs

Formally, let pij (k) = gij (k) if i 6= j and pii (k) = gii (k) /2. Player i’s

utility is given by:

ui(s,k) = bτ(i) si + a
n∑

j=1

pij (k) sjsi −
1

2
s2i −

1

2
k2
i (1)
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Equilibrium and welfare: large economies (1/8) ➣➟ ➠ ➪

• We solve for Nash equilibria in pure strategies (s∗;k∗) = (s∗1, ..., s∗n; k∗1, ..., k∗n)
of m−replica game with m large enough.

• There are exactly three such equilibria.

• One (partially corner) with null socialization.

• Two interior equilibria.

Lemma 1
(
s∗i , k

∗
i

)
=

(
bτ(i),0

)
for all i = 1, ..., mt is a pure strategy Nash

equilibrium with payoffs b2τ(i)/2.

• It is a strict equilibrium, but not stable for large populations, as we will

show later.
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Equilibrium and welfare: large economies (2/8) ➢➣➟ ➠ ➪

Define:

a(b) = a

∑t
τ=1 b2τ∑t
τ=1 bτ

. (2)

• Holding average type
∑t

τ=1 bτ/t constant, a(b) increases with hetero-

geneity in types.

• Many authors refer to
∑t

τ=1 b2τ/
∑t

τ=1 bτ , as the second-order average

type (see e.g. Vega-Redondo 2006).
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Equilibrium and welfare: large economies (3/8) ➢➣➟ ➠ ➪

Theorem 2 Suppose 2/3
√

3 > a(b) > 0. Then, for m ≥ m∗, there are

exactly two interior pure strategy Nash equilibria.

For these equilibria (si, ki) converge to (s∗τ(i), k
∗
τ(i)) as m goes to infinity

s∗τ(i) = bτ(i)s, k∗τ(i) = bτ(i)k, and (s, k) are positive solutions to:{
k = a(b)s2

s [1− a(b)k] = 1
(3)

• Under 2/3
√

3 > a(b) > 0. , the system (3) has exactly two positive

solutions.
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Equilibrium and welfare: large economies (4/8) ➢➣➟ ➠ ➪

Simulations on Theorem 1 with a = 2, t = 1 and b1 = 0.1. Numbers are

multiplied by 104.

n 2 5 10 20 50 100 500 ∞
Low equilibrium

s∗ 1,898 1,195 1,101 1,065 1,049 1,046 1,046 1,046
k∗ 2,366 815 458 303 234 222 218 219

High equilibrium
s∗ 3346 4,643 4,591 4,508 4,444 4,420 4,400 4,394
k∗ 3506 3,923 3,911 3,891 3,875 3,869 3,864 3,862
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Equilibrium and welfare: large economies (5/8) ➢➣➟ ➠ ➪

• The two equations (3) equalize marginal costs with marginal benefits

at equilibrium.

• The marginal benefit from investment s∗i is:

bτ(i)/(1−
a(b)

bτ(i)
k∗i )

• When a = 0, this marginal benefit boils down to bτ(i), the private return

in (1).

• When a 6= 0, this is scaled up by synergistic multiplier 1/(1 − a(b)
bτ(i)

k∗i ),

homogeneous across players and an increasing function of the second

order average type a(b).
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Equilibrium and welfare: large economies (6/8) ➢➣➟ ➠ ➪

• The marginal benefit of k∗i , as the population size gets large, boils

down to

aρ (k)
n∑

j=1

sisj

• The condition 2/3
√

3 > a(b) is necessary and sufficient for (3) to have

a non-negative solution.

• When a(b) is too large, the synergistic multiplier operates too inten-

sively and both k and s increase without bound.
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Equilibrium and welfare: large economies (7/8) ➢➣➟ ➠ ➪

• The socialization effort at equilibrium :

k∗i
k∗j

=
bτ(i)

bτ(j)
.

• Thus, intensity of a link at approximate equilibrium is:

gij
(
k∗

)
= k∗

bτ(i)bτ(j)

m
∑t

τ=1 bτ
, (4)

which decreases linearly with 1/m.

• For this reason, the overall socialization effort gi (k
∗) = k∗bτ(i) is inde-

pendent of the population size.
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Equilibrium and welfare: large economies (8/8) ➢➟ ➠ ➪

Proposition 3 For m sufficiently large, the two interior equilibria are stable

while the equilibrium with
(
s∗i , k

∗
i

)
=

(
bτ(i),0

)
for all i = 1, ..., mt is not

stable.

Proposition 4 Let (s∗,k∗) and (s∗∗,k∗∗) be the two different approxi-

mate equilibria of an m−replica game. Then, without loss of generality,

(s∗,k∗) ≥ (s∗∗,k∗∗) and u (s∗,k∗) ≥ u (s∗∗,k∗∗), where ≥ is the component-

wise ordering.
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Comparative statics (1/4) ➣➟ ➠ ➪

Socialization and investment

Proposition 5 Let (s∗,k∗) ≥ (s∗∗,k∗∗) be the two ranked approximate

equilibria of an m−replica game.

Suppose that a(b) increases.

Then, at the Pareto-superior approximate equilibrium (s∗,k∗) all the equi-

librium actions decrease,

while at the Pareto-inferior approximate equilibrium (s∗∗,k∗∗) all the equi-

librium actions increase.

In both cases, the percentage change in ki is higher than that of si (in

absolute values), for all i = 1, ..., mt.
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Comparative statics (2/4) ➢➣➟ ➠ ➪

Equilibrium payoffs

When m gets large, equilibrium payoffs are:

u∗i =
b2τ(i)

2a(b)

k

s
+ o (1) , for all i = 1, ..., mt. (5)

=
b2τ(i)

2
s + o (1) , for all i = 1, ..., mt. (6)
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Comparative statics (3/4) ➢➣➟ ➠ ➪

Proposition 6 Let (s∗,k∗) ≥ (s∗∗,k∗∗) be the two ranked approximated

equilibria of an m−replica game.

1. Suppose that either only a increases, or (a; b1, ..., bt) are all scaled

up by a common multiplicative factor. Then, at the Pareto-superior

approximated equilibrium all the payoffs ui (s
∗,k∗) decrease, while at

the Pareto-inferior approximated equilibrium all payoffs ui (s
∗∗,k∗∗) in-

crease, for all i = 1, ..., mt.

2. Suppose that the vector (b1, ..., bt) changes via a mean preserving spread

(i.e. a change that holds
∑t

τ=1 bτ constant but increases
∑t

τ=1 b2τ ).

Then, at the Pareto-superior approximated equilibrium the sum of

payoffs
∑mt

i=1 ui (s
∗,k∗) decreases, as well as payoffs for types below

the average. At the Pareto-inferior approximated equilibrium the sum

of payoffs
∑mt

i=1 ui (s
∗∗,k∗∗) increases.
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Comparative statics (4/4) ➢➟ ➠ ➪

Remark 7 Let (s∗,k∗) ≥ (s∗∗,k∗∗) be the two ranked approximated equi-

libria of an m−replica game. Fix i and let b′−τ(i) and b−τ(i) be two different

population types (excluding i). If a(bτ(i), b−τ(i)) ≥ a
(
bτ(i), b

′
−τ(i)

)
, then

player i gets a lower (resp. higher) utility at the Pareto superior approxi-

mated equilibrium (resp. at the Pareto inferior approximated equilibrium)

under (a, bτ(i), b−τ(i)) that under (a, bτ(i), b
′
−τ(i)).

➟➠ ➪➲ ➪ ➟➠ ➥ ➢ 24
41



Topology: theory and empirics (1/12) ➣➟ ➠ ➪

• Key network regularities:

1. The distribution of connectivities is fat tailed. Higher proportion of

nodes with many links than at random.

2. Average distance (or shortest path) between nodes is very small and

grows very slowly with network size. For Hollywood actors network

is 225,226 individuals and average path length is 3.65.

3. Third, the tendency of two linked nodes to be linked to a common

third-party, (clustering coefficient), is much higher than at random.

For the movie actors 3,000 times higher.

4. Social networks exhibit internal (sometimes hierarchical) community

structure, sometimes arranged hierarchically.

5. Also, highly connected nodes tend to be connected with highly con-

nected nodes (positive assortativity).
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Topology: theory and empirics (2/12) ➢➣➟ ➠ ➪

• Some mechanisms replicate this topological features, (Jackson and

Rogers 2006).

• Basic ingredients are: a population growth process, and a link for-

mation device for newcomers that combines random meetings with

network search of the partner.
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Topology: theory and empirics (3/12) ➢➣➟ ➠ ➪

• Our model is static. It thus cannot replicate some things (e.g. high

clustering).

• Yet, delivers some implications for topology, and relates it topology to

incentives.

• Since gi (k
∗) = k∗i = k∗bτ(i) when link intensities are smaller than one,

we can interpret our network as a random graph.

• Then, the average connectivity is k∗ = k∗b,

• The empirical variance of connectivities is v (k∗) = k2∗v (b). Therefore,√
v (k∗)

k∗
=

√
v (b)

b
.
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Topology: theory and empirics (4/12) ➢➣➟ ➠ ➪

• Heteregeneity is driven by the heterogeneity in private returns. We can

thus cover many topologies, including fat tailed connectivity.

• With Proposition 6, we can show impact on welfare of some changes

in b.

• Chung and Lu (2002) show that average distance in a random graph

with expected connectivity
(
k∗1, ..., k∗n

)
= k∗

(
bτ(1), ...., bτ(n)

)
is:

(1 + o (1))
log (mt)

log
(
k∗b

).
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Topology: theory and empirics (5/12) ➢➣➟ ➠ ➪

Summarizing :

Low equilibrium High equilibrium
k v (k) distance payoffs k v (k) distance payoffs

a up + + − + − − + −
(a,b) all up + ++ − ++ · · · −

b spread + ++ −− ++
(payoffs)

− · + −−
(payoffs)
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Topology: theory and empirics (6/12) ➢➣➟ ➠ ➪

• Our static model does not generate networks with a high clustering.

• Yet, split the population into smaller subpopulations.

• 1−ε of the socialization in-home, while a residual fraction ε is invested

in the whole

• The smaller the size of each community, the bigger the clustering level

(for identical average connectivity).

• This goes against our characterization of equilibrium actions.

• Finally, empirically observed social networks have a giant component

Next section.
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Topology: theory and empirics (7/12) ➢➣➟ ➠ ➪

Empirics

• Data from the National Longitudinal Survey of Adolescent Health (Ad-
dHealth).

• Students in grades 7-12 from roughly 130 private and public schools
in years 1994-95.

• Detailed information on friendship relationships.

• Detailed information on grades (math, history, social studies and sci-
ence). We calculate an index.

• We take the network comprising the largest number of individuals for
our exercise, with 107 nodes.
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Topology: theory and empirics (8/12) ➢➣➟ ➠ ➪

For this network, we focus on:

• the degree connectivity of each node ki, i = 1, ...,107

• the student achievement for each node ei, i = 1, ...,107
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Topology: theory and empirics (9/12) ➢➣➟ ➠ ➪

• We transform the performance measure. We write ei = s
β
i exp(εi).

• In equilibrium ki/si = k/s. Thus ei =
(

s
kki

)β
exp(εi).

• We run the regression: log(ei) = δ + β log(ki) + εi.

• We find δ̂ = .0686 and β̂ = 1.3264, significant at 10% and 1%.

• We then change variables: si = e
1/β̂
i , so log (s/k) = log

[
δ̂/β̂

]
.

• Since k = a(b)s2, and si = bτ(i)s, si =
bτ(i)
a(b)

k
s .
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Topology: theory and empirics (10/12) ➢➣➟ ➠ ➪

• We do an ML fit of: si =
bτ(i)
a(b) exp[−δ̂/β̂] + νi conditional on a(b) <

2/3
√

3

• First only four different types (b1, ..., b4) - agents to types by quartiles.

• Then ten parameters (b1, ..., b10), in deciles.

• We obtain:

(a; b1, ..., b4) = (0.1857; 1.75,1.87,1.98,2.11) (7)

(a; b1, ..., b10) = (0.2097; 1.21,1.33,1.42,1.55,1.61,1.76,1.85,1.90,1.99,2.06)(8)
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Topology: theory and empirics (11/12) ➢➣➟ ➠ ➪

• Easy to check, that individuals rank partners in decreasing value of their

type for the high equilibrium(the opposite order for the low equilibrium).

• In this particular case, the only stable pairwise matching groups types

1 with types 2, and types 3 with types 4.

• This stable matching does not maximize social welfare at the high

equilibrium.

• Allowing groups with more than two types, the ordering for type 1 at

high equilibrium is: (1,3,4), (1,4), (1,2,3,4), (1,2,4), (1,3), (1,2,3),

(1,2).
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Topology: theory and empirics (12/12) ➢➟ ➠ ➪

We can also use the estimated types to illustrate comparative statics of a

mean preserving spread.

• Divide the 107 nodes into 27 agents of each type.

• Then, let x individuals type 1 and 4, and 54− x individuals for type 2

and 3, and vary x from 1 to 53.

• We observe numerically the monotonicity of in prop. 6.

• And, for this parameters, the utility of types 3 and 4 (not covered in

prop 6) changes in the same direction as the others.
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The case of homogeneous populations (1/5) ➣ ➲ ➪

• Remark 7 implies that individuals of the highest type prefer to segre-

gate.

• A simple induction argument justifies that the highest types of any

heterogeneous subgroup would want to segregate.

• One would expect that some homogeneous groups to exists in a given

society.

• We can also conduct some robustness checks on the technology and

further insights on topology.
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The case of homogeneous populations (2/5) ➢➣ ➲ ➪

Player i’s utility is:

ui(s,k) = bsi + a
n∑

j=1

pijsjsi −
1

c + 1
sc+1
i −

1

c + 1
kc+1
i , (9)

where a, b ≥ 0 and c ≥ 1. The case c = 1 corresponds to quadratic costs.

As c increases, the cost function becomes steeper.

We introduce φ : R → R given by:

φ (x) = c
1

c+1

[
xc+1 − b1+1

c

] 1
c+1

.
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The case of homogeneous populations (3/5) ➢➣ ➲ ➪

• For large populations, up to two interior symmetric equilibria solving:{
kc = as2

sc [1− ak] = b
, (10)

with added condition k∗ ≤ φ (s∗). This is equivalent to:

ui
(
s∗, k∗

)
=

1

c + 1

[
cs∗c+1 − k∗c+1

]
≥

c

c + 1
b1+1

c = ui

(
b1/c,0

)
. (11)

• The condition k∗ < φ (s∗) guarantees that
(
b1/c,0

)
is not a strict best-

response player i to the rest playing (s∗, k∗).

Proposition 8 Suppose that (10) has three different solutions. Let (s∗, k∗) ≥
(s∗∗, k∗∗) be the two ranked interior symmetric approximate equilibria for

large population. When a increases, s∗∗ and k∗∗ increase, while s∗ and k∗

decrease. In both cases, the percentage change in k is higher than that of

s.
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The case of homogeneous populations (4/5) ➢➣ ➲ ➪

The topology of Erdös-Rényi equilibrium networks

• In the Erdös-Rényi (Bernoulli) random networks that correspond to

the interior equilibria expected number of links is k

• Network connectivity (or degree) is not correlated across different

nodes.

• When k∗ < 1, the networks is composed of a huge number of disjoint

small trees.

• When k∗ > 1, a single giant component that encompasses a high

fraction of all the network nodes emerges.
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The case of homogeneous populations (5/5) ➢ ➲ ➪

Proposition 9 When a ≥ 1, no equilibrium network has a giant compo-

nent. Suppose that a < 1 and that there are two non-empty equilibrium

networks. Then, the two equilibrium networks display different topological

characteristics (one network with a giant component, one without) if and

only if ab2/c < (1− a)2/c. If, instead, ab2/c > ( c
a+c)

2.
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