Analysis of supergames: factors which facilitate collusion

By specifying the game, richer implications as to the
factors which make collusion more or less likely in a
given industry.

Repeated games with infinite horizon and trigger strategies

Al There exist n identical firms;
A2 Homogeneous good and same cost c;

A3 In each period t, firms set prices
simultaneously and independently;

A4 The game is played an infinite number
of times [or firms have a discount factor
d and the probability that the market
still exists next period is ¢ € (0, 1), then
by setting = d - ¢ the analysis holds];

A5  There are no capacity constraints;

A6 Demand is such that
(i) if pz':pj =P VJ#Z,\V/Z
(i) if pi<p; Vj#i
= D; = D(p;) and m; = 7(p;)
(iii) if pi > pKr (KE 1,...,n)
= D; =0and m; = 0;

and m:#

A7 Each firm wants to maximise its present
discounted value of profits;

A8 No physical link between periods, but
strategies depend on the history of
past prices.



Consider now the following "TRIGGER STRATEGIES"

e Each firm sets py, at t = 0.

e It sets p;, at time t if all firms have set py, in

every period before .

e Otherwise, each firm sets p = c forever (NASH
REVERSAL).

This set of strategies represents an equilibrium (which
gives a collusive outcome through purely non—cooperative
behaviour) if § is large enough.



To see this result, rewrite (1) as:

7T(pm)(1+5+52+...) > m(pm) + 90+ 6°04+ 80+ ..,
. n , S—— ~~
"choosing the collusive "deviation "punishment
strategies" profit" profits"
- 2 __ \"00 t 1
Sincel14+0d0+4+0“+...=>7240" = 13,
§>1-1]
— n

Note that if n 7 the ICC is tighter = collusion is less
likely.

n =2 :>52%(textbook case)
n—oo =06>1 butde[0,1]]

THE LARGER THE NUMBER OF FIRMS IN
THE INDUSTRY, THE MORE DIFFICULT TO
REACH COLLUSION!




Other variables which affect collusion

e Small, regular orders facilitate collusion: an unusu-

ally large order would increase the temptation to
deviate, as (D) becomes larger, other payoffs be-
ing unchanged.

e High frequency of market contacts also facilitate

collusion. Consider a market which meets every
two periods. The ICC becomes:

m) | 8°m(pm) | 8*n(pm
W(Z)"_ 777(7/p)_|_ ng)—l—---ZW(pm),
write 6° = d. Then it is (as before): d > 1 — %

whence: 52\/1—%.

Since /x > x for x € [0, 1], and since (1 —%) e
0, 1],

then /1 —% > 1 — %: the ICC is tighter and

collusion more difficult.




e Immediate identification of deviation also helps

collusion. If a deviation can be observed and pun-
ished with a delay of two periods, then ICC be-
comes:

7(pm) (lié) > 7T(pm) —+ 57T(pm),

n

while, when the deviation is detected in the fol-
lowing period, one has:

W(Zm) (1&5) > 7(pm).

In the latter case collusion is easier to sustain (as
the ICC is laxer).

= Improved observability helps collusion.



e Collusion and demand evolution

Consider the following situation:
— At t =0: D(p); w(p)

— At time t, 0'D(p);
Oln(p) t=1,2,....
The ICC can be rewri’gte2n:
7(pm) m(pm) | %07 (pm)
n —|_ 50 n _|_ n —|_ T

> 7(pm)

— If & > 1 (demand growth). This relaxes the IC
and makes collusion easier (the expected rise
in future demand increases the future cost of a
deviation).

— If 8 < 1 (demand decline). This makes collu-
sion less sustainable, as the temptation to de-
viate is stronger (the future cost of deviation
is lower).



e However, in Rotemberg—Saloner, “price wars" oc-

cur during booms. This is because in each period
demand has a probability % to be low and probabil-
ity % to be high, and a high demand today doesn't
increase the probability of high demand tomorrow.
In this situation, a high demand (boom) today is
like a one—off large order, and raises the incen-
tive to deviate = collusion more difficult during
“booms".

e Also, contrast with Green—Porter (see below), where
unexpected low demand would trigger the punish-

ment phase (but in Green—Porter notice that we
talk of unexpected change in demand).



Symmetry helps collusion

e Market A: Firm 1 (resp. 2) has share 314 = A

(resp. s§4 =1-—X).

o )\ > %: firm 1 “large”; firm 2 is “small”.

e Firms are otherwise identical.

e Usual infinitely repeated Bertrand game.

e ICs for firm 1 =1, 2:

sf (pm — ¢) Qpm)
1—9

(Pm — ¢) Q(pm) > 0,

e Therefore: 1(114:1%5—120, or: d >1— M\



o IC4 : 173 —1>0,0r: § > X\ (binding IC of

small firm).

e Higher incentive to deviate for a small firm: higher
additional share by decreasing prices.

e The higher asymmetry the more stringent the IC
of the smallest firm.



Multimarket contacts

Market B: Firm 2 (resp. 1) with share 3]29 = A
(resp. sjlB =1 — X\): reversed market positions

|ICs in market j = A, B considered in isolation:

s! (pm — ) Q(pm)

s (pm — ¢) Q(pm) 2 0,

B . A :

B . 1=\ :

By considering markets in isolation (or assuming
that firms 1 and 2 in the two markets are different)
collusion arises if § > A > 1/2.



or.

Multimarket, cont'd

If firm sells in two markets, |IC considers both of
them:

sf(pm—c)Q(pm) i S,éB(pm—C)Q(Pm)
1-6 1-9
—2(pm — ¢) Q(pm) > 0,

A=A)(Pm—c)Q(pm) | Apm—c)Q(pm)
1-9 1-9
—2(pm — ¢) Q(pm) > 0.

Each IC simplifies to: § >

N =

Multimarket contacts help collusion, as critical dis-
count factor is lower: % < A

Firms pool their ICs and use slackness of IC in one
market to enforce more collusion in the other.

In this example, multi-market contacts restore sym-
metry in markets which are asymmetric.



A problem with supergames: multiple equilibria

Supergames admit a continuum of equilibrium solu-
tions.

Consider the same game as above, but with the follow-
ing trigger strategy:

(1) Each firm sets p € [¢c,pm] at t = 0;
(2) It sets p at period t if all the firms

have set p in every period before ¢;
(3) Otherwise, it sets p = ¢ forever.

It is easy to check that this set of strategies is an equi-

librium at exactly the same condition as before, that is:
§>1— 1

The ICC can be written as:
) (14654624 ) >7(p) +0+0+4---.

From which one obtains this condition: § > 1 — %

—> Any price between the competition and the monopoly
price can be sustained at equilibrium.



e By acting non—cooperatively, firms might arrive at
a collusive outcome. But this is just one of the
many possible outcomes. This raises at least two

questions:

1. What is the prediction power of supergames?

2. How is the equilibrium price “chosen"?



A technical note: optimal punishments

In many situations, setting Nash strategies forever is
not the optimal punishment. Harsher punishments might
increase the future loss of a deviation, and thus sustain
the collusive price for a wider range of discount factor
values.

Abreu: A very strong punishment for just one period,
followed by a reversal to collusion (“stick and carrot"
strategy).

Essential for the optimal punishment equilibria to exist
is that two |CCs are respected.

1. A firm does not want to deviate
from the collusive path.

2. A firm does not want to deviate
from the punishment path.



Stigler's Critique:
Secret Price Cuts

For the effectiveness of any punishment strategies (ex-
plicit cartels or ‘tacit collusion’), it is essential that de-
viation is detected.

Stigler: Collusive agreements would break down because

of secret price cuts.

— Importance of information available to firms.

The supergame models we have seen so far do not

address the Stigler's Critique: Whenever a deviant firm

undercuts, other firms get zero demand, and know this
is due to the deviation.

Green and Porter (1983): There exist secret price cuts.

Yet, some collusion still exists .




Green—Porter

e Rival prices are not observable

e Demand is uncertain

D=0 Vp, with probability «
Demand <

D = D(p) with probability 1 — «

=20 Vp, with probability «
Profit {

w(p) > 0 with probability 1 — «

When a firm faces zero demand, it does not know if this.

is due to a rival’s deviation or to an unexpected negative
shock in demand.

= Punishment phases which last forever lose their mean-
Ing.




e Firms’ strategies involve a “punishment" phase of
T periods whenever a decline in (zero) demand is

observed.

STRATEGIES

1. Game starts in a collusive phase.

2. Both firms charge p" until one firm
observes zero demand.

3. The following T' periods, both firms
charge p = c.

4. After T' periods of punishing, both
firms revert to monopoly pricing p".



Necessary and sufficient condition for this strategy pro-

file to be an equilibrium:

To show the optimal 1, define:

VT = P.D.V. of a firm's profit at ¢,
when there is collusive phase,
V= = P.D.V. of a firm’s profit at ¢,

when in punishment phase.

—_— (1—a) (5 +46VT) a(6V )
profits when D > 0 profits when D =0
vo o= §vt

By solving this system one obtains:

(1—a)m™/2 | |« — _  (1—a)éta™/2
4 _1—5(1—04)—045T+1'

e
v 1-6(1—a)—ads! 1




Write the INCENTIVE CONSTRAINT as:

Fs (1—a)(m™+0V7) n a(6V )
— profits when D > 0  profits when D =0

v

and, by substitution, IC becomes:

1<2(1—a)d+ (2o —1)61H! (1C)

The problem now is:

nrvT subject to  (IC)

There is a trade—off in the choice of T

5] = RHSof (IC) 1 for a<i
T (
™ 5T+1l — V—f—l

(an increase in T' makes it easier to satisfy the lower
profits).

= The program is satisfied by the smallest T' which
satisfies the incentive constraint.



Note 1: The punishment period cannot be of negligi-
ble duration. Indeed:

T=0 =(C 1<2(1—a)d+(2a—-1)

= 0>1 impossible!

Note 2: We find the trigger strategies with the case
of certainty as a limiting case:
ForT — oo = (IC") 1 <2(1—a)d

= §> L

_ 1
S0—a)" Fora=0 = 462>3.

Note 3: When « is too high, the opportunity cost of
cheating is too low = deviation is optimal (given
that one enters punishment phase, better to cheat!)



