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Abstract

We analyze the effect of a large group on a public goods model with

lotteries. We show that as populations get large, and with preferences

in which individuals only care about their private consumptions and the

total supply of the public good, the level of contributions converges to

the one given by voluntary contributions. With preferences of the warm

glow type, the contributions converge to a level strictly higher than those

given by voluntary contributions, even though in general they do not yield

first-best levels.
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1 Introduction

Most public goods in modern economies are provided by the government and

funded from revenues obtained via general taxes. But coercive taxation has its

limits, for reasons that have to do both with the inefficient (or second-best) way

in which it is collected, and for political economy reasons. Yet, some legitimate

needs are not covered by the ordinary revenues from the state, and both private

and public entities resort to other mechanisms to fund those public goods. As

it is well known (e.g. Bergstrom, Blume, and Varian (1986)), providing them

via voluntary contributions usually leads to inefficient outcomes, so it is not

surprising that human ingenuity has devised other means to achieve the goal of

providing public goods efficiently.

One such method is a lottery in which a prize is given to the winner(s), but a

fraction of the proceeds goes to the provision of public goods. For a while, there

was a theoretical controversy about the usefulness of lotteries to improve effi-

ciency (see e.g. Borg, Mason, and Shapiro (1991)) or equity (see e.g. Clotfelter

and Cook (1989)) in public goods provision. Recently, Giebe and Schweinzer

(2014) have shown that a “tax lottery” can correct the distortion on private

consumption while, at same time, inducing efficient provision of public good

and balancing the government’s budget. The controversy was essentially settled

when Morgan (2000) showed that lotteries can be used effectively to solve the

problem. He proved that lotteries significantly increase the level of contributions

above the one given by voluntary contributions. He also showed that for large

enough prizes, the lottery could make the provision of the public good close to

the first-best levels. An extension that relaxes the quasi-linearity assumption of

Morgan was analyzed by Duncan (2002). He showed that with general utility

functions, unlike in the quasi-linear case, a raffle has two opposite effects on

the supply of a public good. First, it lowers the marginal price of contributing,

which leads to an increase in the supply of public good. And second, it intro-

duces uncertainty about the marginal utility of private consumption, which may

lead to a decrease in the supply of the public good. Hence, with general utility

functions, a raffle can increase or decrease the equilibrium supply of a public

good, depending on the value of the prize. In both Morgan (2000) and Duncan

(2002) the effect of the size of the prize on the provision of the public good is

analyzed for a finite size of the population.
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Several papers confirm in the laboratory and in the field the theoretical

prediction that lotteries outperform the voluntary contributions in terms of

public good provision, Morgan and Sefton (2000), Orzen (2008), Schram and

Onderstal (2009), Corazzini, Faravelli, and Stanca (2010), Duffy and Matros

(2012) among others. Some of these papers have also revealed an excessive

voluntary contribution relative to the equilibrium prediction with selfish agents.

This finding indicates that people have preferences different from the selfish ones.

The aim of this paper is to establish the limits to the usefulness of lotteries

in the provision of public goods even in the case in which the prize and the

population can vary in the same proportion. We show first that as populations

get large and with standard preferences, i.e. when an individual’s utility de-

pends on her private consumption and the total supply of the public good,1 the

provision of public good converges to the (inefficient) one given by voluntary

contributions.2 A more positive result arises when one considers a model in

which individuals are concerned not only about their private consumptions and

total supply of the public good, but also about their own contributions.3 In this

case, the contribution to the public good enters the utility function twice, once

as a part of the public good and as a private good.4 As Bergstrom, Blume, and

Varian (1986) stated individuals with such preferences feel a warm glow from

having “done their bit”, so we call them, warm-glow preferences. In large pop-

ulations, when people have these preferences the lottery leads the contributions

to converge to a level strictly higher than those given by voluntary contributions

(still under warm glow preferences), even though in general they do not yield

first-best levels.

Our results clarify why it is so important that lottery proceeds are earmarked

to worthy causes, where warm glow is likely to be larger.5 In this way we

shed light on a controversy about the meaningfulness of earmarking (see e.g.

Buchanan (1963) and Borg and Mason (1988)) because of the fungible nature of

1These preferences are called by Andreoni (1990) purely altruistic.
2Olszewski and Siegel (2013) provide a general way to find equilibrium outcomes of contests

with a large (but finite) number of competitors and prizes. This is done by approximating

the equilibrium with a particular incentive-compatible and individually rational mechanisms.
3These are called by Andreoni (1990) impurely altruistic preferences.
4Similar models of mixture public-private good were first introduced by Cornes and Sandler

(1984, 1986) and Steinberg (1987).
5In the U.S., for example, Lotto revenues are earmarked for the provision of education (see

Landry and Price (2007)).
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government revenues. They also explain why in general governments do not rely

on lotteries for a large part of the revenue creation for public good provision.

Section 2 describes the reference benchmark model from Morgan (2000) and

also introduces warm glow preferences into such model. Section 3 presents the

results for large populations. Section 4 briefly concludes.

2 The Reference Model

We first recapitulate the results of Morgan (2000). He shows that his results for

the provision of public goods by means of lotteries also apply in the more general

case analyzed by Bergstrom and Cornes (1983). They provide a specification of

preferences in which income effects are present and the public goods allocation

decision is separate from distributional decisions. They argue that this is essen-

tially equivalent to assuming that individual preferences can be represented as

a quasi-concave utility function of the form6,

UV C
i = (ωi − xi)H(G) + hi(G), (1)

where H(·) > 0, h′
i(·) > 0, h′′

i (·) ≤ 0,7 and where ωi ∈ R+ denotes the wealth

of individual i, xi her contribution to the public good and G ∈ R+ denotes the

level of public good provided. Hence, ωi−xi denotes individual’s consumption of

the private good. Individuals decide their allocation between their consumption

of private good and their contribution to the public good by maximizing their

expected utility, subject to the constraint that xi < ωi. For the first-best

benchmark, the optimal public good provision, which we denote by G∗ solves

max
G∈R+

(
n∑

i=1

ωi −G

)
H(G) +

n∑

i=1

hi(G).

Let x̂ ≡
∑n

i=1 xi be the aggregate contributions and since they pay for the

public good, G = x̂. The provision of public good by voluntary contributions,

6Bergstrom and Cornes (1983) also provide a recipe for constructing quasi-concave func-

tions of this form and a diagnostic test to determine whether a given function of this form is

quasi-concave.
7It seems natural that private good is complementary to the public good. Also, since in

a large society the public good is likely to become large, a separable (ωi − xi) + H(G) term

would lead to the utility of private good consumption becoming very small as compared to

H(G).
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denoted by GV is the equilibrium of the game in which each agent maximizes

UV C
i with respect to her contribution xi noting that G = x̂.

In the lottery model of Morgan (2000), the utility function of agent i takes

into account that xi/x̂ represents the probability that individual i wins the

prize. Since the sum of all wagers must pay for the prize R, the public good

provision, denoted by GL, is determined by the excess of wagers over the prize8,

that is:

GL = x̂−R.

In this case the expected utility of agent i is:

UL
i =

(
ωi − xi +R

xi

x̂

)
H(x̂−R) + hi(x̂−R).

The amount provided of the public good using the lottery scheme, GL, is the

equilibrium of the game in which each agent maximizes UL
i . For simplicity of

exposition we will assume that for all games Γ we will describe in what follows

Assumption 1. The utility function UΓ
i that represents the preferences of in-

dividual i:

1. is twice continuously differentiable and concave in the decision variable xi.

2. it satisfies
∂UΓ

i

∂xi

∣∣∣
xi=0,xj=ωj

> 0,
∂UΓ

i

∂xi

∣∣∣
xi=ωi

< 0.

Using 1. in the assumption we can characterize equilibria using first order

conditions, and using 2. we guarantee that such solutions are interior. We can

now show as Morgan (2000) proved that

Proposition 1. When preferences between public and private goods satisfy As-

sumption 1:

1. a voluntary contributions mechanism underprovides public goods with re-

spect to the first-best level, i.e. GV < G∗.

8As in Morgan (2000) and Duffy and Matros (2012), in our setting, the public good is

provided only when the wagers are sufficient to cover the cost of the prize, otherwise the

lottery is called off and the wagers are refunded.

It is important that the prize R is an amount fixed ex-ante. If the prize were a fraction

of lottery revenues, the utility of the players would be isomorphic to the one with voluntary

contributions and the lottery would not change the outcome of the game.
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2. the public goods provision under a lottery mechanism is higher than the

public good provision under a voluntary contributions mechanism, i.e.

GV < GL.

3. the public goods provision under lotteries converges to its first-best level as

the size of the lottery prize grows to infinity, i.e. GL → G∗ as R → ∞.

Proof. See the Appendix.

The reason why the lottery increases contributions is that in lottery generates

a negative externality. The more one bets, the lower are the chances of others

to win the jackpot. This negative externality exactly balances the positive

externality of giving to the public good in the limit as R → ∞.

2.1 Incorporating the warm glow of giving in the reference

model

We now incorporate the warm glow approach into the reference model by as-

suming that individuals are concerned about their private consumptions, the

total supply of the public good and their own contributions. Hence, individual

preferences can be represented as follows,

Assumption 2.

Uwg
i = (ωi − xi)H(G) + hi(G)g(xi), (2)

where the function g(·) represents the warm glow of giving.9 Setting

g(xi) = g1f (xi) + g0,

where f ′(·) > 0 and f ′′(·) < 0, imply that individuals experience diminishing

marginal utility from the warm glow, the particular case where g1 = 0 and g0 = 1

corresponds to (1), the model used by Morgan (2000) to show the robustness of

his results. For simplicity, from now on, we set g0 = 1.

The provision of a public good by voluntary contributions when preferences

are as in (2), denoted by Gwg, is the equilibrium of the game in which each

agent maximizes Uwg
i . For this game we can show that:

9Similarly as what happens between private and public goods, it seems natural that warm

glow is complementary to the public good. And as in the previous case, since in a large society

the public good is likely to become large, a separable hi(G) + g(xi) term would lead to warm

glow utility g(xi) becoming very small as compared to hi(G).
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Proposition 2. Public goods provision by a voluntary contributions mechanism

is higher under warm glow preferences (as described in Assumption 2) than

under standard preferences (as described in (1)), i.e. GV < Gwg.

Proof. See the appendix.

It is not hard to see why the introduction of warm glow increases the level of

voluntary contributions. Individuals now partly internalize the externality that

their contributions cause on other agents in the economy. Morgan and Sefton

(2000) do a series of experiments, in which they use the voluntary contributions

mechanism for public good provision, as well as the lottery mechanism of Morgan

(2000). In their experiment they observe that the level of contributions are

quite significantly higher than one would expect given individuals with standard

preferences. As an explanation, the authors claim “for example, Andreoni’s

warm glow model can similarly explain excessive giving by allowing utility to

depend on the act of giving itself.”

In Temimi (2001) the author shows that the introduction of warm-glow af-

fects both the equilibrium level as well as the efficient level of public good pro-

vision. The condition determining the efficient level of provision for the public

good case requires as usual that the sum of the marginal rates of substitution

(between the public good and the net private good) is equal to one. In our case

this is true when,
n∑

i=1

∂U
wg

i

∂G

∂U
wg

i

∂(ωi−xi)
−

∂U
wg

i

∂xi

= 1.

Applied to the model in (2), the efficient level of public good provision under

warm glow, Gwg∗, is given by the solution to:

n∑

i=1

(ωi − xi)H
′(Gwg∗) + g(xi)h

′
i(G

wg∗)

H(Gwg∗)− hi(Gwg∗)g1f ′ (xi)
= 1. (3)

Notice also that as equation (3) shows, since warm glow shifts up the private

benefit from giving, the first best level of contributions is higher under warm

glow.
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2.2 Lottery in the warm-glow model and the efficient level

of contributions

Now we incorporate the lottery mechanism of Morgan (2000) into the above

model of warm glow. Individual i now chooses xi to maximize

UwgL
i =

(
ωi − xi +R

xi

x̂

)
H(x̂−R) + hi(x̂−R)g(xi). (4)

As before, wagers pay for the prize R, so the public good provision, denoted by

GwgL, is:

GwgL = x̂−R.

Proposition 3. For any given distribution of private good endowments, when

preferences are of the warm glow type (as described in Assumption 2) the con-

tributions to public goods are higher under a lottery mechanism than under a

voluntary contributions mechanism, i.e. Gwg < GwgL.

Proof. See the appendix.

The result of proposition 3 says that lotteries are helpful to partly internalize

the externality of giving even when agents have warm glow preferences. This is

also in agreement with the evidence in Morgan and Sefton (2000). The lottery

mechanism increases the provision of public good over voluntary contributions

not only in populations of individuals with standard preferences but also in

populations with warm glow preferences.

3 The case of large populations

In this section, we identify the limits to the usefulness of lotteries to improve

the provision of public goods. One result in Morgan (2000) shows that wagers

in the unique equilibrium provide levels of public good close to first-best as

the lottery prize increases. However, R is only useful if chosen so that in an

interior equilibrium the level of provision
∑n

i=1 xi−R is positive (where xi is the

contribution for each person). That is, a lottery prize yielding social benefits in

terms of the public good must have R with
∑n

i=1 xi > R.

Given the limitation of increasing the prize when the group size is finite and

fixed, we analyze the effect of increasing the prize in proportion to the group

size. We will show that the prize is an effective tool for the provision of the

public good only in the case in which individuals reveal warm glow preferences.
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3.1 The linear case

We now illustrate the limitations of lotteries to improve the provision of public

goods in the case in which the prize and the population can vary in the same

proportion. To do this, we first show the relationship between the first-best

level of public good provision and the one achieved with a lottery mechanism in

the large population limit, when the size of the population and the prize grow

at the same rate, the agents’ utilities is as in Assumption 2, and H(·) and h(·)

are increasing and linear functions.

Proposition 4. Suppose limn→∞ R/n = ρ and H(·) and hi(·) are increas-

ing and linear functions for all i and f (xı́) is an isoelastic functions f (xı́) =
1

1−α
(xi)

1−α
(with α = 1 ⇒ f (xı́) = lnxi).Then for any equilibrium we have

that

lim
n→∞

1

n

∣∣Gwg∗
−GwgL

∣∣ ≥ 0,

with equality holding only for α = 1.

Proof. See the appendix.

The proposition shows that with preferences of the warm glow type and

with a prize growing in the same proportion as the group size, the public good

provision is strictly higher under a lottery mechanism than under a voluntary

contributions mechanism. It does not, however, yield the first-best level except

for the case when the function f(·) = ln(·).

The intuition for this result comes from the fact that in a large population

both Gwg∗ and GwgL become very large. As a result of this, the terms in the

first order condition that contain the public good are much larger than the rest,

so that the first order condition for the efficient solution ignoring lower order

terms is

lim
n→∞

1

n

(
−HGwg∗ + hiG

wg∗g1f
′(xwg∗

i )
)
= 0, (5)

and for the equilibrium with the lottery mechanism letting x̂ be the total con-

tributions the first order condition ignoring lower order terms is

lim
n→∞

1

n

((
R

x̂
− 1

)
HGwgL + hiG

wgLg1f
′(xwgL

i )

)
= (6)

lim
n→∞

1

n

(
−HGwgL + hiG

wgLg1
x̂f ′(xwgL

i )

x̂−R

)
= 0.
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Taking into account that in the limit the two public good levels coincide only if
∑n

i=1

(
xwgL
i − ρ

)
=
∑n

i=1 x
wg∗
i , it is readily seen that the expressions (5) and

(6) can only yield
∑n

i=1

(
xwgL
i − ρ

)
=
∑n

i=1 x
wg∗
i when f ′ (x) = 1/x.

For simplicity we have assumed interior solutions xi > 0 for all i in the

economy. But solutions need not be interior in general. For example, when

f ′ (·) is a constant, one can show that only the type with largest hi would make

positive contributions in the large population equilibrium.10 Our results then

would hold restricted to that high type only.

But there are also relatively simple sufficient conditions for all contributions

to be interior. Denote by G the total amount of public good and by G−i the

sum of contributions from individuals other than i, let also

Ψi(G−i;R) =

(
R

G−i +R
− 1

)
H(G−i)+ωiH

′(G−i)+h′
i(G−i)f (0)+hi(G)g1f

′ (0) .

The function Ψi(G−i;R) represents the marginal utility to individual i at xi = 0.

It is clear that Ψi(G−i;R) > 0 for all i guarantees interiority for all i. This is

trivially satisfied when, as in Proposition 4, limxi→0 f
′ (xi) = ∞.

3.2 A more general model

Now, let us consider a general case in whichH(·) and hi(·) are general increasing,

differentiable and strictly concave functions. That is, H ′(·) > 0, h′
i(·) > 0 and

H ′′(·) < 0, h′′
i (·) < 0. If we introduce lotteries in the proposed model, we obtain

that:

UwgL
i =

(
ωi − xi +R

xi

x̂

)
H(x̂−R) + hi(x̂−R)g(xi).

where, as before, the aggregate contributions is denoted by x̂ =
∑n

i=1 xi and

the prize increases at the same proportion to group size limn→∞ R/n = ρ. Then

Proposition 5. if H(·) and hi(·) are such that limy→∞ hi (y) /H (y) = ki, we

have that in equilibrium limn→∞
x̂
n
solves:

lim
n→∞

x̂

n
= lim

n→∞

1

n

n∑

i=1

f ′−1

(
x̂−R

x̂

1

g1ki

)
.

Proof. See the appendix.

10We are grateful to a referee for this observation.
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As a result, if g1 = 0 then x̂/n approaches the corner solution x̂/n = ρ.

Again, the intuition for the result follows from the fact that in a large society

the terms that matter for first order conditions are those where the public good

is present. That is,

lim
n→∞

1

n

((
R

x̂
− 1

)
H (x̂−R) + hi (x̂−R) g1f

′(xi)

)
=

lim
n→∞

1

n

((
R

x̂
− 1

)
+

hi (x̂−R)

H (x̂−R)
g1f

′(xi)

)
= 0.

The result follows immediately from this expression by using the fact that

limy→∞ hi (y) /H (y) = ki.

In this section, we have shown that when the prize grows at the same rate

as the group size in a large population, lotteries improve the provision of public

goods if individuals have warm glow preferences, but not if they are selfish. But

we also show that in general the first-best levels cannot be reached even with

warm glow preferences.

Our results contribute to clarify why it is important to earmark lottery

revenues, and how this should be done. The lotteries in which their proceeds are

earmarked to finance worthy public goods are more likely to attract individuals

with a taste for altruism, whose giving behavior yields them a warm glow.

The linkage between earmarked lotteries and warm glow preferences seems then

crucial to the success of lotteries as a means of financing public goods in large

populations.

4 Conclusions

In this paper we have shown that lotteries have limits as a tool to achieve efficient

public good provision in large populations. But we also show that lotteries are

clearly more effective than voluntary contributions when individuals experience

a warm glow of giving to public goods. One concrete empirical implication from

our analysis is that goods likely to produce a warm glow are more likely financed

in this way. This could be useful to analyze empirically the extent to which the

effects characterized in this paper are present in the field.
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5 Appendix

Proof of Proposition 1

Proof. This proposition is already shown in Morgan (2000), we merely add it

here for completeness.

G∗ solves

n∑

i=1

h′
i(G

∗) = H(G∗)−H ′(G∗)

(
n∑

i=1

ωi −G∗

)
. (7)

and we also obtain GV by adding first-order conditions of optimization problems

for each agent i,

n∑

i=1

h′
i(G

V ) = nH(GV )−H ′(GV )

(
n∑

i=1

ωi −GV

)
. (8)

It is then easy to verify that GV < G∗. Also GL, solves the sum of first-order

conditions.

n∑

i=1

h′
i(G

L) = H(GL)

(
n− (n− 1)

R

R+GL

)
−H ′(GL)

(
n∑

i=1

ωi −GL

)
(9)

Comparing expressions (8) and (9), Morgan (2000) remarks that the two expres-

sions differ by the term associated with the negative externality of the lottery

multiplied by H(G). Thus, GV < GL. Taking the limit of (9) as R → ∞,

expression (9) becomes identical to (7).

Proof of Proposition 2

Proof. At an interior maximum, the first-order condition of (2) with respect to

x,

−H(G) + (ωi − xi)H
′(G) + h′

i(G)(g1f (xi) + 1) + hi(G)g1f
′ (xi) = 0 (10)

The equilibrium level of public good provided by voluntary contributions with

the presence of warm glow giving, solves the sum of first-order conditions,

n∑

i=1

h′
i(G

wg)(g1f (xi) + 1) +

n∑

i=1

hi(G
wg)g1f

′ (xi) = nH(Gwg)

− H ′(Gwg)(
n∑

i=1

ωi −Gwg)
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Then, we have

n∑

i=1

h′
i(G

wg) = nH(Gwg)−H ′(Gwg)(

n∑

i=1

ωi −Gwg) (11)

−

n∑

i=1

h′
i(G

wg)g1f (xi)−
n∑

i=1

hi(G
wg)g1f

′ (xi)

Compare expressions (8) and (11) to verify that the result holds. The two

expressions differ by the term associated with the effect of the warm glow.

Proof of Proposition 3

Proof. Take the first-order conditions of (4) with respect to xi to find

(
R
x̂− xi

x̂2
− 1

)
H(x̂−R) +

(
ωi − xi +R

xi

x̂

)
H ′(x̂−R) +

h′
i(x̂−R)(g1f (xi) + 1) + hi(x̂−R)g1f

′ (xi) = 0

The public goods provision GwgL solves the sum of the first-order conditions,

n∑

i=1

h′
i(G

wgL)(g1f (xi) + 1) +

n∑

i=1

hi(G
wgL)g1f

′ (xi) = H(GwgL)

(
n− (n− 1)

R

R+GwgL

)

−H ′(GwgL)

(
n∑

i=1

ωi −GwgL

)

We have

n∑

i=1

h′
i(G

wgL) = H(GwgL)

(
n− (n− 1)

R

R+GwgL

)
−H ′(GwgL)

(
n∑

i=1

ωi −GwgL

)

−

n∑

i=1

h′
i(G

wgL)g1f (xi)−

n∑

i=1

hi(G
wgL)g1f

′ (xi) (12)

Notice that expressions (11) and (12) differ by the term associated to the

negative externality of the lottery multiplied byH(G). Similarly as to the model

without warm-glow, the public goods provision under the lottery is greater than

under voluntary contributions. That is, Gwg < GwgL.

Proof of Proposition 4

15



Proof. To obtain the optimal level of provision, we use the first order conditions

from the problem

n∑

i=1

Uwg
i =

n∑

i=1

(ωi − xi)H(G) + hi(G) (g1f (xi) + g0)

which yield

(ωi−xi)H
′(Gwg∗)+h′

i(G
wg∗) (g1f (xi) + g0)−H(Gwg∗)+hi(G

wg∗)g1f
′ (xi) = 0

(13)

which using linearity of H (.) and hi (.) can be expressed as

((ωi − xi)H + hi (g1f (xi) + g0)−HGwg∗ + hiG
wg∗g1f

′ (xi)) = 0

We now take limits for n large and assuming that Gwg∗ is of O (n) (something

we later establish) we have

lim
n→∞

(
1

n
((ωi − xi)H + hi (g1f (xi) + g0)−HGwg∗ + hiG

wg∗g1f
′ (xi))

)
= 0

lim
n→∞

(
1

n
(−HGwg∗ + hiG

wg∗g1f
′ (xi))

)
= 0

which means that

lim
n→∞

(f ′ (xi)) =
H

g1hi

so that

lim
n→∞

1

n
Gwg∗ = lim

n→∞

1

n

n∑

i=1

xi = lim
n→∞

1

n

n∑

i=1

f ′−1

(
H

g1hi

)
(14)

when f (x) = ln (x)

lim
n→∞

1

n
Gwg∗ = lim

n→∞

1

n

n∑

i=1

xi = lim
n→∞

1

n

n∑

i=1

(
g1hi

H

)

when f (x) = 1
1−α

(x)
1−α

lim
n→∞

1

n
Gwg∗ = lim

n→∞

1

n

n∑

i=1

xi = lim
n→∞

1

n

n∑

i=1

(
g1hi

H

) 1
α

Note that this also establishes Gwg∗ is of O (n).

The first-order condition of (12) with respect to xi is,

(
R
x̂− xi

x̂2
− 1

)
H(x̂−R)+

(
ωi − xi +R

xi

x̂

)
H ′(x̂−R)+h′

i(x̂−R)(g1f (xi)+1)+hi(x̂−R)g1f
′ (xi) = 0

(15)
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using linearity this is equivalent to

(
R
x̂− xi

x̂2
− 1

)
H(x̂−R)+

(
ωi − xi +R

xi

x̂

)
H+hi(g1f (xi)+1)+hi(x̂−R)g1f

′ (xi) = 0

We now take limits for n large and assuming thatGwgL is ofO (n) (something

we later establish) we have

lim
n→∞

((
R
x̂− xi

x̂2
− 1

)
H(x̂−R) +

(
ωi − xi +R

xi

x̂

)
H + hi(g1f (xi) + 1) + hi(x̂−R)g1f

′ (xi)

)
= 0

lim
n→∞

((
R

x̂
− 1

)
H(x̂−R) + hi(x̂−R)g1f

′ (xi)

)
= 0

which means that

lim
n→∞

(f ′ (xi)) =
H

g1hi

(
1− lim

n→∞

R

x̂

)

when f (x) = ln (x)

lim
n→∞

1

xi

=
H

g1hi

(
1− lim

n→∞

R

x̂

)

lim
n→∞

xi =
g1hi

H

(
lim

n→∞

x̂

x̂−R

)

lim
n→∞

x̂

n
= lim

n→∞

x̂

x̂−R

1

n

n∑

i=1

g1hi

H

lim
n→∞

x̂−R

n
= lim

n→∞

1

n

n∑

i=1

g1hi

H

17



when f (x) = 1
1−α

(x)
1−α

lim
n→∞

x−α
i =

H

g1hi

(
1− lim

n→∞

R

x̂

)

lim
n→∞

xα
i =

g1hi

H

(
lim

n→∞

x̂

x̂−R

)

lim
n→∞

xi = lim
n→∞

(
g1hi

H

) 1
α
(

x̂

x̂−R

) 1
α

lim
n→∞

x̂

n
= lim

n→∞

(
x̂

x̂−R

) 1
α 1

n

n∑

i=1

(
g1hi

H

) 1
α

lim
n→∞

(
x̂−R

n

) 1

α

= lim
n→∞

(
x̂

n

) 1−α

α 1

n

n∑

i=1

(
g1hi

H

) 1
α

lim
n→∞

(
GwgL

n

) 1
a

= lim
n→∞

(
x̂

n

) 1−α

α 1

n

n∑

i=1

(
g1hi

H

) 1
α

lim
n→∞

(
GwgL

n

) 1
a

= lim
n→∞

((
x̂

n

) 1−α

α Gwg∗

n

)

Assume, by way of a contradiction, that Gwg∗ = GwgL,then

lim
n→∞

(
GwgL

n

) 1
a

= lim
n→∞

((
x̂

n

) 1−α

α GwgL

n

)

lim
n→∞

(
GwgL

n

) 1−α

a

= lim
n→∞

(
x̂

n

) 1−α

α

lim
n→∞

(
GwgL

n

)
= lim

n→∞

(
x̂−R

n

)
= lim

n→∞

(
x̂

n

)

This entails a contradiction, and the result follows.

Proof of Proposition 5

Proof. The first-order condition,

(
R
x̂− xi

x̂2
− 1

)
H(x̂−R) +

(
ωi − xi +R

xi

x̂

)
H ′(x̂−R) +

h′
i(x̂−R)(g1f (xi) + 1) + hi(x̂−R)g1f

′ (xi) = 0

where x̂ =
∑

xi noting that H ′ and h′ are bounded by concavity and assuming
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that x̂−R is of O (n) (something we later establish)as n → ∞, we obtain

lim
n→∞

(
1

n

((
R
x̂− xi

x̂2
− 1

)
H(x̂−R) +

(
ωi − xi +R

xi

x̂

)
H ′(x̂−R)

)
+

1

n
(h′

i(x̂−R)(g1f (xi) + 1) + hi(x̂−R)g1f
′ (xi))

)

= lim
n→∞

1

n

(
R

x̂
H(x̂−R)−H(x̂−R) + hi(x̂−R)g1f

′ (xi)

)
= 0

= lim
n→∞

1

n

(
R− x̂

x̂
H(x̂−R) + hi(x̂−R)g1f

′ (xi)

)
= 0

so that

lim
n→∞

1

n
(hi(x̂−R)g1f

′ (xi)) = lim
n→∞

1

n

(
x̂−R

x̂
H(x̂−R)

)
(16)

lim
n→∞

(f ′ (xi)) = lim
n→∞

(
x̂−R

x̂

H(x̂−R)

g1hi(x̂−R)

)

= lim
n→∞

(
x̂−R

x̂

1

g1ki

)

lim
n→∞

(xi) = lim
n→∞

f ′−1

(
x̂−R

x̂

1

g1ki

)

so that we have the desired result

lim
n→∞

x̂

n
= lim

n→∞

1

n

n∑

i=1

f ′−1

(
x̂−R

x̂

1

g1ki

)

Note also that from equation (16) if g1 = 0, it must be the case that

limn→∞ (x̂−R) /x̂ = 0 so that limn→∞ x̂/n = ρ
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