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Abstract

We study a model that integrates productive and socializing ef-

forts with occupational choice, in the presence of endogenous spillovers.

Among other results, we show that more talented individuals work

harder and contribute more to the emergence of externalities, but also

have incentives to segregate. Average socializing increases in the average

productivity of the occupation. Also, the size of an occupation grows

in its network synergies. Turning to efficiency, we show that individuals

under-invest in productive and socializing effort, and sort themselves

inefficiently into occupations. We derive the optimal subsidy to reach

the first best sorting into different occupations. Finally, we derive a rule

to identify overpopulated sectors and establish the connection between

inequality of talents, socializing and productive efforts and occupation

size.
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1 Introduction

Many productive processes are mediated by social interactions. The accumu-

lation of human capital (Moretti, 2004), innovation (Cassiman and Veugelers,

2002), and crime (Glaeser, Sacerdote, and Scheinkman, 2003), are examples of

activities carried out by individuals whose actions are affected by the activities

and abilities of others with whom they establish connections. Since social in-

teractions have productive consequences, economic agents naturally devote a

considerable effort to developing them. From the perspective of an individual,

socializing in production activities involves two different but interconnected de-

cisions: first, selecting with whom to interact, and then choosing the strength

of these interactions, together with their productive effort. However, the liter-

ature has explored these two dimensions of socializing separately.1 We develop

a framework to study the joint determination of both dimensions of socializing

in the context of occupational choice. We show how spillovers emerge endoge-

nously from individual productive efforts and socializing decisions, investigate

the associated effects on welfare and derive novel implications for policy and

empirical research.

Formally, we study a model in which individuals are endowed with differ-

ent (occupation-specific) abilities and socializing is multidimensional. First,

each individual decides which occupation to join. Once individuals sort them-

selves into occupations, they choose their productive effort and the intensity of

their social interactions. Socializing allows individuals to benefit from the en-

dogenous spillovers emerging from the productive efforts of those in the same

occupation. Despite the complexity imposed by these features, our framework

allows for a comprehensive equilibrium and welfare analysis in a simple and

intuitive way. Our analysis generates new insights and empirical implications

for occupational choice with great ease. Furthermore, as we briefly discuss in

the Conclusion, our framework is compelling since it is sufficiently flexible to

study many social and economic phenomena.

Embedding endogenous spillovers in a model of occupational choice is

important for several reasons. First, because these spillovers exist: empiri-

1The study of how peers are selected has been conducted from various angles; among
them, neighborhoods (Benabou, 1993), schools (Epple and Romano, 1998; Ferreyra and
Kosenok, 2015), social networks (Goyal, 2012; Jackson, 2010; Vega-Redondo, 2007) and
even specialties within occupations (Arcidiacono and Nicholson, 2005). The issue of within
group socializing has been studied by Cabrales, Calvó-Armengol, and Zenou (2011) and
Canen and Trebbi (2016).
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cally the importance of social connections for entrepreneurs,2 for professionals3

and even for the unemployed4 has been widely established. Second, because

spillovers matter: Guiso and Schivardi (2011) find that spillovers rather than

heterogeneous entry costs are the explanation for differences in entrepreneurial

activities across Italian regions.5 Finally, spillovers are likely to be endogenous:

if spillovers are beneficial (damaging), rational individuals will look for ways

to enhance (reduce) them. The scarce existing literature introducing spillovers

into occupational choice takes them as exogenous.6

Analyzing endogenous spillovers leads to important insights. Our frame-

work allows us to characterize the optimal policy to achieve efficiency in occu-

pational choice. We provide the explicit form of the the first-best allocation for

the social planner which can be achieved in equilibrium combining a linear tax

with a particular subsidy for any type of distribution of talents. This result

shows that the optimal policy needs to have two dimensions to correct both

the within sector inefficiency caused by the externality of spillovers and the

misallocations across occupations. This finding rationalizes why many mea-

sures implemented by governments to correct inefficient occupational choices,

in particular measures to boost entrepreneurship, have failed.7 There are other

examples, where a policy is designed with the purpose of affecting the interac-

tion environment of individuals. As Carrell, Sacerdote, and West (2013) show,

doing this without considering the incentives for interaction, and the fact that

group formation is endogenous can lead to counterproductive effects of the

intervention.

One of the most novel contributions of our analysis is to study the impli-

cations of spillovers for allocations of individuals across sectors. We assume

that individual abilities are given according to a Pareto distribution, since

wages and income, at least at the top of the distribution, are well described

by a Pareto.8 With a Pareto distribution of talents our equilibrium is unique,

2See for example, Guiso and Schivardi (2011); Guiso, Pistaferri, and Schivardi (2015);
Hoanga and Antoncic (2003).

3See for example West, Barron, Dowsett, and Newton (1999) for the medical and Ogus
(2002) for the legal profession.

4Korpi (2001).
5The approach on heterogeneous entry costs is implicitly followed by a large literature

that focuses on (particularly financial) factors that keep the would-be entrepreneurs from
actually creating a new firm (e.g Quadrini, 2009).

6For example, Guiso and Schivardi (2011); Cicala, Fryer Jr, and Spenkuch (2016); Chan-
dra and Staiger (2007).

7See for example, Henrekson and Stenkula (2010); Acs, Åstebro, Audretsch, and Robin-
son (2016).

8See Guvenen, Karahan, Ozkan, and Song (2015) for a recent reference.
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which is a useful feature of our framework. We find that the type of allocative

inefficiency (overpopulation or underpopulation of one occupation) depends

on the Pareto shape parameter and the strength of the synergies. Our model

provides two rules of thumb to identify potentially over- or underpopulated oc-

cupational sectors. The first rule applies to a situation with a low dispersion in

the Pareto distribution, implying that each sector is characterized by few su-

perstars. In such a situation, the sector with stronger synergies is going to be

underpopulated. On the contrary, when synergies are weak in all occupational

sectors, the sector with stronger synergies is overpopulated. These results are

important because they provide guidance for both policy and empirical work.

We also explore how increasing inequality in talent affects allocative ineffi-

ciency. In our framework, increasing the dispersion of a distribution enhances

socializing and productive efforts. Interestingly, this effect is not confined to

the occupation where inequality increases, but also takes place in the other

occupation. Distributional spillovers across occupations imply that more in-

equality leads to a better selection of types in both occupations inducing higher

productive and socializing intensities, thereby connecting two phenomena that

are generally considered as independent from each other. This is another novel

result with useful implications for policy and empirical analysis.9

We also provide a secondary set of results concerning individual decisions

about productive and socializing effort within a given occupation for general

distributions of talents. We show that more talented individuals do not only

work harder but also generate more spillovers.10 Furthermore, our model pre-

dicts that on average individuals in more productive occupations work harder

and socialize more.11 But average socializing and, hence, learning spillovers

are also increasing in network synergies. As a consequence, occupations with

weaker synergies should experience lower interactions and fewer spillovers.12

Insofar as synergies capture institutional and technological aspects of socializ-

9Inequality spilling over across occupations is a relatively unstudied possibility. In a
recent paper, Clemens, Gottlieb, Hémous, and Olsen (2016) show that higher inequality
in one occupation spills over into other occupations through consumption demand across
occupations, yielding further increases in inequality.

10This result is consistent, for example, with Azoulay, Zivin, and Wang (2010), who show
that researchers collaborating with a superstar scientist experience a significant decline in
their productivity (quality adjusted publication rate) after the unexpected death of their
superstar collaborators. Similarly, Waldinger (2010) find that the expulsion of high quality
Jewish scientists from Nazi Germany harmed, in a significant way, their students left behind.

11The connection between occupation productivity and individual socializing effort is in
line with Currarini, Jackson, and Pin (2009) and consistent with observations provided by
Albornoz, Cabrales, Hauk, and Warnes (2017).

12This result is observed by Nix (2015) for the case of Sweden.
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ing, we can provide an explanation for the intensity of spillovers varying across

geographical regions (e.g. Bottazzi and Peri, 2003) and over time (e.g. Jaffe,

1986). We complete our characterization of individual decisions by showing

how the benefits of socializing are greater for highly productive workers; a

feature that rationalizes the existence of fraternities and elite societies (e.g.

Popov and Bernhardt, 2012).

This paper is organized as follows. We begin by discussing our contribution

to the literature (Section 2). In Section 3, we spell out the model. Section 4

contains the equilibrium analysis and the general results valid for any occupa-

tion specific ability distribution. In Section 5, we study the case of a Pareto

distribution of talents. We conclude in Section 6. Most proofs are gathered in

an online Appendix.

2 Contribution to the literature

Our model contributes to several aspects of the literature of occupational

choice. This literature generally builds upon the seminal contribution by Lucas

(1978). In Lucas (1978)’s model as well as in several follow-up papers, ability

has a single dimension which implies the counterfactual prediction that all

entrepreneurs should earn more income than every employee. The literature

has accounted for low and high income in both sectors by adding a second

dimension of ability à la Roy (1951).13 We follow this approach and allow

for occupation-specific abilities. As a consequence, occupational choices are

determined by comparative rather than absolute advantage. In this context,

Rothschild and Scheuer (2012) and Scheuer (2014) study the optimal design

of redistributive income taxes. We also study optimal policy instruments but

our concern is efficiency not redistribution. A fundamental contribution of our

approach is introducing endogenous spillovers. The few papers studying the

effect of spillovers in occupational choice take them as exogenously given. In

Guiso and Schivardi (2011), exogenous spillovers affect occupational choices

by shifting productivity. In Cicala, Fryer Jr, and Spenkuch (2016); Chandra

and Staiger (2007), exogenous spillovers change relative benefits from differ-

ent activities. We complement this literature by providing a framework where

individual efforts affect the level of spillovers they enjoy and derive its policy

implications.

There is plenty of evidence of excessive or insufficient number of partic-

13Early examples are Heckman and Sedlacek (1985, 1990) and Jovanovic (1994).
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ipants in specific occupations. Many countries make it a priority to spur

entrepreneurship. Shakhnov (2014) finds that financial markets are over-

crowded with respect to entrepreneurship and that the model matches well

US data. Khabibulina and Hefti (2015) find a negative correlation of relative

wages in the financial sector with respect to the manufacturing sector in the

U.S. states from 1977 to 2011. Lopez-Martin (2015) obtain similar results

for the allocation of workers between the formal and informal sectors. Our

paper provides an explanation for these phenomena and shows that overpopu-

lation/underpopulation can emerge in a model without much structure. More

generally, our results have concrete implications for economic growth, as mis-

allocation of talent and resources is viewed as a major force of cross country

GDP and productivity differences (e.g. Murphy, Shleifer, and Vishny, 1991;

Restuccia and Rogerson, 2013; Hsieh and Klenow, 2009).

There is a very large research effort to understand the effect of social

relations and occupational decisions and outcomes (e.g. Granovetter, 1995;

Calvo-Armengol and Jackson, 2004; Bentolila, Michelacci, and Suarez, 2010,

to mention some of many contributions). The main goal of this literature is

to clarify how previous social connections affect future employment decisions.

In our analysis, occupational choice is driven by future socializing, not past

connections. In this sense, our paper offers a new direction to explore the

relationship between socializing and productive decisions.

3 A model of occupational choice

We consider an economy with a continuum of heterogeneous individuals. Oc-

cupational choice is modeled as a two-stage game. In the first stage, individuals

simultaneously choose their occupation. They can either be employed in oc-

cupation M or in occupation F. For illustrative purposes we will often refer

to occupation F as entrepreneurs and to occupation M as employees, but our

results also apply to different occupation sectors.14 In the second stage, all

agents within the same occupation simultaneously decide their direct produc-

tive effort kni and their socializing effort sni .

14Indeed, when we cite evidence we will make use of the following distinctions: finan-
cial markets versus entrepreneurship, financial markets versus manufacturing, formal versus
informal sector and different academic fields.
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3.1 The pay-offs

Each individual i has an occupation-specific individual productivity parameter

bni for n ∈ {M,F} , which is randomly and independently drawn for each

occupation.15

The payoff within a particular occupation n is the sum of two components,

a private component P n
i , and a synergistic component Sni derived from social

interactions. The private component P n
i has a linear-quadratic cost-benefit

structure and is given by

P n
i = dnbni k

n
i − 1/2 (kni )2 ,

where dn is an occupation-specific parameter and is multiplicative in individual

ability in occupation n.

The synergistic component, Sni , captures that socializing is required to

take advantage of the externalities generated within each occupation, which

are due to the complementarity in productive efforts.16 The synergistic returns

are given by

Sni = adnbni (kni )1/2
∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s
n
i , s

n
j )
)
dj − 1

2
(sni )2 ,

where Ni denotes the occupational group to which individual i belongs; the

parameter a captures the overall strength of synergies, sn is the profile of all

socializing efforts within the occupation (and which we assume has no effect

between occupations) and gnij(s
n
i , s

n
j ) is the link intensity of individual i and j,

defined as follows:17

gnij(s
n
i , s

n
j ) =

1

Nn
(sni )1/2

(
snj
)1/2

. (1)

Each occupational group is composed by a continuum of individuals N n ⊂ R
for n ∈ {M,F} , where the measure of the set N n is Nn.

The payoff of individual i in an occupational group n is the combination

15For the time being we make no specific assumptions on how these abilities are dis-
tributed, which also implies that the distribution of talents across occupations might follow
any correlation structure or be independent. The specific case of a Pareto distribution is
studied in Section 5. Results for the uniform distribution can be found in the working paper
version (Albornoz, Cabrales, and Hauk, 2017).

16Of course, socializing could also have a negative effect, say, because of revealing secrets
to competitors. Assuming complementarity implies that we focus on situations where the
benefits of socializing are larger than the costs.

17We provide a micro-foundation for this functional form in online Appendix A.1.
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of i′s private returns and its synergistic component:

uni = P n
i + Sni

= dnbni k
n
i + adnbni (kni )1/2

∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s
n
i , s

n
j )
)
dj

−1

2
(kni )2 − 1

2
(sni )2 . (2)

We interpret the positive part of this individual payoff as the value of

individual output and denote it by yni To be more precise:

yni ≡ dnbni k
n
i + adnbni (kni )1/2

∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s
n
i , s

n
j )
)
dj. (3)

3.2 Discussion of the main assumptions

Our set-up can be thought of describing occupational choice in a competitive

frictionless labor market with endogenous spillovers. There is a bounded set

of workers in the market, namely NM ∪ N F . Their productivity is perfectly

observed. There are no matching frictions. Firms have a linear technology

and there is free entry from an unbounded set of them, and there are no fixed

costs. In this environment, the positive component of individual payoffs yni
corresponds to the value of the output produced by this worker in equilibrium.

In our model, socializing within each occupation is undirected, but it is

directed across occupations.18 This means that within occupational groups

the agents only choose the amount of interaction si, but not the identity of

the individuals with whom they interact. However, individuals choose the

occupational group where they socialize. Many real world examples fit this

way of socializing: entrepreneurs and employees go to conferences or business

fairs, they join professional associations and go to their meetings, or simply

share social activities or events. Synergistic effort is mostly generic within the

conference, fair or social gathering; but clearly individuals carefully choose the

socializing spaces they attend and the associated socializing intensity.

18Undirected socializing and the requirement of socializing to enjoy externalities are fea-
tures shared with Cabrales, Calvó-Armengol, and Zenou (2011). However, we propose a
different functional form for the benefits from synergistic returns. We will show that using
our synergistic component Sni leads to a game with a unique symmetric equilibrium within a
network, while the game in Cabrales, Calvó-Armengol, and Zenou (2011) has multiple equi-
libria. Equilibrium uniqueness in socializing and productive efforts facilitate our analysis of
directed occupational choice.
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We assume that productive efforts are complementary. In particular, we

model synergistic returns as multiplicative in individual productivity parame-

ters and in the square root of productive efforts additively separable by pairs.19

Adopting this specific functional form implies that synergistic returns are sym-

metric in pairwise productive efforts and that the synergistic returns exhibit

constant returns to scale to overall productive efforts.

We restrict individuals to belong to one single group only. This assumption

is consistent with a number of potential applications: most people are either

entrepreneurs or employees. They tend to have only one profession to which

they dedicate themselves; academics generally do not work simultaneously in

very distinct fields; top athletes generally only excel in one sport; and in spite

of “Ingres’ violin” the same thing generally holds for artists.20 It can also

be justified formally within the model in a variety of ways. For example, by

adding a sufficiently large fixed cost to join a group which could arise from

training costs. We also assume no specific capital requirements to become an

entrepreneur. This could be due to the absence of capital market imperfections

or justified by simply assuming that entry costs are similar across occupations.

This way, occupational choices are not associated with initial wealth and we

can focus on social interactions and productive decisions.21

Individual ability in our model is always multiplied by the occupation-

specific parameter dn, so that the “effective” individual ability of individual

i in occupation n is captured by dnbni . This is a purely technical assumption

which amounts to a normalization of the distribution of “effective” abilities

dnbni . It allows us to discuss the comparative statics of a change in the mean

of the ability distribution while fixing the distribution of bni . Obviously a shift

that increases dn involves a specific way to introduce a first order stochastically

dominating shift in “effective” abilities dnbni .

19Complementarity in productive returns in Cabrales, Calvó-Armengol, and Zenou (2011)
is generated by synergistic returns being multiplicative in productive efforts and additively
separable by pairs.

20The term “Ingres’ violin” comes from the French neoclassical artist Jean Auguste Do-
minique Ingres, who while famous for his paintings was also incredibly talented though less
well known for his skill on the violin.

21See Evans and Jovanovic (1989) for the seminal contribution on the analysis of the effect
of liquidity constraints on entrepreneurial choice.
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4 The equilibrium and general results

We solve the game by backward induction. We compare the individual opti-

mum with the social optimum in which a social planner maximizes the sum

of individual utilities. We first solve for the optimal efforts within an occupa-

tional group and then let individuals sort themselves (or be sorted by a social

planner) into occupations.

4.1 Choice of production and socializing efforts

For each individual, we have to find the optimal productive and socializing

effort within each occupation (we suppress the superindex referring to the

occupation when there is no ambiguity). For the individual choice problem -

the decentralized problem - this is the choice of ki and si that maximizes (2).

The social planner, on the other hand, chooses kspi and sspi to maximize the

sum of individual utilities given by

∫
i∈NM∪NF

ui(bi)di =

∫
i∈NM∪NF

(
dNibiki + adNibi

√
kisi

∫
j∈Ni

dNibj
√
kjsj

N i
dj − 1

2
k2i −

1

2
s2i

)
di.

(4)

Denote by b2 =
∫
j∈Ni b

2
jdj. We first define some functions that are going to

be useful in the description of the equilibrium values.

k =
d

1−
(
a
2
d2b2

)2 , s =
a

2
d2b2k, (5)

and

ksp =
d

1−
(
ad2b2

)2 , ssp = ad2b2ksp. (6)

To avoid unbounded equilibrium choices we assume:22

Assumption 1. supNi

(
ad2

∫
j∈Ni b

2
jdj
)2

< 1,

which guarantees that the k and ksp are always well defined. We can now

derive the equilibrium decisions in terms of productive and socializing efforts,

which we state as follows:

Proposition 1. Under assumption 1, both the individual choice problem and

the social planner choice problem have a unique (interior) solution which for

22Note that output is of the order k2 because of the complementarities, like the costs.
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each individual is equal to her own productivity multiplied by a function that

is identical for all individuals in the group.23 That is

ki = bik and si = bis for all i (7)

kspi = bik
spand sspi = bis

sp for all i (8)

for the individual choice problem, and for the social planner, respectively.

Proof. See online Appendix A.2.

Proposition 1 has important empirical consequences. Since individual pro-

ductivity bi is complementary to effort, it follows that

Empirical Implication 1. More talented individuals work harder.

The correlation between talent and effort has been observed in education;

a sector for which we have good data on both ability and effort.24 But these

individual features also translate to the group level, something that allows

to make intergroup comparisons as well. On the one hand, highly talented

individuals generate greater externalities on their fellows. Evidence consistent

with this result is observed in the academic world. For example, the sudden

absence of extremely highly productive researchers provides a natural test

for our prediction. Azoulay, Zivin, and Wang (2010) find that researchers

collaborating with a superstar scientist experience a lasting and significant

decline in their quality adjusted publication rate after the unexpected death of

their superstar collaborator. A result similar in spirit is provided by Waldinger

(2010) when showing that the expulsion of high quality Jewish scientists from

Nazi Germany had a negative effect on the productivity of the Ph.D. students

left behind.

Proposition 1 also shows that average socializing is increasing in average

group productivity b =
∫
j∈Ni bjdj.

25 Therefore,

Empirical Implication 2. Individuals within more productive occupational

groups socialize more on average.

23The individual choice problem also has a trivial partial corner solution, where si = 0.
If nobody socializes, socializing is not profitable. However, this equilibrium is not stable,
since the marginal utility of si is positive for any (even infinitesimally small) average level
of socializing in the occupational group. We therefore ignore this solution in our analysis.

24See e.g. Yeo and Neal (2004) and Babcock and Betts (2009).
25The common group functions are increasing in the average group squared productivity

b2 and in average group productivity b. Since individual socializing is si = bis, average
socializing is bs.
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This empirical implication of our model is consistent with evidence pre-

sented in Currarini, Jackson, and Pin (2009) showing that the number of

interactions within friendship groups are increasing in their size. Albornoz,

Cabrales, Hauk, and Warnes (2017) provide further empirical evidence for

this prediction based on the analysis of co-authorships within economics fields.

Furthermore, academic life is clearly an example of a situation in which an in-

dividual’s productive outcomes are affected by the abilities and activities of

other researchers involved in the same production process. Hence socializing

decisions become key productive choices. Moreover academics choose their

field of research: their group. Using data scrapped from the IDEAS-RePEc

website Albornoz, Cabrales, Hauk, and Warnes (2017) establish that economic

researchers who work in more productive fields tend to have more co-authors.

Proposition 1 also reveals that average socializing and hence learning spillovers

are increasing in network synergies a. Thus,

Empirical Implication 3. Occupations with fewer synergies should experi-

ence lower interactions and fewer spillovers.

This is indeed found by Nix (2015) for the case of Sweden. After con-

structing a ranking of interactions with peers using Swedish data on work-

ers, their peers, and their firms from 1985-2012, Nix (2015) compares it to

estimated learning spillovers per-occupations and finds a strong correlation

between those two measures.

Insofar as synergies capture institutional and technological aspects of so-

cializing, we can also provide an explanation for the intensity of spillovers

varying across geographical regions (e.g. Bottazzi and Peri, 2003) and over

time (e.g. Jaffe, 1986).

Using the optimal efforts derived in Proposition 1, we can calculate the

associated individual utilities.

Proposition 2. Equilibrium individual utilities are

ui(bi) =
b2i d

2

2


(

1 +
(
a
2
d2b2

)2)
(

1−
(
a
2
d2b2

)2)2

 , (9)

in the individual choice problem and
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uspi (bi) =
1
2
d2b2i(

1−
(
ad2b2

)2) . (10)

for the social planner solution.

Proof. See online Appendix A.2.

From Proposition 2 we observe that while all individuals benefit from being

in a more productive occupational group,26 higher types benefit even more

from a given level of within-occupation externalities.27 Since productivity is

independent of occupational group size for a given average spillover,28 it follows

that

Empirical Implication 4. High types have an incentive to segregate from

low types if possible.

We certainly observe a tendency for high-skilled employees or entrepreneurs

to create elite societies. Good examples are the Freemasons or the Rotary club

(Yanagida (1992), Burt (2003)) where access is restrictive and whose objective

seems to be mainly to socialize among like-minded high-skilled individuals.29

These examples are particularly interesting because they are often secretive,

i.e., they are not created for the purpose of signaling such quality to the

external world.30

From Proposition 1, it is easy to see that individuals fail to internalize

the positive externality of their investment decisions on the other members of

their occupational group. Therefore, the individual utility resulting from the

26Since ∂ui(bi)/∂b2 > 0, and ∂uspi (bi)/∂b2 > 0, utility increases in b2 for everyone.
27That is, ∂2ui(bi)/∂bi∂b2 > 0, ∂2uspi (bi)/∂bi∂b2 > 0, so that individual type and group

type are complementary.
28As shown by Lemma 1 in the online Appendix.
29Carrell, Sacerdote, and West (2013) study interaction in the context of a military

academy. They show that even without physical separation within groups, individuals of
different ability types tend to socialize with one another in homogeneous subgroups.

30There are other examples where elite groups use restricted settings to socialize, like
London clubs in the late 1800s and early 1900s (Brayshay, Cleary, and Selwood (2006),
Brayshay, Cleary, and Selwood (2007)). Also, fraternities in college serve the purpose of
segregation, are mainly for networking and have a positive effect on future income. Mar-
maros and Sacerdote (2002) report that fraternity membership is positively associated with
networking and with finding a high paying job directly out of college. Routon and Walker
(2014) confirm that fraternity membership increases the probability of a recent graduate ob-
taining a job. Mara, Davis, and Schmidt (2016) find that fraternity membership increases
expected future income by roughly 30%.
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decentralized solution (9) is lower than the individual utility resulting from

the social planner solution (10). In other words,

Empirical Implication 5. Individuals underinvest in both productive and

socializing effort (ksp > k and ssp > s).

This underinvestment is specifically severe in professional activities where

learning spillovers are important for productivity31 and provides a rational for

subsidizing these activities. Entrepreneurship has emerged as a key issue in the

policy arena in the last few decades.32 For instance the European Commission

launched the “Small Business Act for Europe” in June 2008, which explic-

itly recognizes the central role of innovative small and medium-size enterprises

(SMEs) in the EU economy and sets out a comprehensive policy framework for

the EU and its member states. In this document, the Commission proposes

that member states should create an environment that rewards entrepreneur-

ship, specifically mentioning taxation in this context. Since entrepreneurial

effort in particular, and effort within an occupation in general, is suboptimal

in the presence of spillovers, we now turn to the determination of an optimal

subsidy within each occupation.

Proposition 3. A subsidy that achieves efficient effort within an occupation

(taking as given the selection into occupations) is given by:

yi −
1

2
d

(ki)
2

ksp
. (11)

Proof. See online Appendix A.3

This subsidy, which is based on observable individual output and produc-

tive effort, alters the original utility in a way that induces socially optimal

levels of effort.33 However, it takes as given the selection into occupations.

For this reason, it is only part of an optimal policy. Individuals choose their

31This is clear in the high-tech industry. To cite one example, Pirolo and Presutti (2007)
analyze the metropolitan high-tech cluster in Rome and show that social interactions are the
most significant determinant of the innovation process and relationships based on knowledge
sharing are the most important ones.

32The Economist on 14th March 2009 published a special report on entrepreneurship with
the title “Global Heroes”.

33Of course, it also assumes that the distribution of talent and other common parameters
are known. But these are things that can in principle be estimated from aggregate data and
observable output.
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occupation, and these individual choices might not be efficient. We now an-

alyze the optimal individual occupational choice and then return to the issue

of taxation to induce efficiency.

4.2 Choice of occupation

Having found the second-stage utilities, we can now solve the first-stage in

which individuals sort themselves into either employees (group M) or en-

trepreneurs (group F ). When deciding which occupational group to join,

individuals take the occupation choices of others as given. They choose the

occupation that grants them the maximal utility given the optimal within oc-

cupation investment choices, which could result from the decentralized or the

centralized solution derived in the previous subsection.

We show that independently of whether productive or socializing efforts

within the occupation are individually chosen (decentralized solution) or by

the social planner, the solution is characterized by a cutoff value C, such that

individuals for whom the ratio bMi /b
F
i < C choose group F , while individuals

for whom for whom bMi /b
F
i > C choose group M .

Such a solution implies that

bM2 = E
(
bM

2

i

∣∣bMi > CbFi

)
, (12)

bF 2 = E
(
bF

2

i

∣∣bMi < CbFi

)
. (13)

In other words, comparative advantage determines the choice of occupation

in a particularly simple way. Naturally, C is an endogenous function of all the

parameters in the model, and in general, it need not be unique. We denote

the slope of the dividing line by CP if effort choices in the occupational groups

are decentralized and by CE if the social planner implements efficient effort

choices within the occupations.

Proposition 4. For any underlying distribution of abilities, if assumption

1 is satisfied, both CP and CE exist and are decreasing in aM and dM and

increasing in aF and dF .34

Proof. See online Appendix A.4.

When C decreases more people become employees (join the M -group).

Similarly, an increase in C implies that more people become entrepreneurs (join

34Since we do not establish equilibrium uniqueness, this proposition has to be understood
in a local way, assuming the parameter change does not change equilibrium selection.
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the F -group). Thus, according to Proposition 4, an increase in the power of

synergies, or a specific first order stochastic dominance shift in the distribution

of final abilities, will lead to more people joining the affected occupation.

Higher within-occupation synergies a can be caused by the introduction

of new or improved communication technology facilities. Shifts in d could be

technological changes that affect the productivity of every individual in a given

occupation. Or they could be due to institutional features.

The effect of communication technologies (changes in a) on productivities

has been widely acknowledged.35 To our knowledge, there is no study link-

ing the relative sizes of economic sectors with their differential adoption of

communication technologies. This paper provides a clear prediction for this

linkage.

Empirical Implication 6. The differential adoption of communication tech-

nologies in different sectors should be accompanied by an increase in the relative

size of the sector after the technology is adopted.

This prediction can be tested in future research and exhibits the nice feature

of being independent of the underlying distribution of abilities. Similarly,

our model delivers clear and testable predictions for a shift in d. This is

especially relevant if we interpret our model as choosing to work in the formal

or informal sector. In some institutional settings very large (or very small)

firms are extremely regulated, while in others there are too many loopholes

for politically connected firms. A looser control of informal activities induces

a high d in the informal sector. The d in the formal sector would suffer from

high taxation. Therefore,

Empirical Implication 7. More people will work in the informal sector at

the expense of working in the formal sector the looser the controls of informal

activities and the higher formal sector taxation.

Lopez-Martin (2015) finds plentiful evidence consistent with this implica-

tion.

35Some examples are: Lio and Liu (2006) who find positive and significant relationship
between the adoption of information and communication technology and agricultural pro-
ductivity based on data collected in 81 countries for the period 1995–2000. Bayes (2001)
find that village phones in Bangladesh allow farmers to obtain better prices through infor-
mation diffusion. Genius, Koundouri, Nauges, and Tzouvelekas (2013) provides this type
of evidence for olive farmers in Greece while Sene (2015) studies peanut farmers in Senegal
and obtains a positive impact of connectivity on output.
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The above results only indicate how the relative occupational sector sizes

change with the underlying parameters, but they do not inform us about the

efficiency or inefficiency of the equilibrium outcomes. However, independently

of the direction of inefficiency, we can show that every relative sector size

can be achieved using a linear tax/subsidy no matter the underlying talent

distributions and hence the planner can also achieve the social optimal sorting

into occupations. Furthermore:

Proposition 5. The first-best allocation for the social planner, including the

socially optimal C, can be achieved in equilibrium using a linear tax/subsidy

on output t, plus a subsidy equal to t
(
yi − 1

2
d (ki)

2

ksp

)
.

Proof. See online Appendix A.5.

Proposition 5 establishes that a first-best allocation can be achieved by

combining a linear tax with a particular subsidy for any type of distribution of

talents. However, since there might be multiple equilibria in the occupational

choice stage, it abstracts from equilibrium selection issues. Also, in order to

determine the correct linear tax or subsidy, which depends on whether an

unregulated occupational sector is too big or too small, we will need to make

specific assumptions about the underlying talent distributions. In what follows

we will focus on the Pareto distribution which is empirically relevant and - as

we will show - leads to a unique equilibrium in our model.36

5 The case of a Pareto distribution of talent

The empirical relevance of the Pareto distribution for describing variations

of wages and income across individuals has been well established.37 Since its

shape parameter is an inverse measure of the spread of talent, the Pareto distri-

bution therefore also captures the empirical distribution of talents. Assuming

that individual talents in each occupation follow a Pareto distribution and

that talent is occupation-specific leads to a unique equilibrium in our model.38

Proposition 6. If abilities are distributed independently and follow a Pareto

law in [1,∞) with shape parameter αj for j ∈ {M,F}, both CP , defined by

(28) and CE, defined by (30) exist and are unique.
36The working paper version also includes results for the uniform distribution (Albornoz,

Cabrales, and Hauk, 2017).
37For example, Mandelbrot (1960); Guvenen, Karahan, Ozkan, and Song (2015).
38Notice that we assume uncorrelated talents for expositional simplicity. As discussed

below, our main results in this section are robust to the correlation structure.
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Proof. See online Appendix A.6.

Consequently, there is also a unique first best solution, which requires an

intervention at both margins, i.e. by inducing optimal effort within the occu-

pation as well as choices leading to the optimal occupational choice. Without

an intervention on location, one sector will be overpopulated while the other

sector will be underpopulated. There is plenty of evidence of excessive or in-

sufficient size of specific occupations. Shakhnov (2014) shows that financial

markets are too large with respect to the entrepreneurship sector with a model

that matches well US data. Khabibulina and Hefti (2015) find a negative cor-

relation of relative wages in the financial sector with respect to manufacturing

sector in case of the U.S. states from 1977 to 2011. A similar, while somewhat

less robust, result applies to the case of relative sector sizes as measured by the

labor force. Our paper provides an explanation for these phenomena and shows

that productive and informational spillovers are prime candidate mechanisms

for overpopulation/underpopulation to emerge in economic sectors.

The following results provide some insights on the direction of overpopula-

tion when abilities follow a Pareto distribution and investments in productive

and socializing effort are optimally determined by a social planner.39

Proposition 7. Let abilities be independently distributed, and assume they

follow a Pareto law in [1,∞) for n ∈ {M,F} with a common shape parameter

α. Without loss of generality assume that sector F has higher overall strength

of synergies, i.e.aFdF > aMdM . Then social welfare may increase by adding

(i.e. ∂w(C)
∂C

∣∣∣
C=CE

> 0) or by decreasing (i.e. ∂w(C)
∂C

∣∣∣
C=CE

< 0) the number of

workers in occupation F .

In particular,

• The sector with the overall higher strength of synergies (the F-sector) is

underpopulated for distributions with relatively low dispersion.40

39Proposition 7 established that intervening only locally within a group leads to subopti-
mal choice of occupations. This poses the question whether an uncoordinated intervention
can be worse than no intervention. In the working paper version (Albornoz, Cabrales, and
Hauk, 2017), we provide an example of such a result when the talent distribution is uniform
and in the presence of a special type of congestion costs. In this setup the equilibrium is
also unique.

40The exact technical condition is the following: For fixed values of aF , aM , dF and dM ,

satisfying aM
2

dM
2

< aF
2

dF
2

, there is a value of α high enough such that ∂w(C)
∂C

∣∣∣
C=CE

> 0).
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• When overall synergies are sufficiently small in both occupations, the

F-sector is overpopulated for sufficiently low synergies aF .41

Proof. See online Appendix A.7.

If the overall strength of synergies is higher in the F -sector, then reallo-

cating M -types that are close to indifferent to occupation F leads to lower

welfare in occupation F , since the average type in occupation F decreases. At

the same time, welfare in occupation M increases because the average type

in occupation M increases.42 The overall effect on social welfare is therefore

ambiguous. Notice that Proposition 7 establishes that occupation F is under-

populated for distributions with relatively low dispersion (high values of α).

Notice as well that a low dispersion in a Pareto distribution implies that the

number of superstars is very small.43 Thus, if both sectors have a low number

of very able individuals, the welfare can increase by augmenting the size of the

sector, which has the larger impact of synergies.

Empirical Implication 8. If the number of very able individuals in each

sector is small, the sector with the larger impact of synergies will be too small.

Proposition 7 also establishes a second rule of thumb:

Empirical Implication 9. The size of the occupation with higher overall

synergies is sub-optimally large when synergies are sufficiently small in both

occupations.44

To the extent that dispersion of talents and the strength of spillovers within

a particular occupation are observable, Empirical Implications 8 and 9 provide

potentially useful rules of thumb to detect local underpopulation or overpop-

ulation of different occupational sectors. Verifying these rules is left as an

empirical challenge for future work.

41The exact condition is the following: for fixed values of dF , dM and for(
aM

2

dM
2
)(

aF
2

dF
2
)
< 1, there is an aF low enough such that the F-sector is overpop-

ulated ( ∂w(C)
∂C

∣∣∣
C=CE

< 0).

42This is true because the average type in occupation F decreases with C, while the
average type in occupation M increases with C.

43Because high α implies low dispersion so the tails of the distribution are thin.
44To see this, notice that occupation F is overpopulated when aF is very low. Since F

has higher overall synergies (aM
2

dM
2

< aF
2

dF
2

) this also implies a sufficiently low aM
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Inequality and effort choices

The Pareto distribution is also appropriate to study the link between inequality

of abilities and productive and socializing efforts. Since - as we explained

already - the shape parameter αi is an (inverse) measure of the spread of talent,

we can simply associate a general increase of inequality with a reduction of

αi. One difficulty with the Pareto, though, is that reducing αi increases both

mean and dispersion. To circumvent this problem, we look at the effect of a

“neutralized” reduction in αj that keeps the unconditional mean of the Pareto

distribution constant.45 This way, we focus exclusively on the effect of changes

in the dispersion of talent, which we associate with inequality.

Proposition 8. Suppose abilities are distributed independently and follow a

Pareto law in [1,∞) with shape parameter αj for j ∈ {M,F}. Suppose as

well that the shape parameter αj of one of occupations decreases and that a

is reduced to exactly compensate for the increase in the unconditional mean of

squared types.46 Then, if we hold CE or CP constant, both bM2 and bF 2 in-

crease, and thus productive and socializing effort increase in both occupations.

Proof. See Appendix A.8.

Proposition 8 simply states that if the dispersion of talents in one occupa-

tion increases, both occupations receive a better selection of types and hence

productive and socializing effort increase in both occupations. The basic intu-

ition is that the tails of one of the distribution is now larger and comparative

advantage forces a selection mostly from the tails.47

Clearly, the effect of inequality in talent on socializing and productive

efforts emerges from the existence of spillovers within occupations. This is a

45More specifically, as αj falls we impose an equivalent change is a to reduce effort as much

as necessary to fix the unconditional mean of the Pareto distribution; which is E
(
bj

2

i

)
=

αj/ (αj − 2) , for j ∈ {M,F}).
46i.e. a′ = a (αj − 2)αj .
47For a more analytical explanation, note that the expression for bF 2 can be written as:

bF 2 =

∫ ∞
1

bF
2

fF
(
bF
) FM

(
CbF

)∫∞
1
fF (bF )FM (CbF ) dbF

dbF .

Observe that if αM decreases, the amount of mass on the tail of the distribution increases.
In this way, the weight given to larger values of bF increased by a (now larger) factor
FM

(
CbF

) ∫∞
1
fF
(
bF
)
FM

(
CbF

)
dbF .

The effect of a decrease of αF is more direct, as it increases fF
(
bF
)

for larger values of
bF . But of course, we are compensating for the direct increase by reducing a. But the key
difference in the conditional expectation is that the F

(
CbF

) ∫∞
1
f
(
bF
)
F
(
CbF

)
dbF term,

now unchanged, gives more weight to changes that occur for higher values of bF .

19



novel empirical implication of our model that stands as a challenge for future

empirical work.

Empirical Implication 10. An increase in inequality in talent leads to higher

production and more socialization in all occupations.

Admittedly, assuming that productivity parameters are independent across

occupations requires some degree of heroism. A natural question is whether

our results hinge on this assumption. We find it reassuring that our proposi-

tions 6 and 8 for the Pareto distribution are robust to the following correlation

structure: with probability p the two values of bji for j ∈ {F,M} are indepen-

dent of one another. With probability (1− p), they coincide, namely bMi = bFi
and they are distributed with shape parameter αF . Indeed, both propositions

6, and 8 are proved under this assumption which includes the independence

assumption for p = 1.48

6 Conclusion

In this paper, we study a model that integrates productive and socializing ef-

forts with occupational choice. Socializing allows for capturing informational

spillovers between individuals. We show that the existence of spillovers leads

to some interesting implications. It causes more talented individuals to work

harder, generating bigger positive externalities within their occupation, but

they also have incentives to segregate. We also show that average socializing

increases in average group productivity and in network synergies. Also, any

increase in within occupation synergies or improvement in final abilities for

an occupation causes more people to choose this occupation no matter how

abilities in the different occupations are distributed. This result provides inter-

esting testable implications on how sector sizes should vary, for example, after

the introduction of new communication technologies, which may be adopted

differentially across sectors. Another interesting implication of endogenous

spillovers is that a higher inequality of abilities in one occupation imply more

socialization and productive efforts in both occupations. This is something

that would not happen in a world without spillovers within occupations.

Our framework can be applied to investigate a range of different contexts,

where individuals choose which group to belong to and then decide how much

48We have not been able to show whether Proposition 7 is also robust to correlation, but
we have not found a counterexample either.
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to invest in the productive and socializing efforts. Education choices share

many features with the case we studied in this paper. We intend to use this

model in future work to study the demand and supply for different subjects and

skills (e.g. high-level Science, Technology, Engineering, and Math). Interest-

ingly, the case of education choices requires endogenizing ability. In Albornoz,

Cabrales, and Hauk (2017), we take a first step in this direction, where parents

can initially invest in their children’s abilities. We show that parental educa-

tional investment can mitigate or reinforce distributional inefficiencies. Our

model could also be useful to study residential choice, as the benefits of living

in a community often depend on social interactions within them. The choices

of leisure activities are another potential fruitful avenue of application of our

ideas. A more intriguing area for the development of this kind of model refers

to aspects more connected to an individual’s identity. The national, religious,

or ethnic identification of a person is sometimes a matter of choice, and is

connected to the decisions of others. For example, whether a person feels she

is European, British or Welsh, and to which degree, could be influenced by

her efforts and those of others in pursuit of their own identity. We think that

our contribution is an important step towards understanding the determinants

and effects of socializing.

One possible avenue for further research would be to explore the dynamic

implications of our model. The agents’ choices in our framework are static,

but the work on homophily shows that some fruitful insights can be obtained

from dynamic models of group formation. For example, Bramoullé, Currarini,

Jackson, Pin, and Rogers (2012) show that it is only for young individuals

that homophily-based contact search biases the type distribution of contacts.49

Hence in the long-term groups need not be type-biased. We could extend

our model to allow for participation in more than one occupation over time

and thus ascertain if biases in occupational choice persist over time. Clearly,

another extension would be to allow some spillovers between groups and partial

participation of agents in several of them. We could also allow for horizontal

preferences over occupations which are not necessarily related to individual

productivity and for correlated productivities across occupations.

49Another example of the interaction of homophily and dynamics is Golub and Jackson
(2012), which shows that homophily induces a lower speed of social learning (the opinions
of others like me are likely to be similar to my own).
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A Online appendices

A.1 A microfoundation for the gnij function

Lemma 1. Suppose that, for all s 6= 0, the link intensity satisfies the following

assumptions50:

(A1) Symmetry: gnij(s
n
i , s

n
j ) = gnji(s

n
j , s

n
i ), for all i, j, n;

(A2) The total interaction intensity of individual i in group n exhibits constant

returns to scale to overall inputs in socializing efforts and symmetry:∫
j∈Ni g

n
ij(s

n
i , s

n
j )dj = 1

Nn

∫
j∈Ni (sni )1/2

(
snj
)1/2

dj;

(A3) Anonymous socializing: gnij(s
n
i , s

n
j )/
(
snj
)1/2

= gnki(s
n
k , s

n
i )/ (snk)1/2, for all

i, j, k;

Lemma 2. Then, the link intensity is given by

gnij(s
n
i , s

n
j ) =

1

Nn
(sni )1/2

(
snj
)1/2

.

Proof of Lemma 1: Fix s. Combining (A1) and (A3) gives

(snk)1/2 gnij(s
n
i , s

n
j ) =

(
snj
)1/2

gnij(s
n
i , s

n
k).

Integrating across all j’s and using (A2) gives gnij(s
n
i , s

n
k) = 1

Nn (sni )1/2 (snk)1/2.

Notice that given (A2) and a level of socializing effort for all members of

the group, total socializing of an individual in a group
∫
j∈Ni g

n
ij(s

n
i , s

n
j )dj is

independent of the size of the group. In other words, individuals will not have

more contacts in larger occupational groups if everyone in the same occupation

chooses the same sni independent of size. One could easily accommodate other

assumptions, where socializing is either easier or more difficult in larger groups

by using 1/ (Nn)β for some β different from 1.

A.2 Proof of Propositions 1 and 2

The FOC for the decentralized problem are

50While Cabrales, Calvó-Armengol, and Zenou (2011) also model symmetric and anony-
mous socializing, which is the key for generic socializing, they assume that link intensity
satisfies aggregate constant returns to scale.
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ki = dbi +
a

2
d2bi

√
si
ki

∫
j∈Ni

bj
√
kjsj

N i
dj for all i (14)

si =
a

2
d2bi

√
ki
si

∫
j∈Ni

bj
√
kjsj

N i
dj for all i (15)

while the FOC for the social planner simplify to

kspi = dbi + ad2bi

√
sspi
kspi

∫
j∈Ni

bj
√
kspj s

sp
j

N i
dj for all i (16)

sspi = ad2bi

√
kspi
sspi

∫
j∈Ni

bj
√
kspj s

sp
j

N i
dj for all i (17)

We first prove that ki
si

=
kj
sj

for all i and j.

We divide (14) by (15) to get

ki
si

=
d+ a

2
d2
√

si
ki
K (b,k, sp)

a
2
d2
√

ki
si
K (b,k, sp)

=

√
ki
si

+ a
2
dK (b,k, s)

a
2
dki
si
K (b,k, sp)

(18)

where bold face letters denote vectors and

K (b,k, sp) =

∫
j∈Ni

bj
√
kjsj

N i
dj

Rearranging (18) gives

d

(
ki
si

)2
a

2
K (b,k, sp) =

√
ki
si

+ d
a

2
K (b,k, sp) (19)

from which it is immediate that

ki
si

= F (K (b,k, sp))

for some K (.) with a unique solution. To see the uniqueness notice that letting√
ki
si

= xi (19) can be written as

dx4i
a

2
K (b,k, sp) = xi + d

a

2
K (b,k, sp) (20)

2



the left hand side of (20) is a convex function taking the value 0 when xi = 0

and the right hand side it is a linear and takes the positive value da
2
K (b,k, sp)

when xi = 0. Hence there is a single crossing point at the positive orthant.

Hence

ki = dbi +
a

2
d2bi

K (b,k, sp)√
F (K (b,k, sp))

for all i

si =
a

2
d2bi

√
F (K (b,k, sp))K (b,k, sp) for all i

Thus it is clear we can write

ki = bik (b,k, sp) for all i

si = bis (b,k, sp) for all i

An analogous proof establishes that also for the centralized problem

kspi = bik
sp (b,ksp, spsp) for all i

sspi = bis
spKsp (b,ksp, spsp) for all i

It remains to determine the common optimal group parameters.

Using ki = bik and si = bis it follows that K (b,k, sp) =
∫
j∈Ni

b2j
√
ks

N i dj =

b2
√
ks for the individual problem where

b2 =

∫
j∈Ni

b2j
N i
dj

and using kspi = bik
sp and sspi = bis

sp it follows that Ksp (b,ksp, spsp) =

b2
√
kspssp for the centralized problem.

Suppressing the dependence on the vectors, we get two simultaneous equa-

tions with two unknowns, namely

k = d+ d2
a

2

√
sp

k
b2
√
ks = d+ d2

a

2
b2s

s =
a

2
d2

√
k

sp
b2
√
ks =

a

2
d2b2k

3



k =
d

1−
(
a
2
d2b2

)2
s =

a
2
d3b2

1−
(
a
2
d2b2

)
for the decentralized problem and

ksp = d+ ad2
√
ssp

ksp
b2
√
kspssp = d+ ad2b2ssp (21)

ssp = ad2
√
ksp

ssp
b2
√
kspssp = ad2b2ksp (22)

ksp =
d

1−
(
ad2b2

)2
ssp =

ad3b2

1−
(
ad2b2

)
for the centralized problem.

The optimal investments follow immediately from solving this system of

linear equations. Assuming
(
ad2b2

)2
< 1 guarantees positive investment lev-

els.

Introducing the optimal investment levels into the utility functions gives

us

k =
d

1−
(
a
2
d2b2

)2
s =

a
2
d3b2

1−
(
a
2
d2b2

)

4



ui(bi) = db2i k + ad2b2i ksb
2 − 1

2
b2i k

2 − 1

2
b2i s

2

= db2i
d

1−
(
a
2
d2b2

)2 + ad2b2i
d

1−
(
a
2
d2b2

)2 a
2
d3b2

1−
(
a
2
d2b2

)b2

−1

2
b2i

 d

1−
(
a
2
d2b2

)2


2

− 1

2
b2i

 a
2
d3b2

1−
(
a
2
d2b2

)
2

=
b2i d

2

2


(

1 +
(
a
2
d2b2

)2)
(

1−
(
a
2
d2b2

)2)2


for the decentralized solution and

uspi (bi) = db2i k
sp + ad2b2i k

spsspb2 − b2i
2

(ksp)2 − b2i
2

(ssp)2

=
1
2
d2b2i(

1−
(
ad2b2

)2) .
for the centralized solution.

A.3 Proof of Proposition 3

Let the subsidy be

yi −
1

2
d

(ki)
2

ksp

then the resulting utility with this subsidy is

uni = dnbni k
n
i + adnbni (kni )1/2

∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s
n
i , s

n
j )
)
dj − 1

2
(kni )2 − 1

2
(sni )2 .

+dnbni k
n
i + adnbni (kni )1/2

∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s
n
i , s

n
j )
)
dj − 1

2
d
k2i
ksp

This leads to first order conditions

ki = 2dbi + ad2bi

√
si
ki

∫
j∈Ni

bj
√
kjsj

N i
dj − d ki

ksp
for all i (23)

si = ad2bi

√
ki
si

∫
j∈Ni

bj
√
kjsj

N i
dj for all i (24)
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letting ki = bik
sp and si = bis

sp, we get

ksp = d+ ad2
√
ssp

ksp
b2
√
kspssp = d+ ad2b2ssp (25)

ssp = ad2
√
ksp

ssp
b2
√
kspssp = ad2b2ksp (26)

Clearly the system (25) , (26) is the same as (21) , (22) and thus (23) , (24) also

solves the same system as (16),(17) and the result follows.

A.4 Proof of Proposition 4

We first establish existence and a useful technical result for the rest of the

proposition.

Lemma 3. For any underlying distribution of abilities, if assumption 1 is sat-

isfied, there exist mappings f(C) and g(C) such that a zero of the mappings

f(C) and g(C) is an equilibrium of, respectively, the decentralized and cen-

tralized problems. Furthermore an equilibrium always exists, and in any stable

equilibrium, ∂f(C)
∂C

< 0 and ∂g(C)
∂C

< 0.

Proof. Under the decentralized solution, individuals choose to become an em-

ployee (group M) if and only if ui(b
M
i ) ≥ ui(b

F
i ). Hence, whenever

bM
2

i dM
2

2


(

1 +
(
aM
2
dM

2
bM2

2
)2)

(
1−

(
aM
2
dM2bM2

2
)2)2

 >
bF

2

i dF
2

2


(

1 +
(
aF
2
dF

2
bF 2

2
)2)

(
1−

(
aF
2
dF 2bF 2

2
)2)2

 .

(27)

If the dividing line exists, its slope is defined when the expressions on either

side of the inequality in (27) are equal. In other words, the dividing line is

defined by the following expression:

bMi = bFi
dF

dM

√√√√√√√√
(

1 +
(
aF
2
dF 2bF 2

2
)2)

(
1−

(
aF
2
dF 2bF 2

2
)2)2

(
1−

(
aM
2
dM2bM2

2
)2)2

(
1 +

(
aM
2
dM2bM2

2
)2) = bFi CP .
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Hence CP is the fixed point of the mapping

CP =
dF

dM

√√√√√√√√
(

1 +
(
aF
2
dF 2bF 2

2
)2)

(
1−

(
aF
2
dF 2bF 2

2
)2)2

(
1−

(
aM
2
dM2bM2

2
)2)2

(
1 +

(
aM
2
dM2bM2

2
)2) , (28)

where the right hand of (28) depends on CP through bM2 and bF 2 , which

are defined by equations (12) and (13) respectively. Put differently, CP is

implicitly defined by a zero of the mapping

g(C, ·) ≡ dF
2

dM2

(
1 +

(
aF

2
dF

2
bF 2

)2)
(

1−
(
aF

2
dF 2bF 2

)2)2

(
1−

(
aM

2
dM

2
bM2

)2)2

(
1 +

(
aM

2
dM2bM2

)2) − C2. (29)

If ssp and ksp are induced by the social planner (say via subsidies), people

would choose to become an employee (group M) if and only if uspi (bMi ) ≥
uspi (bFi ) and the dividing line, should it exist, would solve

CE =
dF

dM

√√√√√√√
(

1−
(
adM2bM2

)2)
(

1−
(
adF 2bF 2

)2) , (30)

and is implicitly defined by a zero of the mapping

f(C, ·) ≡ dF
2

dM2

1−
(
aMdM

2
bM2

)2
1−

(
aFdF 2bF 2

)2 − C2. (31)

Define

gA(C) ≡ dF
2

dM2

(
1 +

(
aF

2
dF

2
bF 2

)2)
(

1−
(
aF

2
dF 2bF 2

)2)2

(
1−

(
aM

2
dM

2
bM2

)2)2

(
1 +

(
aM

2
dM2bM2

)2)

so that g (C, ·) = gA(C)−C2. Then, given that we assume that supC

(
ad2b2

)2
<

7



1

g(0, ·) > 0

Then, note that the assumption supC

(
ad2b2

)2
< 1 means that b2 is bounded

above, so the numerator of the function gA (C) is bounded above by

(
1 +

(
aF

2
dF

2
supC b

F 2

)2)
.

Similarly the denominator of gA (C), is bounded below by

(
1−maxC

(
aF

2
dF

2
bF 2

)2)2

.

This means that for all C

gA (C) <
dF

2

dM2

(
1 +

(
aF

2
dF

2
supC b

F 2

)2)
(

1−maxC

(
aF

2
dF 2bF 2

)2)2

which implies that if we define Cg as

Cg ≡

√√√√√√√ dF 2

dM2

(
1 +

(
aF

2
dF 2 supC b

F 2

)2)
(

1−maxC

(
aF

2
dF 2bF 2

)2)
we have that for all C > Cg

g (C, ·) < 0

and thus by the mean value theorem there exists a value C∗ ∈
(
0, Cg

)
such

that g (C∗, ·) = 0.

Similarly, let

fA(C) ≡ dF
2

dM2

1−
(
aMdM

2
bM2

)2
1−

(
aFdF 2bF 2

)2
so that f (C, ·) = fA(C)−C2. Then, given that we assume that supC

(
ad2b2

)2
<

1

f(0, ·) > 0

The assumption supC

(
ad2b2

)2
< 1 means that b2 is bounded above, so the nu-

merator of the function fA (C) is bounded above by

(
1−

(
aMdM

2
supC b

M2

)2)
.

Similarly the denominator of fA (C), is bounded below by

(
1−maxC

(
aFdF

2
bF 2

)2)2

.

8



This means that for all C

fA (C) <
dF

2

dM2

(
1 +

(
aMdM

2
supC b

M2

)2)
(

1−maxC

(
aFdF 2bF 2

)2)
which implies that if we define Cf as

Cf ≡

√√√√√√√ dF 2

dM2

(
1 +

(
aMdM2 supC b

M2

)2)
(

1−maxC

(
aFdF 2bF 2

)2)
we have that for all C > Cf

f (C, ·) < 0

and thus by the mean value theorem there exists a value C∗ ∈
(
0, Cf

)
such

that f (C∗, ·) = 0.

For stability, note that if g (C) > 0 we would have

dM
2

2


(

1 +
(
aM
2
dM

2
bM2

2
)2)

(
1−

(
aM
2
dM2bM2

2
)2)2

 <
dF

2

2


(

1 +
(
aF
2
dF

2
bF 2

2
)2)

(
1−

(
aF
2
dF 2bF 2

2
)2)2


and thus for an individual with bMi = CbFi would not be indifferent between

group M and F but would prefer to move to group F so that C would present

a tendency to increase. This leads us to postulate a natural tatônnement-like

adjustment dynamic
∂C (t)

∂t
= R (g (C (t, ·)))

where R (.) is an increasing function that is positive if and only if g (C, ·) is

positive. It is then easy to see that in any stable equilibrium C∗∗, g (C, ·) has

to be decreasing at C∗∗ as otherwise, a small increase or decrease from C∗∗

will push the dynamics away from the equilibrium. An analogous argument

proves the result for f (C, ·) .

By Lemma 3, ∂f(C)/∂C < 0 and ∂g(C)/∂C < 0, hence to establish com-

9



parative static results, one only needs to check the sign of the derivatives of

the functions defining CP and CE with respect to the underlying parameters

an and dn for n ∈ {M,F}. So using the implicit function theorem, we only

need to check how the functions f (.) and g (.) vary directly with aM , aF , dM

and dF to calculate how C changes with those underlying parameters.

We start by looking at changes in aM

∂f(C, ·)
∂aM

=
dF

2

dM2

−2aM
(
dM

2
bM2

)2
1−

(
aFdF 2bF 2

)2 < 0

g(C, ·) =
dF

2

dM2

(
4 +

(
aFdF

2
bF 2

)2)
(

4−
(
aFdF 2bF 2

)2)2

(
4−

(
aMdM

2
bM2

)2)2

(
4 +

(
aMdM2bM2

)2) − C2
P = 0

sign

(
∂g(C, ·)
∂aM

)

= sign


−4aM

(
dM

2
bM2

)2(
4−
(
aMdM

2
bM2

)2)(
4+
(
aMdM

2
bM2

)2)
(
4+
(
aMdM2bM2

)2)2

−
2aM

(
dM

2
bM

2
)2(

4−
(
aMdM

2
bM

2
)2)2

(
4+
(
aMdM2bM2

)2)2


< 0

Hence

dCE
daM

= −
∂f(C,·)
∂aM

∂f(C,·)
∂CE

< 0

dCP
daM

= −
∂g(C,·)
∂aM

∂g(C,·)
∂CP

< 0

If the synergies of the M -group become more important, C decreases, thus

more people join the M -group. We now show that the opposite happens when

synergies in the F -group increase.

10



∂f(C, ·)
∂aF

=
dF

2

dM2

(
1−

(
aMdM

2
bM2

)2)
2aF

(
dF

2
bF 2

)2
(

1−
(
aFdF 2bF 2

)2)2 > 0

sign

(
∂g(C, ·)
∂aF

)

= sign



2aF
(
dF

2
bF2

)2(
4−
(
aF dF

2
bF2

)2)2

((
4−
(
aF dF2bF2

)2)2
)2

+
4aF

(
dF

2
bF2

)2(
4−
(
aF dF

2
bF2

)2)(
4+
(
aF dF

2
bF2

)2)
((

4−
(
aF dF2bF2

)2)2
)2


> 0

Hence

dCE
daF

= −
∂f(C,·)
∂aF

∂f(C,·)
∂CE

> 0

dCP
daF

= −
∂g(C,·)
∂aF

∂g(C,·)
∂CE

> 0

Now we look at changes in dM .

f(C, ·) =
dF

2

dM2

1−
(
aMdM

2
bM2

)2
1−

(
aFdF 2bF 2

)2 − C2
E = 0 (32)

∂f(C, ·)
∂dM

= −2dF
2

dM3

1−
(
aMdM

2
bM2

)2
1−

(
aFdF 2bF 2

)2 − dF
2

dM2

4dM
3
(
aMbM2

)2
1−

(
aFdF 2bF 2

)2 < 0

Hence
∂CE
∂dM

= −
∂f(C,·)
∂dM

∂f(C,·)
∂CE

< 0
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Similarly

sign

(
∂g(C, ·)
∂dM

)
= sign


−4dM3

(
aM bM2

)2(
4−
(
aMdM

2
bM2

)2)(
4+
(
aMdM

2
bM2

)2)
(
4+
(
aMdM2bM2

)2)2

−
4dM

3
(
aM bM2

)2(
4−
(
aMdM

2
bM2

)2)2

(
4+
(
aMdM2bM2

)2)2


< 0

Therefore
∂CP
∂dM

= −
∂g(C,·)
∂dM

∂g(C,·)
∂CE

< 0

If dM increases fewer people join the F−group.

Finally we want to understand how the dividing line is affected by changes

in dF .

∂f(C, ·)
∂dF

=

1−
(
aMdM

2
bM2

)2
dM2




2dF
(

1−
(
aFdF

2
bF 2

)2)
+ 2aF

(
dF

2
bF 2

)2
dF

2

(
1−

(
aFdF 2bF 2

)2)2

 > 0

Therefore
∂CE
∂dF

= −
∂g(C,·)
∂dF

∂g(C,·)
∂CE

> 0

Similarly

12



sign

(
∂g(C, ·)
∂dF

)

=

dF
2

(
4 +

(
aFdF

2
bF 2

)2)
(

4−
(
aFdF 2bF 2

)2)2

= sign



(
8dF+6dF

5
(
aF bF2

)2)(
4−
(
aF dF

2
bF2

)2)2

((
4−
(
aF dF2bF2

)2)2
)2

+
8dF

3
(
aF bF2

)2(
4−
(
aF dF

2
bF2

)2)(
4dF

2
+dF

2
(
aF dF

2
bF2

)2)
((

4−
(
aF dF2bF2

)2)2
)2


> 0

Therefore
∂CP
∂dF

= −
∂g(C,·)
∂dF

∂g(C,·)
∂CE

> 0

A.5 Proof of Proposition 5

We first establish

Lemma 4. Any C ∈ [0,∞) can be obtained in equilibrium using a linear

tax/subsidy on output.

Proof. We characterize the optimal choices under a linear tax/subsidy on out-

put. The FOC for the decentralized problem are

ki = dtbi +
a

2
d2tbi

√
si
ki

∫
j∈Ni

bj
√
kjsj

N i
dj for all i (33)

si =
a

2
d2tbi

√
ki
si

∫
j∈Ni

bj
√
kjsj

N i
dj for all i (34)

We first prove that ki
si

=
kj
sj

for all i and j.

We divide (33) by (34) to get

13



ki
si

=
d+ a

2
d2
√

si
ki
K (b,k, sp)

a
2
d2
√

ki
si
K (b,k, sp)

=

√
ki
si

+ a
2
dK (b,k, s)

a
2
dki
si
K (b,k, sp)

(35)

where bold face letters denote vectors and

K (b,k, sp) =

∫
j∈Ni

bj
√
kjsj

N i
dj

Rearranging (35) gives

d

(
ki
si

)2
a

2
K (b,k, sp) =

√
ki
si

+ d
a

2
K (b,k, sp) (36)

from which it is immediate that

ki
si

= F (K (b,k, sp))

for some K (.) with a unique solution. To see the uniqueness notice that letting√
ki
si

= xi (36) can be written as

dx4i
a

2
K (b,k, sp) = xi + d

a

2
K (b,k, sp) (37)

the left hand side of (37) is a convex function taking the value 0 when xi = 0

and the right hand side it is a linear and takes the positive value da
2
K (b,k, sp)

when xi = 0. Hence there is a single crossing point at the positive orthant.

Hence

ki = dtbi +
a

2
d2tbi

K (b,k, sp)√
F (K (b,k, sp))

for all i

si =
a

2
d2tbi

√
F (K (b,k, sp))K (b,k, sp) for all i

Thus it is clear we can write

ki = bik (b,k, s,t) for all i

si = bis (b,k, s,t) for all i

We now determine the common optimal group parameters.

14



Using ki = bik and si = bis it follows that K (b,k, sp) =
∫
j∈Ni

b2j
√
ks

N i dj =

b2
√
ks for the individual problem where

b2 =

∫
j∈Ni

b2j
N i
dj

Suppressing the dependence on the vectors, we get two simultaneous equa-

tions with two unknowns, namely

k = dt+ d2t
a

2

√
sp

k
b2
√
ks = dt+

a

2
d2tb2s

s =
a

2
d2t

√
k

sp
b2
√
ks =

a

2
d2tb2k

which lead to

k =
dt

1−
(
a
2
d2tb2

)2
s =

a
2
d3t2b2

1−
(
a
2
d2tb2

)2
Assuming

(
ad2tb2

)2
< 1 guarantees positive investment levels.

Introducing the optimal investment levels into the utility functions gives

us

ui(bi) = db2i tk + ad2b2i tksb
2 − 1

2
b2i k

2 − 1

2
b2i s

2

= b2i

(
dtk + ad2tksb2 − 1

2
k2 − 1

2
s2
)

=
b2i d

2t2

2


2

(
1−

(
a
2
d2tb2

)2)
+ 4

(
a
2
d2tb2

)2
− 1−

(
a
2
d2tb2

)2
(

1−
(
a
2
d2tb2

)2)2


so that

ui(bi) =
b2i d

2t2

2

 1 +
(
a
2
d2tb2

)2
(

1−
(
a
2
d2tb2

)2)2

 (38)
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for the decentralized solution.

Similarly for the centralized solution the first order conditions are

ki = dtbi + ad2tbi

√
si
ki

∫
j∈Ni

bj
√
kjsj

N i
dj for all i (39)

si = ad2tbi

√
ki
si

∫
j∈Ni

bj
√
kjsj

N i
dj for all i (40)

and using analogous arguments as before we have that using ki = bik
sp and

si = bis
sp the expressions (39) and (40) can be written as

k = dt+ d2ta

√
sp

k
b2
√
ks = dt+ ad2tb2s

s = ad2t

√
k

sp
b2
√
ks = ad2tb2k

where

k =
dt

1−
(
ad2tb2

)2
s =

ad3t2b2

1−
(
ad2tb2

)2
This leads, after some manipulations, as before, to

ui(bi) =
b2i d

2t2

2

1(
1−

(
ad2tb2

)2)2 (41)

From expression (38) we get that the equation that defines CP implicitly

is

g(C, t, ·) =
dF

2
tF

2

dM2tM2

(
4 +

(
aFdF

2
tF bF 2

)2)
(

4−
(
aFdF 2tF bF 2

)2)2

(
4−

(
aMdM

2
tMbM2

)2)2

(
4 +

(
aMdM2tMbM2

)2) −C2
P = 0

(42)
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and from expression (41) we get that the equation that defines CP implicitly

is

f(C, t, ·) =
dF

2
tF

2

dM2tM2

1−
(
aMdM

2
tMbM2

)2
1−

(
aFdF 2tF bF 2

)2 − C2
E = 0 (43)

From expression (43) and (42) we get that lim tF

tM
→0
CE = lim tF

tM
→0
CP = 0

and lim tM

tF
→0
CE = lim tM

tF
→0
CP = ∞. This, plus continuity of CE and CP as

a function of tF , tM establishes that one can obtain any value of CE and CP

between 0 and ∞ by appropriately varying tF

tM
.

Having established Lemma 4 we now proceed with the remainder of the

proof of Proposition 5

Given the tax and subsidy scheme proposed we can write the utility of the

agent as

uni = tn
(
dnbni k

n
i + adnbni (kni )1/2

∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s
n
i , s

n
j )
)
dj

)
− 1

2
(kni )2 − 1

2
(sni )2

+tn

(
yi −

1

2
d

(ki)
2

k

)

= 2tn
(
dnbni k

n
i + adnbni (kni )1/2

∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s
n
i , s

n
j )
)
dj

)
− 1

2
(kni )2 − 1

2
(sni )2

−tn
(

1

2
d

(ki)
2

k

)

The FOC for the decentralized problem for all i are:

ki = dtnbi +
a

2
d2tnbi

√
si
ki

∫
j∈Ni

bj
√
kjsj

N i
dj + tn

(
dbi +

a

2
d2bi

√
si
ki

∫
j∈Ni

bj
√
kjsj

N i
dj − dki

k

)

si =
a

2
d2tnbi

√
ki
si

∫
j∈Ni

bj
√
kjsj

N i
dj + tn

(
a

2
d2bi

√
si
ki

∫
j∈Ni

bj
√
kjsj

N i
dj

)
.
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Letting ki = bik
sp and si = bis

sp, we have

ki = dtnbi + ad2tnbi

√
si
ki

∫
j∈Ni

bj
√
kjsj

N i
dj for all i (44)

si = ad2tnbi

√
ki
si

∫
j∈Ni

bj
√
kjsj

N i
dj for all i (45)

Notice that the expressions (44) and (45) are identical to (39) and (40)

Hence we will have that

ksp =
dtn

1−
(
a
2
d2tnb2

)2
ssp =

a
2
d3tn2b2

1−
(
a
2
d2tnb2

)2
and

ui(bi) =
b2i d

2t2

2

1(
1−

(
ad2tb2

)2)2 (46)

The remainder of the proof follows from Lemma 4.

A.6 Proof of Proposition 6

We assume now that returns b follow a Pareto distribution with shape pa-

rameter αi for i ∈ {F,M}

f (b) =
αi
bαi+1

for 1 ≤ b ≤ ∞

We will prove a slightly more general statement of the proposition, allowing

for the following correlation structure. With probability p the two values of

bji for j ∈ {F,M} are independent of one another. With probability (1− p),
bMi = bFi and they are distributed with shape parameter αF .

We will derive the results under the assumption that the C that defines

the dividing line bMi = CbFi is such that C ≥ 1.51 Existence follows from

51If C < 1, the same results hold with the names of the networks interchanged.
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Proposition 3.

We now calculate bF 2 and bM2 for C ≥ 1. Note that in the correlated part,

bMi = bFi implies that bMi < CbFi and thus if one player gets a correlated draw

she forms part of the F network).

bF 2 = E
(
bF

2

i

∣∣bMi < CbFi

)
= p

∫∞
1

∫ CbF
1

bF
2 αF

bF
αF+1

αM

bM
αM+1 dbMdbF∫∞

1

∫ CbF
1

αF

bF
αF+1

αM

bM
αM+1 dbMdbF

+ (1− p)
∫ ∞
1

bF
2 αF

bF
αF+1 db

F

= p
αF

αF − 2

((αF + αM − 2)CαM − (αF − 2))(
CαM − αF

αF+αM

)
(αF + αM − 2)

+ (1− p)
∫ ∞
1

αF

bF
αF−1 db

F

= p
αF

αF − 2

((αF + αM − 2)CαM − (αF − 2))(
CαM − αF

αF+αM

)
(αF + αM − 2)

+ (1− p) αF
αF − 2

which can be rewritten as

bF 2 = p (αF + αM)
αF

(αF − 2)

(αF + αM − 2)CαM − (αF − 2)

((αF + αM)CαM − αF ) (αF + αM − 2)
+(1− p) αF

αF − 2
(47)

while

bM2 = E
(
bM

2

i

∣∣bMi > CbFi

)
= p

αMαF
(αM−2)CαM−2

1
(αF+αM−2)

αF
CαM

1
αF+αM

which simplifies to

bM2 = p
αM

(αM − 2)

αF + αM
(αF + αM − 2)

C2 (48)

bM2 is obviously increasing in C. We now show that bF 2 is decreasing in C

∂bF 2 (C)

∂C
= − (αF + αM)

(αF + αM − 2)

αF
(αF − 2)

(
2α2

MC
αM−1

((αF + αM)CαM − αF )2

)
< 0 (49)

We first prove uniqueness of CE defined by

CE =
dF

dM

√√√√1− aMdMbM2
2

1− aFdF bF 2
2 (50)
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Note that the LHS of (50) is increasing in CE so all we need to show is the RHS

is decreasing in CE so that a unique equilibrium exists. Clearly the numerator

of the RHS is decreasing in CE because bM2 is increasing in CE. Since bF 2 is

decreasing in CE, the denominator of the RHS is increasing in CE. And thus

the result follows.

We now prove uniqueness of CP which is defined by

CP =

√√√√√√√√ dF 2

dM2

(
1 +

(
aF

2
dF 2bF 2

)2)
(

1−
(
aF

2
dF 2bF 2

)2)2

(
1−

(
aM

2
dM2bM2

)2)2

(
1 +

(
aM

2
dM2bM2

)2) (51)

Again note that the LHS of (51) is increasing in CP so all we need to show is the

RHS is decreasing in CP so that a unique equilibrium exists. It is again easy

to see that

(
1−

(
aM

2
dM

2
bM2

)2)2

/

(
1 +

(
aM

2
dM

2
bM2

)2)
is decreasing in CP

because bM2 is increasing in CP . Also, since we showed in (49) that bF 2 is de-

creasing in CP then

(
1 +

(
aF

2
dF

2
bF 2

)2)
/

(
1−

(
aF

2
dF

2
bF 2

)2)2

is decreasing

CP . As a result RHS of (51) is decreasing in CP and the result follows.

A.7 Proof of Proposition 7

We will prove the proposition for αF = αM .. We will first show that

Lemma 5. CE > 1⇔ aM
2
dM

2
< aF

2
dF

2

Note also that if aM
2
dM

2
= aF

2
dF

2
the solution of (50) is at CE = 1. An

increase of aM
2
dM

2
with respect to aF

2
dF

2
displaces the RHS to the left so

that the new equilibrium entails CE < 1.

We will now show that for CE > 1 there might be too few ∂w(C)
∂C

∣∣∣
C=CE

> 0

or too many people ∂w(C)
∂C

∣∣∣
C=CE

< 0 in the F group compared to the social

optimum.52 The F group will be underpopulated if and only if

aM
2
dM

2

aF 2dF 2 >
((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2
(52)

52The assumption CE > 1 is without loss of generality subject to relabeling. It implies
that synergies are bigger in occupation F .
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We will check how a decentralized group choice deviates from the efficient

group choice Csp implemented by a social planner who maximizes social wel-

fare. We study the case where the social planner also implements the socially

optimal investments in productive and socializing effort.

The social planner would choose C to maximize social welfare with socially

optimal investments in productive and socializing efforts where social welfare

is given by

w(C) =

∫ ∞
1

∫ CbF

1

bF
2

i

2

(
1

1− aF 2dF 2bF 2
2

)
α

bF
α+1

i

α

bM
α+1

i

dbMi db
F
i

+

∫ ∞
1

∫ ∞
CbF

bM
2

i

2

(
1

1− aM2dM2bM2
2

)
α

bF
α+1

i

α

bM
α+1

i

dbMi db
F
i

∂w(C)

∂C

=

[∫ ∞
1

bF
3

i

2

((
1

1− aF 2dF 2bF 2
2

)
− C2

(
1

1− aM2dM2bM2
2

))
α

bF
α+1

i

α

(CbFi )
α+1db

F
i

]

+

∫ ∞
1

∫ CbF

1

∂

(
bF

2

i

2

(
1

1−aF2dF2bF2
2

))
∂C

α

bF
α+1

i

α

bM
α+1

i

dbMi db
F
i

+

∫ ∞
1

∫ ∞
CbF

∂

(
bM

2

i

2

(
1

1−aM2dM2bM2
2

))
∂C

α

bF
α+1

i

α

bM
α+1

i

dbMi db
F
i

Now at CE =

√
1−aM2dM2

bM2
2

1−aF2dF2bF2
2

∂w(C)

∂C

∣∣∣∣
C=CE

= aF
2

2bF 2 α

α− 2

1

α− 1

(
−2αCα−1

(2Cα − 1)
2

)(
1

1− aF 2dF 2bF 2
2

)2
α ((2α− 2)Cα − (α− 2))

(2α− 2) (α− 2)Cα

+aM
2

2bM2 α

α− 2

α

α− 1
2C

(
1

1− aM2dM2bM2
2

)2
α2

α− 2

1

Cα−2
1

(2α− 2)

CE =

√
1−aM2dM2bM2

2

1−aF2dF2bF2
2 → C4

(
1

1−aM2dM2bM2
2

)2

=

(
1

1−aF2dF2bF2
2

)2
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Therefore

∂w(C)

∂C

∣∣∣∣
C=CE

> 0⇐⇒ −aF 2

dF
2 ((2α− 2)Cα − (α− 2))2

(2Cα − 1)3C
+ aM

2

dM
2 α2

Cα−1 > 0

⇐⇒ aM
2
dM

2

aF 2dF 2 >
((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2

and

∂w(C)

∂C

∣∣∣∣
C=CE

< 0⇐⇒ aM
2
dM

2

aF 2dF 2 <
((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2

By Lemma 5 since CE > 1⇔ aM
2
dM

2
< aF

2
dF

2
, hence aM

2
dM

2

aF2dF2 < 1.

We will now show that

1 >
((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2
=

((α− 1) (2Cα − 1) + 1)2Cα

α2 (2Cα − 1)3C2
(53)

Note that

((α− 1) (2Cα − 1) + 1)2 < α2 (2Cα − 1)2

since that expression is equivalent to

(α− 1) (2Cα − 1) + 1 < α (2Cα − 1)

⇔ 1 < 2Cα − 1⇐⇒ 1 < Cα

thus
((α− 1) (2Cα − 1) + 1)2Cα

α2 (2Cα − 1)3C2
<

Cα

(2Cα − 1)C2
<

1

C
< 1 (54)

where the last two inequalities hold since C > 1, noting that in that case

2Cα − 1 > Cα. Thus equation (54) establishes (53).

The next two lemmas establish that overpopulation can occur in both sec-

tors and depends on the underlying parameters. Lemma 6 shows the existence

of parameter values that ∂w(C)
∂C

∣∣∣
C=CE

< 0 while Lemma 7 shows the existence

of parameter values that ∂w(C)
∂C

∣∣∣
C=CE

> 0.

Lemma 6. Let aM
2
dM

2

aF2dF2 = r < 1. For a fixed α and r there exists an aF
2

low

enough that

r =
aM

2
dM

2

aF 2dF 2 <
((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2
.
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Since

CE =

√√√√√ 1− raF 2dF 2
(

α
α−2

α
α−1C

2
E

)2
1− aF 2dF 2

(
α
α−2

1
α−1

(
(α− 1) + 1

2CαE−1

))2
we have that

lim
aF2dF2→0

CE

(
α, r, aF

2

, dF
2
)

= 1

thus

lim
aF2dF2→0

((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2
= lim

aF2dF2→0

((2α− 2)− (α− 2))2

α2
= 1 > r.

Lemma 7. Let aM
2
dM

2

aF2dF2 = r < 1. For a fixed aF
2

and r such that CE exists,

there is an α high enough that

r =
aM

2
dM

2

aF 2dF 2 >
((2α− 2)Cα

E − (α− 2))2Cα
E

α2 (2Cα
E − 1)3C2

E

For a bounded CE

C ≡ lim
α→∞

C2
E = lim

aF2→0

1− raF 2
dF

2
C4
E

1− aF 2dF 2

Hence

raF
2

dF
2

C4 +
(

1− aF 2

dF
2
)
C2 − 1 = 0

and thus

C2 =
−
(

1− aF 2
dF

2
)
±
√

(1− aF 2dF 2)
2

+ 4raF 2dF 2

2raF 2dF 2

Now since

lim
α→∞

((2α− 2)Cα
E − (α− 2))2Cα

E

α2 (2Cα
E − 1)3C2

E

= lim
α→∞

(2Cα − 1)2 α2Cα

α2 (2Cα − 1)3C2
=

1

2C2

In other words, we would like to show that for α high enough

C2 >
1

2r
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or

−
(

1− aF 2
dF

2
)

+

√
(1− aF 2dF 2)

2
+ 4raF 2dF 2

2raF 2 >
1

2r
(55)

√
(1− aF 2dF 2)

2
+ 4raF 2dF 2 > 1

aF
2

dF
2
(
aF

2

dF
2

+ 4r − 2
)

> 0

which requires r > 2−aF2
dF

2

4
which is true for example if r > 1

2
.

Proposition 7 immediately follows from these Lemmas.

A.8 Proof of Proposition 8

We will prove this Proposition for a slightly more general case, using the same

correlation structure as in the proof of Proposition. 6. With probability p

the two values of bji for j ∈ {F,M} are independent of one another. With

probability (1− p), bMi = bFi and they are distributed with shape parameter

αF . With this correlation structure bF 2 and bM2 have been calculated by (47)

and (48) respectively, as

bF 2 = p (αF + αM)
αF

(αF − 2)

(αF + αM − 2)CαM − (αF − 2)

((αF + αM)CαM − αF ) (αF + αM − 2)
+(1− p) αF

αF − 2

bM2 = p
αM

(αM − 2)

αF + αM
(αF + αM − 2)

C2

We now normalize bM2 by the expected second moment αM
(αM−2)

. Hence

bM2

NORM = p
αF + αM

(αF + αM − 2)
C2 = p

(
1 +

2

αF + αM − 2

)
C2

Clearly, this is decreasing in αF and αM .

We normalize bF 2by the expected second moment αF
(αF−2)

.Hence

bF 2

NORM = p (αF + αM)
(αF + αM − 2)CαM − (αF − 2)

((αF + αM)CαM − αF ) (αF + αM − 2)
+ (1− p)

= p
CαM − (αF−2)

(αF+αM−2)

CαM − αF
(αF+αM )

+ (1− p)
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Noting that

∂bF 2

NORM

∂αF
= p

1

CαM − αF
αF+αM

(
−1

αF + αM − 2
+

αF − 2

(αF + αM − 2)2

)
−p 1(

CαM − αF
αF+αM

)2 ( −1

αF + αM
+

αF

(αF + αM)2

)

×
(
CαM − αF − 2

αF + αM − 2

)
= p

1

CαM − αF
αF+αM

(
−αM

(αF + αM − 2)2

)
− p

CαM − αF−2
αF+αM−2(

CαM − αF
αF+αM

)2 ( −αM
(αF + αM)2

)

= p
αM

CαM − αF
αF+αM

( −1

(αF + αM − 2)2

)
+
CαM − αF−2

αF+αM−2(
CαM − αF

αF+αM

) ( 1

(αF + αM)2

)
we want to show that

∂bF 2

NORM

∂αF
< 0.

A sufficient condition is(
−1

(αF + αM − 2)2

)
+
CαM − αF−2

αF+αM−2(
CαM − αF

αF+αM

) ( 1

(αF + αM)2

)
< 0

CαM − αF−2
αF+αM−2(

CαM − αF
αF+αM

) < (αF + αM)2

(αF + αM − 2)2

or(
CαM − αF − 2

αF + αM − 2

)
(αF + αM − 2)2 <

(
CαM − αF

αF + αM

)
(αF + αM)2

(56)

We will now show that

G (αF ) ≡ (αF + αM)2
(
CαM − αF

αF + αM

)
is increasing in αF and given that ∂bF 2

NORM/∂αF < 0 is equivalent to expres-
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sion (56) the result follows. Then

∂G (αF )

∂αF
= −

(
1

αF + αM
− αF

(αF + αM)2

)
(αF + αM)2

+

(
CαM − αF

αF + αM

)
(2αF + 2αM)

=

(
−αM

(αF + αM)2

)
(αF + αM)2 + 2 (CαM (αF + αM)− αF )

= 2 (CαM (αF + αM)− αF )− αM > 0

Now note that

bF 2

NORM = p
CαM − αF−2

αF+αM−2

CαM − αF
αF+αM

+ (1− p)

Now

∂bF 2

NORM

∂αM
= −p

(
CαM − αF−2

αF+αM−2

)
(
CαM − αF

αF+αM

)2 ( αF

(αF + αM)2
+ CαM lnC

)

+p
1

CαM − αF
αF+αM

(
αF − 2

(αF + αM − 2)2
+ CαM lnC

)
then

∂bF 2

NORM

∂αM
< 0

requires

1

CαM − αF
αF+αM

(
αF − 2

(αF + αM − 2)2
+ CαM lnC

)

<

(
CαM − αF−2

αF+αM−2

)
(
CαM − αF

αF+αM

)2 ( αF

(αF + αM)2
+ CαM lnC

)

which is equivalent to

1(
CαM − αF−2

αF+αM−2

) ( αF − 2

(αF + αM − 2)2
+ CαM lnC

)

<
1(

CαM − αF
αF+αM

) ( αF

(αF + αM)2
+ CαM lnC

)
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Clearly this is true as αF/ (αF + αM)2 , αF/ (αF + αM) and 1/
(
CαM − αF

αF+αM

)
all increase in αF .
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