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1 Introduction

External effects (spillovers) pervade economies and societies in general. Both inter and intra

industry cross fertilization between firms have been the object of study, since at least the

work of Marshall (1890) for the former, and Jacobs (1969) for the latter. Social interactions

also have a crucial importance in the determination of individuals’ well-being, as pointed

early by Becker (1974) and recently emphasized by the literature on “social capital” (Putnam

2000.)1

Given the importance and pervasiveness of these external effects, it is natural that indi-

viduals and firms may want to control and manipulate the size and scope of those external

benefits to their advantage. For example, regional economists have shown convincingly that

economic agents agglomerate in few locations in the economic landscape, precisely in order to

reap these localization externalities (Ciccone and Hall 1996). In a similar vein, d’Aspremont

and Jacquemin (1988)2 demonstrate that it is difficult to understand technological collabora-

tion agreement between firms (“joint ventures” and other similar contracts) without thinking

that these are done to control external effects. The persistent stratification of social groups

among many dimensions (income, race, education) is prima facie evidence of the desire of

social groups to arrange themselves so as to internalize spillovers (Tiébout 1956, Bénabou

1993).

The previous literature, however, has mostly overlooked that the process of socialization

is expensive. For instance, the studies of strategic alliances between firms do not recognize

that the formation of collaborative agreements detracts resources that could be used e.g. in

the R&D effort. The work on localization does take into account that the choice (or change)

of location is costly. But it typically assumes that once location is chosen, the external effect

flow freely to all agents in the given location. This disregards the fact that access to many

externalities arising from location requires some sort of effort. For example, Akerlof (1997)

discusses the ethnographic observation that individuals moving to different locations in order

to benefit from social public goods, often encounter difficulties in reaping the benefit from

the move.

Our aim is to understand how economic agents decide to allocate resources when both

“socialization” and their own productive effort are expensive. This will allow us, in addition,

to propose a framework for the analysis of optimal public policies.

For this purpose, we analyze a two-stage model. In the first stage, agents make a costly

1Sobel (2002) offers a critical survey of this literature.
2See also Suzumura (1992).
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socialization effort. The collection of such efforts determines how they benefit from the

productive effort of others. In other words, the marginal value of the external effect depends

on the collective socialization effort. In the second stage, agents undertake a costly productive

effort, which delivers two types of benefits, an external and an internal one. The internal

benefit is partly random and heterogeneous. The realization of this random component is

known at the time when productive effort is taken, but unknown when deciding socialization

effort. This allows to have idiosyncratic heterogeneity in productive decisions, net of external

effects.

An innovation of our study is that the socialization effort is generic. That is to say,

socialization efforts are not ear-marked for each candidate partner, and fine-tuned to each

specific relationship. Socializing is not amenable here to elaborating a nominal list of in-

tended relationships, as in the literature on network formation surveyed by Jackson (2005).

Rather, we assume that agents devote a (joint) amount of resources to socializing with oth-

ers, whomever these others are. Socialization is thus captured by a scalar, rather than a

vector of decisions telling how much to socialize with every other agent. This way to model

the socialization process seems realistic to us.3 It also improves greatly the tractability of

the model, and opens the door to a full-fledged welfare analysis and to the proposal of public

policies.

It is important to note that modelling socialization as a compound effort does not prevent

the emergence of a rich pattern of social relationships. In fact, even though the socialization

effort is somehow anonymous, our model allows for ties involving different pairs of partners

to be assigned different strengths, depending on the identity of this tie’s partners. More

precisely, we assume that the socialization effort of a given agent determines the aggregate

strength of ties in which this agent is involved. Then, the collection of socialization efforts

by the remaining agents determines how this overall strength of ties is distributed (disaggre-

gated) into different ties’ intensities. We take each tie’s strength to be proportional to the

socialization effort undertaken by the partners in the tie.

We first characterize the equilibria of the model. This equilibrium turns out to be unique,

when a sufficiently large number of firms is implicated. The uniqueness result is somewhat

surprising given the complication of the model, but more importantly, it is very useful to

obtain welfare conclusions. Furthermore, this equilibrium is symmetric (all the companies

3The researchers go to fairs, or congresses to listen, to be listened to, and to meet other investigators
in general. More generally, face-to-face meetings among agents that share a common location often result
from random encounters among these agents, as the early literature on segregation indexes already points
out (Bell 1955).
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invest the same). A second important question is how a change in the return to the innova-

tion affect the relative effort of research and socialization. The answer is that the effect is

relatively stronger on socialization. This would explain, for example, the explosion in agree-

ments of collaboration in R&D in the recent past (Caloghirou, Ioannides, Vonortas 2003).

It could also explain the decline in social capital documented by Putnam (2000). Finally,

we discuss aspects of social welfare and public policies. As expected, given the external

effects, the investments are sub-optimal and therefore the public agents should be interested

in subsidizing it. We uncover the conditions under which it is better to dedicate the first

unit of subsidy to the socialization effort rather than the productive effort.

2 The game

N = {1, . . . , n} is a set of players.

We consider a two-stage game of network formation and R&D investment.

Stage one. Each player i selects a number ki > 0. Let k = (k1, ..., kn) be a choice

profile, and k =
∑

i∈N ki/n its average coordinate. Then, i and j interact with probability:

gij(k) = gji(k) =
kikj

nk
. (1)

The case i = j corresponds to an unmatched player. The expected connectivity of i is ki. Let

G(k) = [gij(k)]i,j∈N . This is the n−symmetric adjacency matrix for the expected realization

of the network with random links (1).

[explain the Poisson meeting process].

Interim stage. Players know k and the profile of realized idiosyncratic shocks ε =

(ε1, ..., εn), where the εis are i.i.d. random variables with common cumulative distribution

function F (·) on [ε, ε], expected value ε, and variance σ2
ε .

Stage two. Each player i selects a number si > 0. Let s = (s1, ..., sn) be a choice profile.

Let pij = gij if i 6= j, and pii = gii/2. Player i’s utility is:

ui(k, s; ε) = [b + εi + α
n∑

j=1

pijsj]si −
1

2
s2

i −
1

2
k2

i

where b > 0 and α ≥ 0.

QQQWe restrict our analysis to the set Ω = {k|αk2
i < nk, ki ≥ 0,∀i ∈ N}QQQ
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3 Equilibrium characterization for large economies

3.1 The ε− equilibrium

Definition 1 An ε−equilibrium is a set of mappings s∗(k) = (s1(k), ..., sn(k)) and a profile

k∗ such that:

(a) given an outcome k for the first-stage game, s∗(k) is a Nash equilibrium of second-stage

game with payoff functions ui(k, ·; ε), for all i;

(b) given a set of mappings s∗(k), k∗ is an ε−Nash equilibrium for the first-stage game

with payoff functions vi(·) = EF ui(·, s∗(·); ε), that is, for all player i and k′, we have

|vi(k
∗)− vi(k

′)| < ε.

In words, SPNE with almost best reply in first stage.

We now characterize the ε−equilibria of the game.

Given a profile k = (k1, ..., kn), let:

λ(k) =
αk

k− αk2
,

where k2 =
∑

i∈N k2
i /n. For a given average coordinate k, the parameter λ(k) increases with

the variance of the coordinates of k, with a rate of increase monotone in α. Also, for a given

variance of these coordinates, λ(k) decreases with the average coordinate k, again with a

rate monotone in α.

Define the following symmetric matrix:

M(k)= [I−αG(k)]−1 =
+∞∑
p=0

αpGp(k).

The coefficient mij(k) counts the total number of direct and indirect paths in the expected

network G(k), where paths of lenght p are weighted by the decaying factor αp. We show

that:4

mij(k) =

{
λ(k)gij(k), if i 6= j

1 + λ(k)gii(k), if i = j
.

Define βi(k) = mi1(k) + ... + min(k). This is the sum of all paths stemming from i in the

expected network where links are independently and randomly drawn with probability (1).

It is readily checked that:

βi(k)=1 + λ(k)ki.

4See Lemma in appendix.
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The vector β(k) is a measure of centrality in the random graph G(k), reminiscent of the

Bonacich centrality measure for fixed networks. Note that, for a given value of λ(k), βi(k)

increases with ki.

Theorem 1 Suppose that 2α(b + ε) < 1. For any ε > 0 there is a population size n∗ such

that, for any n > n∗, the game has a unique pure strategy ε−equilibrium. This equilibrium

is symmetric and given by:

s∗(k, ..., k) = bβ(k, ..., k)+M(k, ..., k) · ε

k∗ =
1

2α

(
1−

√
1− 4(b + ε)2α2

)
Denote by s∗(k) any coordinate of s∗(k, ..., k), that gives the individual strategy at the

second-stage game.

The support of ε has to be such that s∗(k) ≥ 0 for all k. For instance, a sufficient

condition is that the support of ε is positive, that is, ε ≥ 0.

From the first-stage perspective, s∗(k, ..., k) is a random vector with a deterministic

component, given by bβ(k, ..., k), and a stochastic component, given by the random vec-

tor M(k, ..., k)·ε. The deterministic component is the same for all players. The realizations

of the stochastic component, though, vary across players with the εis. As a result, the

own-investment equilibrium efforts that are actually undertaken are generally heterogeneous

across players. This heterogeneity, though, can be correlated across individuals. This is

because each coordinate of the random vector is a mixture of all the εis. The resulting

pattern of correlation depends on the network of connections through M(k, ..., k). In fact,

these correlations reflect the spillovers coming from the socialization efforts, and thus vary

with these efforts and the resulting network.

We can also compute the social multiplier of a given player i, that is, the impulse response

of the aggregate outcome to the shock εi. We have:

∂

∂εi

∑
j

s∗j(k)=
∑

j

mij(k) = βi(k),

which gives yet another interpretation to the Bonacich centrality.

The socialization effort is identical for all individuals in the ε−equilibrium. At equilib-

rium, the marginal cost of an extra unit of effort, ki has to equal the marginal benefit from

this extra effort. As societies becomes sufficiently large this marginal benefit is equal to

b2λ(k). The variable λ(k) summarizes the direct and indirect effects of spillovers on the

choice of socialization efforts. There is an obvious effect from the spillovers exerted by di-

rect contacts in the network. Since the direct contacts themselves experience an influence
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from their own direct contacts, this also affects socialization indirectly. Obviously, this can

proceed inductively (but with decaying strength) to generate effects that span the whole

network.

Denote by 1 the vector of ones. In the sequel, when k has identical coordinates, that is,

k =k1, we use indistinguishly k or k.

Example 1 Suppose that the εis follow a truncated normal distribution on the positive real

line with expected value ε. Then, from the first-stage perspective (prior to the interim stage),

the second-stage equilibrium vector s∗ follows a truncated multivariate Normal process on

the positive orthant.5 The vector of expected values is µ(k)= (b + ε) β(k). The variance-

covariance matrix is Ω(k) = σ2
εM

2(k), with:

ωij(k) = σ2
ε

{
λ(k)gij(k)[2 + λ(k)k2

k
], if i 6= j

1 + λ(k)gii(k)[2 + λ(k)k2

k
], if i = j

.

In particular, the aggregate equilibrium profile follows a (univariate) truncated normal process:∑
j

s∗j(k)∼N(µa,σ
2
a),

where {
µa = n(b + ε)

[
1 + λ(k)k

]
σ2

a = nσ2
ε

[
1 + 2λ(k)k + λ2(k)k2

]
QQQinsert figure for the case n = 2 showing ellipse contours of the quantiles of this dis-

tribution on the two-dimensional space [use Mathematica and the add-on package Statistics

’MultinormalDistribution loaded from Statistics].QQQ

From now on, we assume throughout that 2α(b + ε) < 1.

3.2 Exact equilibria

Theorem 2 There is a population size n∗ such that for any n > n∗, there exists a pure

strategy equilibrium. In all pure strategy equilibria, the strategies for all players (ki, si(k))

converge to (k∗, s∗(k)) as n goes to infinity.

5See, e.g., Horrace (2005) and references therein.
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4 Socialization and investment: the response to incen-

tives

4.1 Relative response of s and k to a change in (α, b, ε, σε)

Proposition 1 Let the exogenous payoff parameters (α, b, ε, σε) be scaled by a common

multiplicative factor 1/
√

2α(b + ε) > δ ≥ 1. Then, at the unique ε− equilibrium, k∗ increases

more than EF s∗(k∗) in percentage terms.

Strengthening the marginal return of all efforts tends to increase directly own investment

si, for every individual: There are extra effects that come from the synergistic payoff.

4.2 Reaching the giant component: phase transition

Proposition 2 Let the exogenous payoff parameters (α, b, ε, σε) be scaled by a common

multiplicative factor 1/
√

2α(b + ε) > δ ≥ 1. There exists a threshold α such that, for α < α,

when δ reaches a threshold value of δ∗, the ε−equilibrium network jumps discontinuously

from a fragmented graph (with several disconnected components) to a highly connected graph

(with a single giant component).

Phase transition Symmetric equilibrium yields to an Erdös-Rényi random graph where

each link follows a binomial process of common parameter k∗/n given by Theorem 1. As n

increases, the following holds almost surely: when k∗ > 1 (resp. k∗ < 1), a giant component

arises encompassing a non-negligible fraction of nodes (resp. amost all nodes are part of

small trees of negligible size). The case k∗ = 1 corresponds to a discontinuity in network

topology.

We are looking here at the possibility that as δ varies we go discontinuously from a state

where there are several disconnected components to one with a single giant component in the

network. The transition happens when k = 1, thus we will look for values of the parameter

δ (and obviously, others) such as k goes from below the value of 1 to above that value.

5 Policies: how should you spend your first dollar?

Theorem 3 When α2σ2
ε > 3/4, the first unit of subsidy is always optimally allocated to

socialization effort, ki. When α2σ2
ε < 3/4 the first unit of subsidy is optimally allocated to

socialization effort ki if and only if the expected marginal return to own investment, b + ε,

is low enough.

8



References

[1] Akerlof, George A. (1997) “Social distance and social decisions,” Econometrica 65, 1005-

1027.
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Appendix

Proof of Theorem 1: We proceed by backwards induction. We first solve for the

second-stage game.

Lemma 1 When pii < 1/2α, the unique interior Nash equilibrium in pure strategies of the

second-stage game is

s∗(k) = bβ(k)+M(k)·ε. (2)

Proof. Fix k and ε, a realization of the εis. Provided payoffs are concave in own actions,

the interior equilibria solve ∂ui(s,k; ε)/∂si = 0, for all i = 1, ..., n, which is equivalent to

[I−αG(k)] · s = b1 + ε.This system of linear equations has a unique generic solution, given

by (2). The condition for concavity in own actions, ∂2ui(s,k; ε)/∂s2
i < 0, is equivalent to

pii < 1/2α.

We now solve for the first-stage game. Given (2), the expected payoffs are:

vi(k) = EF ui(k, s∗(k); ε) = (b + ε)EF (si) + αEF (
n∑

j=1

pijsisj)−
1

2
EF (s2

i )−
1

2
k2

i

= (b + ε)2βi(k) + α
∑

j

pijωij −
1

2
ωii −

1

2
k2

i .

In the sequel, we omit the parameter k when there is no risk of confusion. Also, we use the

shortcut b′ = b + ε.

The first-order conditions for the Nash equilibrium of the first-stage game lead to the

following equation:

ki = b′2
∂βi

∂ki

+ α
∑

j

[
pij

∂ωij

∂ki

+
∂pij

∂ki

ωij

]
− 1

2

∂ωii

∂ki

, (3)

where:
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∂λ

∂ki

=
α2

n

2ki − k2(
k − αk2

)2

∂βi

∂ki

= λ(k) + ki
∂λ

∂ki

∂pij

∂ki

=
∂gij

∂ki

=
1

n

[
kj

k
− kikj

nk
2

]
, if i 6= j

∂pii

∂ki

=
1

2

∂gii

∂ki

=
1

2n

[
ki

k
− k2

i

nk
2

]
1

σ2
ε

∂ωij

∂ki

=

(
2 + λ

k2

k

)[
∂λ

∂ki

gij +
∂gij

∂ki

λ

]
+ λgij

[
∂λ

∂ki

k2

k
+

1

n

(
2λ

ki

k
− λ

k2

k
2

)]
1

σ2
ε

∂ωii

∂ki

=

(
2 + λ

k2

k

)[
∂λ

∂ki

gii +
∂gii

∂ki

λ

]
+ λgii

[
∂λ

∂ki

k2

k
+

1

n

(
2λ

ki

k
− λ

k2

k
2

)]
.

When k is symmetric, that is, k1 = ... = kn = k = ngij = k, and k2 = k
2

= k2, these

expressions become:

λ =
α

1− αk
(4)

∂λ

∂ki

=
1

nk
(2− k)λ2

∂βi

∂ki

= λ +
1

n
(2− k)λ2

∂pij

∂ki

=
∂gij

∂ki

=
1

n

(
1− 1

n

)
, if i 6= j

∂pii

∂ki

=
1

2

∂gii

∂ki

=
1

2n

(
1− 1

n

)
1

σ2
ε

∂ωij

∂ki

= 2
λ2

n2
(2− k) (1 + λk) +

λ2k

n
+

2λ

n

(
1− 1

n

)
,

and (3) can now be written as follows:

k = b′2λ +
b′2

n
(2− k)λ2 (5)

+
λ

n
σ2

ε

[
2
λ2

n2
(2− k) (1 + λk) +

λ2k

n
+

2λ

n

(
1− 1

n

)][
α

k

n

(
n− 1

2

)
− 1

2

]
+ασ2

ε

1

n

(
1− 1

n

)[
1

2
+

(
n− 1

2

)[
λ

k

n
(2 + λk)

]]
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Lemma 2 Let k∗(n) be a solution to (5). Then, k∗(n) ∈ O(1) when n → +∞.

Proof. Suppose not. Then, k∗(n) ∈ O(np) when n → +∞, for some p > 0. This implies

that limn→+∞ λ(k∗(n))k∗(n) = −1, and limn→+∞ λ(k∗(n)) = 0, and then:

lim
n→+∞

(b′2λ(k∗(n)) +
b′2

n
(2− k∗(n))λ(k∗(n))2) = 0 (6)

lim
n→+∞

λ(k∗(n))

n
σ2

ε

[
2
λ(k∗(n))2

n2
(2− k∗(n)) (1 + λ(k∗(n))k∗(n)) + (7)

λ(k∗(n))2k∗(n)

n
+

2λ(k∗(n))

n

(
1− 1

n

)][
α

k∗(n)

n

(
n− 1

2

)
− 1

2

]
= 0

lim
n→+∞

ασ2
ε

1

n

(
1− 1

n

)[
1

2
+

(
n− 1

2

)[
λ

k∗n
n

(2 + λ(k∗n)k∗n)

]]
= 0

Therefore, the right-hand side of (5) evaluated at k∗(n) tends to zero when n → +∞, while

the left-hand side tends to infinity, which is a contradiction.

Lemma 3 Let k∗(n) be a solution to (5). Then, there exists an n∗ such that, for all n > n∗,

the second-order conditions associated to (5) hold if and only if ∂k∗(n)/∂α > 0.

Proof. By the implicit function theorem, we have:

∂2vi

∂k2
i

= −∂2vi/∂ki∂α

∂ki/∂α
.

Therefore, the second-order condition ∂2vi/∂k2
i ≤ 0 holds if and only if ∂2vi/∂ki∂α and

∂ki/∂α are of the same sign. We have:

1

σ2
ε

∂2vi

∂ki∂α
=

∂mii

∂ki

+
1

σ2
ε

∑
j

[
pij

∂ωij

∂ki

+
∂pij

∂ki

ωij

]
.

Let k∗(n) be a solution to (5). We know that k∗(n) ∈ O(1), when n → +∞. In particular,

this implies that λ(k∗(n)) ∈ O(1). Using (4) we then get, when n → +∞:

∂mii

∂ki

=
λ(k∗(n))

n
+ o(

1

n
)

1

σ2
ε

[
pii

∂ωii

∂ki

+
∂pii

∂ki

ωii

]
=

1

2n
+ o(

1

n
)

1

σ2
ε

∑
j 6=i

[
pij

∂ωij

∂ki

+
∂pij

∂ki

ωij

]
=

2λ(k∗(n))

n
(2 + λ(k∗(n))k∗(n))k∗(n) + o(

1

n
)
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Therefore, when n → +∞, we have

1

σ2
ε

∂2Eui

∂ki∂α
=

λ(k∗(n))

n
+

1

2n
+

2λ(k∗(n))

n
(2 + λ(k∗(n))k∗(n))k∗(n) + o(

1

n
),

which implies that ∂2Eui/∂ki∂α > 0 for n high enough. Therefore, as n → +∞, the

second-order condition associated to (5) holds at k∗(n) if and only if ∂k∗(n)/∂α > 0.

Lemma 4 For all ε > 0, there exists n∗ such that, for all n > n∗, the two-stage game has a

unique symmetric ε−equilibrium (s∗(k), k∗) where s∗(k) is given in (2) while :

k∗ =
1

2α

(
1−

√
1− 4(b + ε)2α2

)
.

Proof. By Lemma 2, any solution k∗(n) to (5) is such that k∗(n) ∈ O(1) when n gets

larger. This implies that:

lim
n→+∞

(
b2

n
(2− k∗(n))λ(k∗(n))2) = 0 (8)

lim
n→+∞

λ(k∗(n))

n
σ2

ε

[
2
λ(k∗(n))2

n2
(2− k∗(n)) (1 + λ(k∗(n))k∗(n)) (9)

+
λ(k∗(n))2k∗(n)

n
+

2λ(k∗(n))

n

(
1− 1

n

)][
α

k∗(n)

n

(
n− 1

2

)
− 1

2

]
= 0

lim
n→+∞

ασ2
ε

1

n

(
1− 1

n

)[
1

2
+

(
n− 1

2

)[
λ(k∗(n))

k∗(n)

n
(2 + λ(k∗(n))k∗(n))

]]
= 0

Let k∗ = limn→+∞ k∗(n), which is well defined. Taking limits in (5) we deduce that:

k∗ = (b + ε)2λ(k∗). (10)

So, the equilibrium candidates must solve:

k∗ − αk∗2 − (b + ε)2α = 0 (11)

There are two roots, which are:

k∗∗ =
1

2α

(
1 +

√
1− 4(b + ε)2α2

)
and k∗ =

1

2α

(
1−

√
1− 4(b + ε)2α2

)
It is easy to check that:

∂k∗∗

∂α
> 0 and

∂k∗

∂α
< 0

13



Using Lemma 3, the only root that satisfies the second-order condition is k∗. We now check

that the condition pii(k) < 1/2α in Lemma 1 holds for k = k∗. Given that pii(k
∗) = k∗/2n,

this is equivalent to 1−
√

1− 4(b + ε)2α2 < 2n, which is always true.

Finally, we show that there is no asymmetric ε−Nash equilibrium of the first-stage game

when the second-stage strategies are s∗(k) given in (2). Let k∗(n) = (k∗1(n), ..., k∗n(n)) be

a profile that solves the system of equations given by (3), i = 1, .., n. Following the same

reasoning than Lemma 2, it is readily checked that the first-order conditions for player i

becomes:

ki = b2∂βi

∂ki

,

when n gets larger. Furthermore, for n large, we have

lim
n→+∞

∂λ(k∗(n))

∂ki

= 0,

and, thus:

lim
n→+∞

∂βi(k
∗(n))

∂ki

= λ(k∗(n)) =
αk∗(n)

k∗(n)− αk∗(n)2

which does not depend on i. Therefore, limn→+∞ k∗i (n) ≡ k∗i = b2λ(k∗(n)), and k∗1 = ... =

k∗n = k.

Proof of Theorem 2: In process.

Proof of Proposition 1: Let’s scale up the exogenous payoff parameters (α, b, ε, σε) by

a common multiplicative factor δ ≥ 1. Let ε > 0. Take n large enough such that Theorem 1

for this ε. Let (k∗, s∗(k)) be the unique ε−equilibrium of the game, and let EF s∗ = s∗(k∗) be

the expected players’ equilibrium play at the second-stage game. We compute the elasticity

η∗ that keeps track of the relative changes on k∗ and EF s∗ under the δ−rescaling of the

parameters, that is:

η∗ =
k∗

EF s∗

∂EF s∗

∂δ
∂k∗

∂δ

.

From now on, we omit the superscript ∗.

We know from (2) that EF s(δ) = δ(b+ε)β(k(δ)). By definition, β(k(δ)) = 1+λ(k(δ))k(δ),

and by (10) we have k(δ) = δ2(b + ε)2λ(k(δ)). Altogether, this implies that:

EF s(δ) = δ(b + ε) +
k(δ)2

δ(b + ε)
. (12)

From now on, we set b′ = b + ε.

14



Using (12) we then compute the elasticity and get:obtain:

η =
k

EF s

b′ − k2

δ2b′

∂k
∂δ

+
2k2

δb′EF s
.

Using the expression for k in Theorem 1, we get:

∂k

∂δ
= −k

δ
+ 4αb′2δ2 1

1− 2αδk
.

Therefore, ∂k/∂δ > k/δ if and only if 2αb′2δ3 − k + 2αδk > 0. But, we know from (11)

that k(δ) solves k − αδk2 − αb′2δ3 = 0. Therefore, the previous inequality is equivalent to

k(δ) > 0, which is true as long as the solution to (11) is well-defined, that is, 1 ≤ δ < δ,

with δ = 1/
√

2αb′ > 1.

Suppose that 1 ≤ δ < δ. Then, the elasticity is such that η < 1 if and only if the following

holds:
k

EF s

(
b′ − k2

δ2b′

)
<

(
1− 2k2

δb′EF s

)
∂k

∂δ
,

where ∂k/∂δ > k/δ > 0. A sufficient condition is:

k

EF s

(
b′ − k2

δ2b′

)
≤
(

1− 2k2

δb′EF s

)
k

δ
.

Rearranging terms this is equivalent to:

δ2b′2 + k2 ≤ δb′EF s,

which, from (12), holds with equality.

Proof of Proposition 2: By Theorem 1, at the unique symmetric ε−equilibrium, all

players undertake the same socialization. The random network of links thus corresponds

with a canonical binomial Erdös-Rényi network where each link if formed with the common

probability k∗(δ)/n. For these networks, a giant component emerges abruptly with k∗(δ)

when k∗(δ) = 1, which, after some algebra, is equivalent to:

α(b + ε)δ3 + αδ − 1 = 0.

This is a polynomial in δ of degree 3. Denote it P (δ).

Recall that 1 ≤ δ < δ, with δ = 1/
√

2α(b + ε) > 1. We have P (1) = α(b + ε) + α− 1 <

0 ⇔ α(1 + b + ε) < 1, while P (δ) > 0 is equivalent to 1 + 4α2 + 2α > 8α(b + ε). So, all we

need to find is values of α and b + ε such that the following three conditions hold:

15



1. 2α(b + ε) < 1.

2. α(1 + b + ε) < 1.

3. 1 + 4α2 + 2α > 8α(b + ε).

Fix b + ε. When α = 0, the three conditions hold trivially. By continuity, there exists an

α, which depends on the value of b + ε, such that the conditions hold for α < α(b + ε).

For instance, suppose that b + ε < 1. Then, condition 2 implies condition 1, and a

sufficient condition for 3 is 4α2 − 6α + 1 > 0, true when 0 ≤ α < (3 −
√

5)/4. Then, when

b + ε < 1, a sufficient condition for 1 through 3 is 0 ≤ α < (3−
√

5)/4.

Proof of Theorem 3: We assume that the technology for producing k and s can be

represented by Lk =
√

k and Ls =
√

s. The planner subsidizes a fraction of the cost of the

inputs. We denote by 1−θ (resp. 1− τ) the fraction of own-effort (resp. socialization effort)

being subsidized. The corresponding subsidized utilities are:

uθ,τ
i (k, s; ε) = [b + εi + α

n∑
j=1

pijsj]si −
1

2
θs2

i −
1

2
τk2

i .

Let ε > 0 and suppose that n is high enough. At the unique ε−equilibrium, the second-stage

strategy is given by Theorem 1 where the exogenous parameters are (α/θ, b/θ, ε/θ, σ2
ε/θ

2),

while the first-stage strategy is

k∗ =
θ

2α

[
1−

√
1− 4

(b + ε)2α2

θ4τ

]
. (13)

In particular, the expected payoffs at the ε−equilibrium are:

EF uθ,τ
i (k) =

(b + ε)2

θ2
− 1

2

σ2
ε

θ2
+

1

2
τk2.

We now compute and compare the effect of a first unit of subsidy on s (by decreasing θ) and

on k (by decreasing τ). More precisely, denote by dT = 1 the first unit of subsidy, where

T = (1− θ)s2 + (1− τ)k2.

In what follows, we set b′ = b + ε.

Suppose first that s, and only s, is subsidized, that is, dτ = 0. All the change in dT

corresponds to a change dθ in θ. Then:

∂EF uθ,τ
i

∂T

∣∣∣∣∣
dτ=0,dθ>0

=

∂EF uθ,τ
i (k)

∂θ

2(1− θ)s∂s
∂θ

+ 2(1− τ)k ∂k
∂θ
− s2

.
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Starting from a situation with no subsidy, that is, θ = τ = 1, this becomes (with trivial

notations, and after some algebra):

∂EF udθ>0
i

∂T
= − 1

s2

∂EF ui

∂θ
= −α2b′2

k2

[
−2b′2 + σ2

ε + k
∂k

∂θ

∣∣∣∣
θ=τ=1

]
. (14)

Suppose now that k, and only k, is subsidized, that is, dθ = 0. Now, all the change in

dT corresponds to a change dτ in τ . We have:

∂EF uθ,τ
i

∂T

∣∣∣∣∣
dτ>0,dθ=0

=
∂EF uθ,τ

i (k)

2(1− τ)k ∂k
∂τ
− k2

.

Again, starting from a situation with no subsidy where θ = τ = 1, we have:

∂EF udτ>0
i

∂T
= − 1

k2

∂EF ui

∂τ
= −1

2
− 1

k

∂k

∂τ

∣∣∣∣
θ=τ=1

. (15)

We now compute (14) and (15).

From (13), we obtain:
∂k

∂θ

∣∣∣∣
θ=τ=1

= k − 4αb′2√
1− 4b′2α2

,

and
∂k

∂τ

∣∣∣∣
θ=τ=1

= − αb′2

1− 2αk
.

Let:

∆ =
∂EF udθ>0

i

∂T
− ∂EF udτ>0

i

∂T
= 2

α2b′4

k2
− α2b′2

k2
σ2−α2b′2 +

4α3b′4

k (1− 2αk)
+

1

2
− 1

k

αb′2

1− 2αk
. (16)

Then, a first unit of subsidy to k has a higher overall impact than a first unit of subsidy to

s if and only if ∆ < 0.

Noting that k = αk2 + αb′2 from (11), and that 2αk < 1 from (13), we have:

−α2b′2 +
4α3b′4

k (1− 2αk)
=

α2b′2

k (1− 2αk)

[
k + 2αb′2

]
< 0,

and:
1

2
− 1

k

αb′2

1− 2αk
=

k − 2αk2 − 2αb′2

2k(1− 2αk)
=

−k

2k(1− 2αk)
.

Therefore, we can write:

∆ = 2
α2b′4

k2
− α2b′2

k2
σ2

ε +
α2b′2(k + 2αb′2)

k (1− 2αk)
− k

2k(1− 2αk)
.
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Then, with some algebra:

2k2(1− 2αk)∆ =
(
2αb′2 − k

) [
2αb′2 + k − 2α2b′2k

]
− 2α2b′2(1− 2αk)σ2

ε .

Let x = 4α2b′2 ∈ [0, 1]. Then 2αk = 1−
√

1− x and ∆ < 0 can be rewritten as:

gα,σε(x) =
1

2α2

(
x− 1 +

√
1− x

) (x

2
+ 1−

√
1− x +

x

2

√
1− x

)
− x

√
1− xσ2

ε < 0.

Note that gα,σε(0) = gα,σε(1) = 0.

Let y =
√

1− x , so that x = 1−y2. Define h(y) = 8α2
√

1− x g′α,σ(x) on [0, 1]. Derivating

gα,σε(x), substituting by y and rearranging terms gives:

h(y) = (1− y)
(
−3 + 5y + 5y2 + 5y3

)
−
(
3y2 − 1

)
γ,

where γ = 4α2σ2
ε ≥ 0. This is a polynomial of degree four on [0, 1]. We can deduce the sign

of g′α,σε
from that of h on [0, 1].

Derivating twice we have h′(y) = −20y3 − 6γy + 8, and h′′(y) = −60y2 − 6γ ≤ 0,

∀y ∈ [0, 1], λ ≥ 0. Hence, h′ decreases in [0, 1], with h′(0) = 8 > 0 and h′(0) = −12−6γ < 0.

Therefore, h′ has a unique root on (0, 1), denoted by y′, h increases in (0, y′) and decreases

on (y′, 1), with h(0) = γ − 3 and h(1) = −2γ < 0.

Note that g′α,σ(0) = h(1)/8α2 < 0, and:

lim
x↑1

g′α,σε
(x) =

{
+∞ if γ > 3

−∞ if 0 ≤ γ < 3
.

Suppose, first, that γ > 3, that is, α2σ2
ε > 3/4. Then, h has a unique root in (0, 1),

denoted by y∗, implying that g′α,σε
(x) has also a unique root on (0, 1), given by x∗ = 1− y∗2.

Therefore, gα,σε decreases on (0, x∗) and increases on (x∗, 1). Given that gα,σε(0) = gα,σε(1) =

0, we deduce that gα,σε(x) < 0 on (0, 1).

Suppose, now, that γ < 3, that is, α2σ2
ε < 3/4. Then, h has either zero or two roots in

(0, 1). Therefore, there exists an x′ ≤ 1 such that gα,σε(x) < 0 if and only if 0 ≤ x ≤ x′.
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