Microeconomics II - Winter 2006 Chapter 3

Games with Incomplete Information - Bayes-Nash equilibrium

Antonio Cabrales

January 9, 2006

Summary

- Examples → →
- Bayesian games → →
- Bayesian equilibria for examples → →

A Entry and capacity building game.

I,E	е	n
В	0,-1	2,0
\overline{N}	2,1	3,0

I,E	е	n
В	1.5,-1	3.5,0
N	2,1	3,0

In the left-hand side game, the cost of building capacity is 3, in the left-hand side, it is 1.5. Nature chooses left-hand side with probability p. Player 1 is informed (and only him), then both players choose actions simultaneously.

B Contribution game.

1,2	C	N
С	$1 - c_1, 1 - c_2$	$1 - c_1, 1$
N	$1, 1 - c_2$	0,0

Cost, if contribution is chosen, c_i is private information and distributed U[0,2]. Benefit is 1 if at least one contributes.

C Second price auction. Two players, strategies $b_i \in \Re^+, i = 1, 2$.

$$u_1(b_1, b_2) = \begin{cases} v_1 - b_2 & \text{if } b_1 > b_2 \\ \frac{v_1 - b_2}{2} & \text{if } b_1 = b_2 \\ 0 & \text{if } b_1 < b_2 \end{cases}, u_2(b_1, b_2) = \begin{cases} v_2 - b_1 & \text{if } b_2 > b_1 \\ \frac{v_2 - b_1}{2} & \text{if } b_2 = b_1 \\ 0 & \text{if } b_2 < b_1 \end{cases}$$

 v_i is private information and distributed D[0,1].

D First price auction. Two players, strategies $b_i \in \Re^+, i = 1, 2$.

$$u_1(b_1,b_2) = \begin{cases} v_1 - b_1 \text{ if } b_1 > b_2 \\ \frac{v_1 - b_1}{2} \text{ if } b_1 = b_2 \\ 0 \text{ if } b_1 < b_2 \end{cases}, u_2(b_1,b_2) = \begin{cases} v_2 - b_2 \text{ if } b_2 > b_1 \\ \frac{v_2 - b_2}{2} \text{ if } b_2 = b_1 \\ 0 \text{ if } b_2 < b_1 \end{cases}$$

 v_i is private information and distributed U[0,1].

1. Players

$$N = \{1, ..., n\}$$

2. Set of types (for each player)

 $\forall i \in N$, there is a set T_i of types representing what player i knows (preferences, technology, information) $T \equiv \prod_{i=1}^n T_i$. That is, i knows which $t_i \in T_i$ is true, but only knows that t_{-i} is some member of T_{-i} .

3. Probability distribution of types

$$P:T\to [0,1]$$

4. Possible actions

 $\forall i \in N$, there is a set A_i , a generic member is a_i . The generic profile of actions $a = (a_1, ..., a_n) \in A \equiv \prod_{i=1}^n A_i$.

5. Payoffs

 $\forall i \in \mathbb{N}$, there is a function $\Pi_i : T \times A \to \Re$.

To transform this into a game, we need a strategy set

Strategies

 $\forall i \in \mathbb{N}$, a strategy $\gamma_i \in \Gamma_i$ is a function $\gamma_i : T_i \to A_i$.

Bayes-Nash Equilibrium

A strategy profile $\gamma^*=(\gamma_1^*,...,\gamma_n^*)=(\gamma_i^*,\gamma_{-i}^*)\in\Gamma$ is a Bayes-Nash equilibrium if, for all $i\in N,\ \gamma_i\in\Gamma_i$

$$\sum_{t_1 \in T_1} \dots \sum_{t_n \in T_n} P(t_1, \dots, t_n) \pi_i(t_1, \dots, t_n, \gamma_1^*(t_1), \dots, \gamma_i^*(t_i), \dots, \gamma_n^*(t_n)) \ge \sum_{t_1 \in T_1} \dots \sum_{t_n \in T_n} P(t_1, \dots, t_n) \pi_i(t_1, \dots, t_n, \gamma_1^*(t_1), \dots, \gamma_i(t_i), \dots, \gamma_n^*(t_n))$$

We can rewrite this as

$$\sum_{t_{i} \in T_{i}} \sum_{t_{-i} \in T_{-i}} P(t_{i}, t_{-i}) \pi_{i}(t_{i}, t_{-i}, \gamma_{i}^{*}(t_{i}), \gamma_{-i}^{*}(t_{-i})) \geq \sum_{t_{i} \in T_{i}} \sum_{t_{-i} \in T_{-i}} P(t_{i}, t_{-i}) \pi_{i}(t_{i}, t_{-i}, \gamma_{i}(t_{i}), \gamma_{-i}^{*}(t_{-i}))$$

More importantly, this definition is equivalent to:

A strategy profile $\gamma^*=(\gamma_1^*,...,\gamma_n^*)=(\gamma_i^*,\gamma_{-i}^*)\in\Gamma$ is a Bayes-Nash equilibrium if, for all $i\in N,\ a_i\in A_i$ and for all $t_i\in T_i$

$$\sum_{t_{-i} \in T_{-i}} P(t_{-i}|t_i) \pi_i(t_i, t_{-i}, \gamma_i^*(t_i), \gamma_{-i}^*(t_{-i})) \ge \sum_{t_{-i} \in T_{-i}} P(t_{-i}|t_i) \pi_i(t_i, t_{-i}, a_i, \gamma_{-i}^*(t_{-i}))$$

Why?

First note that the definition below certainly implies the one above. Remember that $P(t_i, t_{-i}) = P(t_i)P(t_{-i}|t_i)$, then add over t_i .

Now, suppose the one above did not imply the one below. Then there must exist a type t'_i and an action a'_i with

$$\sum_{t_{-i} \in T_{-i}} P(t_{-i}|t_i') \pi_i(t_i', t_{-i}, a_i', \gamma_{-i}^*(t_{-i})) > \sum_{t_{-i} \in T_{-i}} P(t_{-i}|t_i') \pi_i(t_i', t_{-i}, \gamma_i^*(t_i'), \gamma_{-i}^*(t_{-i}))$$

But then let us construct γ_i' , such that $\gamma_i'(t_i) = \gamma_i^*(t_i)$ for $t_i \neq t_i'$ and $\gamma_i'(t_i') = a_i'$. Then by noticing again that $P(t_i, t_{-i}) = P(t_i)P(t_{-i}|t_i)$ and adding over t_i . we see that

$$\sum_{t_{i} \in T_{i}} \sum_{t_{-i} \in T_{-i}} P(t_{i}, t_{-i}) \pi_{i}(t_{i}, t_{-i}, \gamma_{i}'(t_{i}), \gamma_{-i}^{*}(t_{-i})) >$$

$$\sum_{t_{i} \in T_{i}} \sum_{t_{-i} \in T_{-i}} P(t_{i}, t_{-i}) \pi_{i}(t_{i}, t_{-i}, \gamma_{i}^{*}(t_{i}), \gamma_{-i}^{*}(t_{-i}))$$

and so we reach a contradiction.

Game A

I,∈	е	n
BB	1.5(1-p), -1	2p + 3.5(1-p), 0
BN	2(1-p), -p + (1-p)	2p + 3(1-p), 0
NB	2p + 1.5(1-p), p - (1-p)	3p + 3.5(1-p), 0
NN	2,1	3,0

- Note first that BB and BN are strictly dominated for player I.
- If p > 0.5, n is strictly dominated for E and then there is only one equilibrium (NN,e).
- If $p \le 0.5$, there are two equilibria in pure strategies (NN,e) and (NB,n). There is also an equilibrium in mixed strategies (if p < 0.5), namely ((1/2(1-p), 1-1/2(1-p)), (1/2, 1/2)).

Game B

$$\gamma_i: [0,2] \to \{C,N\}$$
. Let $z_j = \Pr(\gamma_j(c_j) = C)$. Then

$$\pi_1(C, \gamma_2(c_2)|c_1) = 1 - c_1; \pi_1(N, \gamma_2(c_2)|c_1) = z_2$$

Thus the optimal strategy (best-response) is:

$$\gamma_1^*(c_1) = \begin{cases} C \text{ if } c_1 \le 1 - z_2 \\ N \text{ if } c_1 > 1 - z_2 \end{cases}$$

and similarly

$$\gamma_2^*(c_2) = \begin{cases} C \text{ if } c_2 \le 1 - z_1 \\ N \text{ if } c_2 > 1 - z_1 \end{cases}$$

The indifferent type is c_i^* . Thus, $1-z_2=c_1^*$, and $1-z_1=c_2^*$. From the definition of z_i we have $1-\frac{c_2^*}{2}=c_1^*, 1-\frac{c_1^*}{2}=c_2^*$. Thus $c_1^*=c_2^*=\frac{2}{3}$.

No contribution, even though, $\frac{2}{3} < c_i < 1$.

Game C

 $\gamma_1(v_1) = v_1$ is a weakly dominant strategy.

- 1. Let $b_1' > v_1$.
 - (a) If $b_2 > b_1'$ $u_1(v_1, b_2) = 0 = u_1(b_1', b_2)$
 - (b) If $b_2 < b_1', b_2 \ge v_1$ $u_1(v_1, b_2) = 0 > u_1(b_1', b_2) = v_1 b_2$
 - (c) If $b_2 = b'_1, b_2 \ge v_1$ $u_1(v_1, b_2) = 0 > u_1(b'_1, b_2) = \frac{v_1 - b_2}{2}$

(d) If
$$b_2 < b'_1, b_2 < v_1$$

 $u_1(v_1, b_2) = v_1 - b_2 = u_1(b'_1, b_2)$

- 2. Let $b_1' < v_1$.
 - (a) If $b_2 \ge v_1, b_2 > b'_1$ $u_1(v_1, b_2) = 0 = u_1(b'_1, b_2)$
 - (b) If $b_2 < v_1, b_2 \ge b_1'$ $u_1(v_1, b_2) = v_1 b_2 > \frac{v_1 b_2}{2} \ge u_1(b_1', b_2)$
 - (c) If $b_2 < v_1, b_2 < b'_1$ $u_1(v_1, b_2) = v_1 - b_2 = u_1(b'_1, b_2)$

Game D

Equilibrium:

- 1. In pure strategies.
- 2. Strategies are affine functions: $\gamma_i(v_i) = \max\{\alpha_i + \beta_i v_i, 0\}$
- 3. Symmetric: $\alpha_i = \alpha, \beta_i = \beta, \forall i = 1, 2.$

The equilibrium is like this, but strategies are best against anything else.

• $\alpha \geq 0$. Otherwise, let $v_1 < \frac{-\alpha_1}{\beta_1}$. This type must bid 0. But then

$$u_1(0, \gamma_2 | v_1) = \frac{v_1}{2} \Pr(v_2 \le \frac{-\alpha_2}{\beta_2}) < (v_1 - \varepsilon) \Pr(v_2 \le \frac{-\alpha_2}{\beta_2}) \le u_1(\varepsilon, \gamma_2 | v_1)$$

Thus $b_1 = 0$ is not optimal for $v_1 < \frac{-\alpha_1}{\beta_1}$.

- $\alpha \leq 0$. Otherwise some types v_i have $\gamma_i(v_i) = \alpha_i + \beta_i v_i > v_i$ (v_i is small enough so that $\alpha_i > (1 \beta_i)v_i$).
- So we have $\gamma_i(v_i) = \beta v_i$ $(\beta > 0)$. $u_1(b_1, \gamma_2 | v_1) = (v_1 b_1) \Pr(v_2 < b_1/\beta | v_1) + \frac{(v_1 b_1)}{2} \Pr(v_2 = b_1/\beta | v_1)$.

Given $v_i \, \tilde{} U[0,1]$, $\Pr(v_2 = b_1/\beta | v_1) = 0$, thus $u_1(b_1, \gamma_2 | v_1) = (v_1 - b_1) \frac{b_1}{\beta}$. Thus the optimal strategy for agent 1 is: $\gamma_1(v_1) = \frac{v_1}{2}$, and thus, identifying coefficients $\beta = \frac{1}{2}$.

Microeconomics II - Winter 2006 Chapter 3

Games with Incomplete Information - Bayes-Nash equilibrium

Antonio Cabrales

January 9, 2006

