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Introduction (1/7)

e Spillovers between different agents generate incentives for “linking.”
Research and development.
Labor Market Information.
Friendships and “Social Capital.”

e If linking is done “non-cooperatively,” inefficiencies arise (overlinking -
underwork), so role for policy.




Introduction (2/7)

e Previous “purely economic” work does not look very much at endoge-
nous and costly network formation.

e The (more game-theoretic) work that does, simplifies away the game
after forming the network.

e Reason: Analytical intractability.




Introduction (3/7)

Model

e \We analyze a network formation game with two choices:
Socialization effort.

Productive effort.

e [ he key simplification is: undirected socialization.

Each link created with probability equal to product of socialization
efforts.

Thus random network.

e Strategy space much simpler (one dimensional for each player - rather
than n — 1-dimensional), so equilibrium is a smaller-sized fixed point.




Introduction (4/7)

e AS a result we can:
Discuss welfare and policies.

We can also replicate some-fat tails, short distance-(but not all-
clustering) features of available data.

We can (and do) perform statistical (regression) analysis.




Introduction (5/7)

Results

e Equilibrium: for “large” groups - two stable (and one unstable).

e [ he equilibria are “ordered”: both in actions and in welfare.

e An increase in returns increases (decreases) actions at Low (High)
equilibrium.

e [ his increase in returns has stronger relative effect on socialization
effort.

An explanation for the explotion of R&D collaboration.

Perhaps also for the decrease in social capital.




Introduction (6/7)

e Heterogeneity: A mean preserving spread in rewards, increases (de-
creases) payoffs at Low (High) equilibrium.

e Results robust to cost structure.




Introduction (7/7)

Prior work:

e Spillovers (theory): Marshall (1920), D'Aspremont and Jacquemin
(1988), Bénabou (1993).

e Spillovers (empirics): Ciccone, Hall (1996); Cassiman, Veugelers (2002).
e Spillovers (policy): Motta (1996), Leahy and Neary (1997).

e Networks: Myerson (1981), Jackson and Wolinsky (1996).

e Replicating the features of data: Jackson and Rogers (2006).

e Play on fixed networks: Calvo-Armengol and Jackson (2004), Bra-
moullé and Kranton (2005).




The game (1/5)

The replica game

e N ={1,...,n} finite set of players, T = {1,...,t} finite set of types.

e [ here are exactly m players of each type € T.

e For each i € N, 7 (i) € T is his type.

e Simultaneous move game of network formation and investment.

e Returns to investment are the sum of a private component and a
synergistic component.




The game (2/5)

e Private returns are heterogeneous: b = (by,...,b:) where 0 < b1 < by <
o < by,

e [ he synergistic returns depend on the network.




The game (3/5)

Network formation
e Each player i selects k; > 0 a level of socialization effort. k = (k1, ..., kn).
e Then, ¢ and j interact with link intensity (g;; = g;:):

g (K) = p(K) kiki; gi(k) = 3 gii(k); p(K) = { (1)/%1{1_6, if k0
j=1 .

e When max; kf < 1/p(k), network interpretable as random graph where
gij(k) probability of ij edge.

e Random graph model with expected degrees k = (k1,...,kn) in Chung
and Lu (2002) (can replicate Poisson distributions, power laws etc.)




The game (4/5)

Investment
e Each player i selects an investment level s; > 0 and s = (s1,...,5n).
e [ he choices of k; and s; are simultaneous.

e Individual investment yields private return and synergistic return.
o Private returns: b,(;ys; — s7/2.

i i . 82i 7k S
e Synergistic returns: al;igssj) = agij(k), a >0




The game (5/5)

Payoffs

Formally, let p;; (k) = g;; (k) if « & j and p;; (k) = g4 (k) /2. Player i's
utility is given by:

ui(s, k) = b8, +a > pij (k) sjs; — 550~ —kiQ (1)
=1




Equilibrium and welfare: large economies (1/8)

e We solve for Nash equilibria in pure strategies (s*; k*) = (s, ..., sh, k1, ..., k},)
of m—replica game with m large enough.
e [ here are exactly three such equilibria.
One (partially corner) with null socialization.

Two interior equilibria.

Lemma 1 (sf;,k;‘) = (bT(i),O) for all i = 1,...,mt is a pure strategy Nash
equilibrium with payoffs bZ /2.

e It is a strict equilibrium, but not stable for large populations, as we will
show later.




Equilibrium and welfare: large economies (2/8)

Define:
zt b2
7‘:]_ T (2)

a(b) = aZizl b

e Holding average type Zi:l br/t constant, a(b) increases with hetero-
geneity in types.

e Many authors refer to St _; b2/t _, by, as the second-order average
type (see e.g. Vega-Redondo 2006).




Equilibrium and welfare: large economies (3/8)

Theorem 2 Suppose 2/3\/§ > a(b) > 0. Then, for m > m*, there are
exactly two interior pure strategy Nash equilibria.

For these equilibria (s;, k;) converge to (sjm, kj@) as m goes to infinity
sj(i) = br(i)s, k;‘_(i) = b.(j)k, and (s, k) are positive solutions to:

k= a(b)s?
{ s[l1—a(b)k] =1 (3)

e Under 2/3v/3 > a(b) > 0. , the system (3) has exactly two positive
solutions.




Equilibrium and welfare: large economies (4/8)

Simulations on Theorem 1 with a =2, t =1 and b7 = 0.1. Numbers are
multiplied by 10%.

n 2 5 10 20 50 100 500 00
LLow equilibrium

s*11,898 1,195 1,101 1,065 1,049 1,046 1,046 1,046
k*| 2,366 815 458 303 234 222 218 219
High equilibrium

s* | 3346 4,643 4,591 4,508 4,444 4,420 4,400 4,394
k*| 3506 3,923 3,911 3,891 3,875 3,869 3,864 3,862




Equilibrium and welfare: large economies (5/8)

e The two equations (3) equalize marginal costs with marginal benefits
at equilibrium.

e The marginal benefit from investment s7 is:
a(b)
br (i)

briy/ (1 — ky)

e \When a = 0, this marginal benefit boils down to b

in (1).

(i) the private return

e When a # 0, this is scaled up by synergistic multiplier 1/(1 — Z(—E’gk;‘),
homogeneous across players and an increasing function of the second
order average type a(b).




Equilibrium and welfare: large economies (6/8)

e The marginal benefit of k¥, as the population size gets large, boils
down to

ap (k) Z 8iS;

j=1

e The condition 2/3v/3 > a(b) is necessary and sufficient for (3) to have
a non-negative solution.

e When a(b) is too large, the synergistic multiplier operates too inten-
sively and both k£ and s increase without bound.




Equilibrium and welfare: large economies (7/8)

e [ he socialization effort at equilibrium :

k¥ by

ki b

e [ hus, intensity of a link at approximate equilibrium is:

b.(\b-(:
o *) — .k 7(1)"7(7)
9dij (k) k ng:]_ b (4)

which decreases linearly with 1/m.

e For this reason, the overall socialization effort g; (k™) = k*b,(; is inde-
pendent of the population size.




Equilibrium and welfare: large economies (8/8)

Proposition 3 For m sufficiently large, the two interior equilibria are stable
while the equilibrium with <s;<,k;<) — (bT(Z-),O> for all i = 1,...,mt is not
Stable.

Proposition 4 Let (s*,k*) and (s**,k™) be the two different approxi-
mate equilibria of an m—replica game. Then, without loss of generality,
(s*,k*) > (s**,k*) and u (s*,k*) > u (s**,k**), where > is the component-
wise ordering.




Comparative statics (1/4)

Socialization and investment

Proposition 5 Let (s*,k*) > (s**, k™) be the two ranked approximate
equilibria of an m—replica game.

Suppose that a(b) increases.

Then, at the Pareto-superior approximate equilibrium (s*,k*) all the equi-

librium actions decrease,
while at the Pareto-inferior approximate equilibrium (s**,k**) all the equi-

librium actions increase.
In both cases, the percentage change in k; is higher than that of s; (in

absolute values), for all i = 1,...,mt.




Comparative statics (2/4)

Equilibrium payoffs

When m gets large, equilibrium payoffs are:

* b3<i>ﬁ+ (1), forall i =1,...,mt (5)
YT 2a(b)s N ST
b2 N

= - s+o0(1), foralli=1,.., mt. (6)




Comparative statics (3/4)

Proposition 6 Let (s*,k*) > (s*,k™) be the two ranked approximated
equilibria of an m—replica game.

1. Suppose that either only a increases, or (a;bqy,...,by) are all scaled
up by a common multiplicative factor. Then, at the Pareto-superior
approximated equilibrium all the payoffs u; (s*,k*) decrease, while at
the Pareto-inferior approximated equilibrium all payoffs u; (s™,k**) in-
crease, for all 1 =1, ..., mt.

2. Suppose that the vector (b1, ...,bs) changes via a mean preserving spread
(i.e. a change that holds Yt _,b; constant but increases Yt _ b2).
Then, at the Pareto-superior approximated equilibrium the sum of
payoffs Y. u; (s*,k*) decreases, as well as payoffs for types below
the average. At the Pareto-inferior approximated equilibrium the sum
of payoffs St w; (s**,k**) increases.




Comparative statics (4/4)

Remark 7 Let (s*,k*) > (s*,k**) be the two ranked approximated equi-
libria of an m—replica game. Fix: and let b’_T(Z.) and b_T(,L-) be two different

population types (excluding i). If a(b(;y,b_r)) 2 a(bT(i),b’_T(i)), then
player 1 gets a lower (resp. higher) utility at the Pareto superior approxi-
mated equilibrium (resp. at the Pareto inferior approximated equilibrium)
under (a,b,(;y,b_,(;)) that under (a, bT(i),b’_T(i)).

—7(1




Topology: theory and empirics (1/12)

e Key network regularities:

1.

T he distribution of connectivities is fat tailed. Higher proportion of
nodes with many links than at random.

. Average distance (or shortest path) between nodes is very small and

grows very slowly with network size. For Hollywood actors network
iIs 225,226 individuals and average path length is 3.65.

. Third, the tendency of two linked nodes to be linked to a common

third-party, (clustering coefficient), is much higher than at random.
For the movie actors 3,000 times higher.

. Social networks exhibit internal (sometimes hierarchical) community

structure, sometimes arranged hierarchically.

. Also, highly connected nodes tend to be connected with highly con-

nected nodes (positive assortativity).




Topology: theory and empirics (2/12)

e Some mechanisms replicate this topological features, (Jackson and
Rogers 2006).

e Basic ingredients are: a population growth process, and a link for-
mation device for newcomers that combines random meetings with
network search of the partner.




Topology: theory and empirics (3/12)

e Our model is static. It thus cannot replicate some things (e.g. high
clustering).

e Yet, delivers some implications for topology, and relates it topology to
incentives.

e Since g; (k*) = kj = k™b.(;) when link intensities are smaller than one,
we can interpret our network as a random graph.

e Then, the average connectivity is k¥ = k*b,

e The empirical variance of connectivities is v (k*) = k2*v (b). Therefore,

Vo (k*) /v (b)

k* b




Topology: theory and empirics (4/12)

e Heteregeneity is driven by the heterogeneity in private returns. We can
thus cover many topologies, including fat tailed connectivity.

e With Proposition 6, we can show impact on welfare of some changes
in b.

e Chung and Lu (2002) show that average distance in a random graph
with expected connectivity ( {,...,k;‘;) = k* (bT(l),....,bT(n)) is:

log (mt)
og (lc*E) '

(1+4+0(1)) |




Topology: theory and empirics (5/12)

Summarizing :

Low equilibrium High equilibrium
k | v(k) | distance | payoffs | k | v (k) | distance | payoffs
aup [+ | + = + -] - + =
(a,b) all up | 4+ | ++ — <+ : : : —
b spread |+ | ++ —— ++ -] + ——
(payoffs) (payoffs)




Topology: theory and empirics (6/12)

e Our static model does not generate networks with a high clustering.

e Yet, split the population into smaller subpopulations.

e 1 —¢ of the socialization in-home, while a residual fraction ¢ is invested
in the whole

e [ he smaller the size of each community, the bigger the clustering level
(for identical average connectivity).

e [ his goes against our characterization of equilibrium actions.

e Finally, empirically observed social networks have a giant component
Next section.




Topology: theory and empirics (7/12)

Empirics

e Data from the National Longitudinal Survey of Adolescent Health (Ad-
dHealth).

e Students in grades 7-12 from roughly 130 private and public schools
in years 1994-95.

e Detailed information on friendship relationships.

e Detailed information on grades (math, history, social studies and sci-
ence). We calculate an index.

e \We take the network comprising the largest number of individuals for
our exercise, with 107 nodes.




Topology: theory and empirics (8/12)

For this network, we focus on:

e the degree connectivity of each node k;, : = 1, ..., 107

e the student achievement for each node e;, : = 1,...,107




Topology: theory and empirics (9/12)

e We transform the performance measure. We write e; = s? exp(g;).

e In equilibrium k;/s; = k/s. Thus e; = (%ki>ﬁexp(si).

e We run the regression: log(e;) = § + Blog(k;) + ¢;.

e We find 6 = .0686 and 8 = 1.3264, significant at 10% and 1%.

AN
AN
.

e We then change variables: s; = eil/ﬁ, so log (s/k) = log [5/5]

o Since k= a(b)s?, and s; = b,(;)s, s; = 13




Topology: theory and empirics (10/12)

b .. ~
e We do an ML fit of: s; = Z{dexp[—3§/B] + v; conditional on a(b) <
a(b)
2/3+/3

e First only four different types (b1,...,b4) - agents to types by quartiles.

e Then ten parameters (bq,...,b10), in deciles.

e \We obtain:

(a;by,...,bg) (0.1857;1.75,1.87,1.98,2.11)
(a;by,....,b19) = (0.2097;1.21,1.33,1.42,1.55,1.61,1.76,1.85,1.90,1.99, 2.




Topology: theory and empirics (11/12)

e Easy to check, that individuals rank partners in decreasing value of their
type for the high equilibrium(the opposite order for the low equilibrium).

e In this particular case, the only stable pairwise matching groups types
1 with types 2, and types 3 with types 4.

e [ his stable matching does not maximize social welfare at the high
equilibrium.

e Allowing groups with more than two types, the ordering for type 1 at
high equilibrium is: (1,3,4), (1,4), (1,2,3,4), (1,2,4), (1,3), (1,2,3),
(1,2).




Topology: theory and empirics (12/12)

We can also use the estimated types to illustrate comparative statics of a
mean preserving spread.

e Divide the 107 nodes into 27 agents of each type.

e [ hen, let x individuals type 1 and 4, and 54 — z individuals for type 2
and 3, and vary xz from 1 to 53.

e \We observe numerically the monotonicity of in prop. 6.

e And, for this parameters, the utility of types 3 and 4 (not covered in
prop 6) changes in the same direction as the others.




The case of homogeneous populations (1/5)

e Remark 7 implies that individuals of the highest type prefer to segre-
gate.

e A simple induction argument justifies that the highest types of any
heterogeneous subgroup would want to segregate.

e One would expect that some homogeneous groups to exists in a given
society.

e \We can also conduct some robustness checks on the technology and
further insights on topology.




The case of homogeneous populations (2/5)

Player ¢'s utility is:

n 1 1 .
u;(s, k) = bs; + a Z DijS;S; — c—l-—lsg_l_l — C_|_—1kZC+ : (9)

where a,b > 0 and ¢ > 1. The case ¢ = 1 corresponds to quadratic costs.
AS c increases, the cost function becomes steeper.

j=1

We introduce ¢ : R — R given by:

1
1 17¢
Qb (33) — cct1 [wc—l—l . b1+E] +1 .




The case of homogeneous populations (3/5)

e For large populations, up to two interior symmetric equilibria solving:

k¢ = as?
{sc[l—ak]Zb ’ (10)
with added condition £* < ¢ (s*). This is equivalent to:
1 C 1
Lk R\ xc+1  pxc+1 1+ _ .  (pl/c
uZ(S’k)_—c—l—l[Cs k }>—b —uz<b ,O). (11)

—c+1

e The condition k* < ¢ (s*) guarantees that (bl/c, O) is not a strict best-
response player ¢ to the rest playing (s*, k™).

Proposition 8 Suppose that (10) has three different solutions. Let (s*, k*) >
(s*™,k**) be the two ranked interior symmetric approximate equilibria for
large population. When a increases, s** and k** increase, while s* and k*
decrease. In both cases, the percentage change in k is higher than that of

S.




The case of homogeneous populations (4/5)

T he topology of Erdos-Rényi equilibrium networks

e In the Erdds-Rényi (Bernoulli) random networks that correspond to
the interior equilibria expected number of links is k

e Network connectivity (or degree) is not correlated across different
nodes.

e When k* < 1, the networks is composed of a huge number of disjoint
small trees.

e When k™ > 1, a single giant component that encompasses a high
fraction of all the network nodes emerges.




The case of homogeneous populations (5/5)

Proposition 9 When a > 1, no equilibrium network has a giant compo-
nent. Suppose that a < 1 and that there are two non-empty equilibrium
networks. Then, the two equilibrium networks display different topological
characteristics (one network with a giant component, one without) if and

only if ab2/¢ < (1 — a)?/¢. If, instead, ab2/¢ > (57
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