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Abstract

We propose an intuitive way of how to measure residential segregation in networks. Indi-

viduals are located in different nodes on a network that are interconnected through links.

In this setting, we consider the process according to which, every period, an individual

either moves to an adjacent node or she stops walking over the network, and define the

segregation index as the probability that a randomly chosen individual meets an individual

from the same social group when this random–walk terminates. It is shown that the seg-

regation index is a natural generalization of the well–known isolation index to networks,

that it has a closed–form relation to the PageRank index applied by Google, and that

it is a generalization of the homophily index introduced by Currarini et al. (2009). We

also show that the Spectral Segregation Index proposed by Echenique and Fryer (2007)

is not continuous with respect to the network structure. Then, the segregation index is

applied to Spanish census tract data and to citation data from Economics journals. Fi-

nally, we rationalize the segregation index as the equilibrium outcome of a game in which

individuals have to decide how much time to invest in different cultures.
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1 Introduction

The objective of this study is to propose a new measure of residential segregation — the degree

to which social groups live apart —, which is important in order to assess both the causes

and consequences of social separation. For instance, Cutler et al. (2008) analyze how cultural

factors explain the differences in segregation across ethnic groups. Also, residential segregation

has a variety of effects on socioeconomic variables and its analysis is implicit in the design

of integration policies.1 The most basic framework that addresses the question of how to

measure residential segregation starts with some geographic space (i.e., a city) that is divided

into smaller units called census tracts or neighborhoods. Also one takes the distribution of

the different social groups (the population can be partitioned using observable characteristics

such as ethnicity, religion, or nationality) over census tracts as given. Within this setting,

the classical work of Massey and Denton (1988) introduces the following five dimensions of

segregation: evenness, or the extent to which a group is distributed homogeneously over

neighborhoods; exposure, or the degree of potential contact to other groups; concentration, or

the amount of physical space a group occupies; centralization, or the degree to which a group

resides close to the city center; and clustering, or the extent to which individuals from the

same group tend to live in neighborhoods next to each other.

In a recent major contribution, Echenique and Fryer (2007) apply graph theory to derive

a measure of (residential) segregation that they call the Spectral Segregation Index (SSI).

The social interaction framework studied is based on the assumption that individuals divide

their time among their neighbors/friends, and the more time they spend with individuals

from their group, the more segregated the group as a whole is. The authors then apply the

SSI to the U.S. Census data from 2000 (replicating the results of Cutler and Glaeser 1997 on

ghettos and uncovering a high rank correlation with measures that capture the dimensions of

evenness and exposure) and to friendship networks in schools.

Our setting departs from Echenique and Fryer (2007) in several crucial aspects. First, we

1See, among others, Benabou (1993), Borjas (1995), Boeri et al. (2012), Card and Rothstein (2007), Cutler
and Glaeser (1997), Edin et al. (2003), Kling et al. (2007) and Zenou (2009).
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allow multiple individuals to be located in the same node/neighborhood. Second, and most

importantly, the segregation of a group depends in our model on the distribution of the other

groups in all census tracts. The SSI, on the other hand, only considers the information that is

contained in the subgraph of the considered group; that is, all individuals not belonging to the

group in question are eliminated from the network. Our approach is therefore fundamentally

different from the SSI, and, in particular, it is related to the following process: Pick any two

individuals from a given group g at random and suppose that the first of the two individuals

moves over the network (city) in such a way that in the first period, she advances from her

area of residence to some neighboring census tract. In each subsequent period, she either

moves from her current position to some adjacent node (this event happens with probability

0 ≤ α < 1) or the process stops (this event happens with probability 1 − α). Hence, the

parameter α can be interpreted as the degree of spatial mobility. The normalized segregation

index for group g, denoted by σ̄g, is then defined as the probability that the two randomly

chosen individuals meet when the random–walk of the first individual terminates.2,3

After formally introducing the segregation index, we show that the measure directly incor-

porates three of the five dimensions introduced by Massey and Denton (1988); namely those

of exposure, clustering, and centralization. First, the segregation index is a natural spatial

generalization of the isolation index (see, Lieberson 1981) to networks. In fact, σg reduces to

the isolation index of group g if the socio–geographical network is empty and individuals only

interact in the neighborhoods they reside in (Proposition 1). Note that while σg explicitly

accounts for the intensity of interactions within group g, it is nevertheless directly related to

the level of interaction with other groups (exposure) as well. This is because more intra–group

interactions prevents the group from socializing with others.

2People randomly meet friends, friends of friends, or higher–order acquaintances. Also, socioeconomic
relationships are usually recursive, self–enforcing, and with feedback effects. For example, Jackson and Rogers
(2007) show for several situations that a random link formation process matches empirical networks very well.

3Since both individuals are chosen at random, the measure is controlling for group sizes. It is also robust
to the number of census tracts, the definition of the boundaries of census tracts, and the population size. We
nevertheless also define the group–size–dependent measure σg according to which a randomly chosen individual
will meet any individual from the same group when the random walk terminates. All our theoretical results
hold for both the group–size–dependent and the normalized measure.
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To see that the segregation index is also related to the dimension of clustering, suppose

that α = 0. In this case, the only interactions that matter are those with individuals from

neighboring census tracts, and the measure becomes equal to the average proportion of all

immediate neighbors that belong to the same group. Formally, Proposition 2 establishes that

for α = 0, the segregation index reduces to the homophily index introduced by Currarini et al.

(2009). Since social interactions with individuals who live further away become more and more

feasible as α increases, one can regard σg as a generalized measure of homophily/clustering

that incorporates social relations beyond immediate neighbors.

Third, the segregation index also takes into account the dimension of centralization be-

cause groups that are closer to the socio–geographical center of the network are more likely

to interact with individuals from the same group everything else equal. The relevance of cen-

tralization as a dimension of segregation has been reported in some countries like the U.S.,

where socioeconomic factors can cause some groups to move to the city center. In particular,

the spatial mismatch literature emphasizes that blacks who tend to live closer to the city

center have worse labor market outcomes (see, Ihlanfeldt and Sjoquist 1998 and Gobillon

et al. 2007). Proposition 3 shows that the segregation index of a group g is a weighted sum

over the homophily indices of the nodes (the probability that a neighbor belongs to the same

group), where the weight assigned to each node is assessed through the PageRank index used

by Google to determine the importance of webpages in the World Wide Web.4 Thanks to

this connection to PageRank, we are able to show how the segregation index can be easily

implemented and efficiently calculated in regular computers, even for a large number of census

tracts.

In the next step, we analyze a drawback of the SSI. We present an example showing

that the SSI is not continuous in the strength of the social ties because in situations when

two separated components of a network are merged by a new link, the SSI may change

abruptly. We believe, and argue in more detail in Section 4, that continuity is a very important

4We also formally relate the segregation index to the dimension of evenness by showing that the normalized
isolation index is minimized if the individuals of a group are equally distributed over all nodes (Proposition 4).
However, uneven distributions can lead to even lower levels of segregation as soon as the network is introduced.
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property because both social and geographical networks change over time and are subject

to a continuous addition and deletion of links. By considering the network structure we

maintain the postulate of Echenique and Fryer (2007) that segregation is formed through

social interactions, but we amend their drawback by developing a continuous measure.

In the empirical analysis, we first explore the geographical close–knitness of foreign resi-

dents in Spain in 2009. We find that the southern part of the Mediterranean coast of Almeŕıa

and the autonomous community of Catalonia are the most segregated areas, while Galicia,

the Basque Country and Andalusia are the least segregated ones. Also, the Pakistani and

immigrants from Nigeria and Senegal are the most segregated groups, while the Latin Amer-

icans turn out to be rather integrated. Given the known detrimental effects of segregation on

labor market outcomes (and therefore on income and other correlated variables), this result

suggests a proactive housing policy that targets in particular immigrants from poor countries

facing a language barrier. One final important feature of the model is that it allows us to un-

cover network/clustering effects — the change in the measure due to considering the network

on top of the isolation index. These effects are strong for the Pakistani and some groups from

Africa, but weak for immigrants from Western Europe.

To show that the theoretical model is flexible enough to address a wide range of different

questions, we finally consider citation data for 140 leading Economics journals (that are

divided into 18 different fields) from 2010 to articles published in 2005–2009. Letting α vary

allows us again to uncover clustering in the underlying distribution. It turns out that among

the smaller fields without many self citations, Accounting and Sectorial Studies show strong

network effects, which suggests the existence of citation circles (journals from these fields cite

journals from other fields, . . ., that cite journals from the original field). This effect is not

found in other fields of similar size (Human Resource Management and Social Economics).

Our final theoretical contribution is the construction of a game–theoretical model that

rationalizes the segregation index. We use techniques similar to those developed in Currarini

et al. (2009), where individuals are involved in a search process and utilities depend on whether

they meet people who belong to the same or a different group. A network of relationships arises
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as a consequence of these encounters. Ours is an essentially different search model. Individuals

search through a fixed spatial network and there is no preference bias towards meetings with

people from the same group. To be more concrete, individuals have to decide how much time

to invest in each of the groups/cultures and then meet people from a neighboring node. We

assume that there are two situations that create benefits for an individual who invests in

culture g: (a) her match also invests in culture g and (b) her match belongs to group g. In

the unique steady state equilibrium, the average time invested by group g in its own culture is

proportional to its segregation index. The fact that the benefits from the meetings are type–

independent highlights the unbiased nature of the segregation index. In particular, since the

level of interaction of any individual of group g with her neighbors does not depend on her

group, the segregation index explains how the spatial setting alone can induce separation.

We proceed as follows. Next, we introduce the segregation index and relate it to the

various dimensions of segregation. In Section 4, we discuss the discontinuity of the SSI.

Section 5 presents the empirical results. In Section 6, we study the search model. Finally, we

conclude. Proofs as well as some tables and numerical results are relegated to the Appendices.

2 The Segregation Index

Consider a set N = {1, 2, . . . , n} of n individuals. For simplicity, we will call N a society. The

individuals live in a city that is composed of a finite set M = {1, 2, . . . ,m} of m neighborhoods

or census tracts. A particular neighborhood i ∈ M will also be referred to as a node. It is

assumed that every individual lives in exactly one neighborhood, but that each neighborhood

possibly inhabits multiple individuals. Also, there is a set G of groups that forms a partition

of the society. One can think of a group g ∈ G as a subset of members of the society that

share a particular attribute such as religion or ethnicity. Let ng,i be the number of individuals

of group g ∈ G that live in neighborhood i ∈ M . The number of individuals belonging to

group g ∈ G is ng =
∑

i∈M ng,i. Similarly, ni =
∑

g∈G ng,i is the number of individuals that

reside in neighborhood i ∈ M . The column vectors cg = (ng,i/ni)i∈M and dg = (ng,i/ng)i∈M

are referred to as the vectors of group concentrations and group densities, respectively.
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The different neighborhoods in a city are interconnected through links. Formally, A is

an m × m matrix such that ai,j = 1 if there is a connection between i and j, and ai,j = 0

otherwise. The intuition is that two neighborhoods are connected if they are geographically

adjacent or if individuals from these neighborhoods directly interact with each other.5 We

assume that ai,i = 1 so that individuals from the same neighborhood can directly interact

with each other. Let ai = |{j ∈ M : ai,j = 1}| be the number of neighborhoods i ∈ M is

connected to. An m × m matrix P is said to be a row stochastic matrix associated with A

whenever the following conditions hold: pi,j = 0 whenever ai,j = 0, pi,j > 0 whenever ai,j = 1,

and pi ≡
∑

j∈M pi,j = 1. With this notation at hand, we can now formally define a city as a

tuple C = 〈N,M,G, (ng,i)g∈G,i∈M ,P〉.

The advantage of working with a stochastic P is that it provides a natural interpretation

in terms of node–to–node transition probabilities. A walk is a sequence ω = (ω0, ω1, ω2, . . .)

of at least two, possibly repeated neighborhoods with the restriction that two consecutive

neighborhoods must be connected. We assume that in period t = 0, a walk passes from

the initial neighborhood ω0 to some adjacent neighborhood ω1. In every subsequent period

t = 1, 2, 3 . . ., a walk continues with probability α ∈ [0, 1) from the current position ωt to an

adjacent neighborhood ωt+1, and stops with probability 1 − α. In case of continuation, the

walk currently at neighborhood i passes to j with probability pi,j. Formally, a random–walk

is a random variable whose realization is a particular walk ω, where the probability of a walk

ω = (ω0, ω1, . . . , ωl) of length |ω| = l conditional on the initial node being ω0 is

Prob(ω|ω0) = α(l−1) (1− α) pω0,ω1 pω1,ω2 · · · pωl−1,ωl
.

For example, conditional on that w0 = 4, the walk ω = (4, 3, 2) occurs with probability

p4,3 · α · p3,2 · (1− α). Since α < 1, any realization ω of a random–walk has finite length with

probability 1. Let Ω be the set of all possible realizations of ω. The expected walk length

5There is no need to assume that the graph is symmetric. Asymmetric graphs occur, for instance, when A
represents a social communication structure. Also, friendship networks are not necessarily symmetric. Finally,
the mobility between two different social strata could be more sticky depending on the direction of movement.
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E(l) is6

E(l) =

∞
∑

l=1

l
∑

ω∈Ω:|ω|=l

Prob(ω|ω0) =
1

1− α
.

This equation shows that α is related to the expected walk length, and can thus be

interpreted as the degree of spatial mobility. For instance, if α = 0.85, then E(l) = 6.67.

Similarly, if α = 0.99, then E(l) = 100.7

Given the transition matrix P and the continuation probability α ∈ [0, 1), let Q be the

m×m matrix such that qi,j is the probability that a walk ends in neighborhood j, given that

it started in i. Our first objectives is to provide a closed–form expression of Q in terms of the

parameters P and α, yet it is already easy to see that (a) if P = I, no interaction takes place

across neighborhoods, (b) if P 6= I and α = 0, no interaction takes place beyond immediate

neighbors, and (c) if P 6= I and α tends to 1, the expected walk length grows arbitrarily large.

Lemma 1. Q = (1− α)(I − αP)−1P.

Proof. See Appendix A.

The intuition behind this result is as follows. In order to compute qi,j, we have to consider

all walks of the form ω = (i, ω1, ω2, . . . , j). If q
[l]
i,j denotes the probability that j is reached in

exactly l steps from i, then

qi,j =

∞
∑

l=1

q
[l]
i,j = (1−α) pi,j+α(1−α)

∑

ω1∈M

pi,ω1 pω1,j+α2(1−α)
∑

ω1,ω2∈M

pi,ω1 pω1,ω2 pω2,j+. . .

or, in matrix notation,

Q = (1− α)P+ α(1 − α)P2 + α2(1− α)P3 + . . .

= (1− α) (I + αP+ α2P2 + . . .)P

= (1− α)(I − αP)−1 P.

6To see this, note that since every node has an out–link (ai > 0), the expected length of a walk is independent
of its origin. Now, take any initial node ω0. The random–walk continues with probability one to ω1. But the
random–walk starting at ω1 has, due to the independence of the origin, an expected length of α times l(α).
Hence, E(l) = 1 + αE(l).

7It is important to note that the model parameter α gives raise not just to a single measure but to a family
of measures, one for each α. This allows us to analyze the phenomenon of segregation as a function of the
spatial mobility. In particular, it will become clear in the empirical analysis that a comparison of the degree
of the segregation for different α uncovers group clustering (network effects).
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We can now suggest a measure of residential segregation that is related to the level of

within–group interactions, taken into account through the matrix Q. The segregation index σg

of group g ∈ G is defined as the probability that a randomly chosen individual of group g meets

another individual from group g in the neighborhood where her random–walk terminates.

Definition 1. Given city C = 〈N,M,G, (ng,i)g∈G,i∈M ,P〉 and the continuation probability

α ∈ [0, 1), the segregation index of group g ∈ G is

σg(C,α) =
∑

i∈M

dg,i
∑

j∈M

qi,j cg,j = dT

gQcg.

Since σg is a probability, it takes values from the interval [0, 1]. To see that the measure

is increasing in the relative size ng/n of group g, take any city C and consider the city Ĉ

that can be obtained from C by doubling the concentration of individuals of group g in

each neighborhood maintaining the total population in each neighborhood constant. Thus,

d̂g = dg, ĉg = 2 cg and Q̂ = Q, which implies that σg(Ĉ, α) = 2σg(C,α). Consequently, the

segregation of group g has doubled simply because the group has grown but not because its

distribution over the network has changed. The reason for this dependence is that it is only

required that an individual meets any (and not a randomly chosen) individual from the same

group. This effect can be accounted for with the following normalization.

Definition 2. Given city C = 〈N,M,G, (ng,i)g∈G,i∈M ,P〉 and the continuation probability

α ∈ [0, 1), the normalized segregation index of group g ∈ G is

σ̄g(C,α) =
(ng

n

)−1
σg(C,α) =

(ng

n

)−1
dT

gPcg.

If group g is distributed homogeneously over all neighborhoods (for all i ∈ M , cg,i = ng/n),

then σg(C,α) = ng/n and σ̄g(C,α) = 1. So if σ̄g(C,α) > 1, group g is on average overrepre-

sented in census tracts compared to its overall population share. The size–independence of

the normalized measure becomes even more visible if it is rewritten as follows:

σ̄g(C,α) = n
∑

i∈M

dg,i
∑

j∈M

n−1
j qij dg,j .
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According to this equation, σ̄g is equal to the probability (up to the multiplicative scalar n)

that a randomly chosen individual from group g meets another randomly chosen individual

from the same group. The fact that both individuals are chosen at random prevents this

probability from depending on the representativeness of the group in the society. Finally, the

segregation index of city C is defined as the weighted average over the segregation indices of the

groups; that is, σ(C,α) =
∑

g∈G ng/n · σg(C,α). Intuitively, σ(C,α) is the probability that a

randomly chosen individual meets an individual from the same group when her random–walk

terminates. The normalized segregation index σ̄(C,α) of city C is defined accordingly.

3 Properties

3.1 Exposure

Isolation, the opposite of exposure, is the degree of potential contact or interaction between

members of the same group. This notion is captured through the isolation index, which is

defined as the likelihood that a typical individual of a group faces a member from the same

group in her own neighborhood:

Ig(C) =
∑

i∈M

dg,i cg,i = dT

g cg.

The normalized isolation index is then Īg(C) = (ng/n)
−1Ig(C). Our first proposition directly

relates the segregation to the isolation index.

Proposition 1. Given city C = 〈N,M,G, (ng,i)g∈G,i∈M ,P〉 and the continuation probability

α ∈ [0, 1), the segregation index of group g ∈ G is

σg(C,α) = (1− α)dT

g (I− αP)−1Pcg .

Proof. This is a direct consequence of Lemma 1 and Definition 1.

Proposition 1 shows that the segregation index reduces to the isolation index whenever

the network is empty (P = I). The measure can also be interpreted as a weighted average

over the entries of the vector vg ≡ Qcg = (1 − α)(I − αP)−1Pcg, where the weight of each
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neighborhood i ∈ M is equal to dg,i. Since vg contains the contributions of all census tracts

to the segregation of group g, we will call it the vector of local segregations of group g. In

particular, vg,i is the expected concentration of group g in the neighborhood where a random–

walk that started in neighborhood i terminates. We conclude with an example.

Example. Consider the city C depicted in Figure 1.
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Figure 1: Calculation of the segregation index.

There are two ethnic groups, blacks and whites. Two whites reside in neighborhoods 1 and

3, three whites in neighborhood 4, and one white in neighborhood 2. Moreover, three blacks

live in neighborhood 3 and one black in neighborhoods 1, 2 and 4 each. The transition matrix

P in Figure 1 is such that for all i, j ∈ M , pi,j = ai,j/ai. Since dT

blacks = (1/6, 1/6, 1/2, 1/6),

dT

whites = (1/4, 1/8, 1/4, 3/8), cTblacks = (1/3, 1/2, 3/5, 1/4), and cTwhites = (2/3, 1/2, 2/5, 3/4),

it is easy to verify that σblacks(C, 0.85) = 0.45 and σwhites(C, 0.85) = 0.55. The normalized

measures are equal to σ̄blacks(C, 0.85) = 1.05 and σ̄whites(C, 0.85) = 0.97, respectively. �

3.2 Clustering

Following Massey and Denton (1988), clustering is the extent to which individuals from the

same social groups live in neighborhoods next to each other.8 It is rather intuitive that the

segregation index incorporates clustering in the proper definition: An individual who starts

a random–walk in her area of residence is more likely to end up in a neighborhood that is

8In the literature on social networks, clustering refers to the probability that two neighbors of a given
individual have a direct link between themselves. The two concepts have to be carefully distinguished.

11



closer to her own census tract than in a neighborhood that is further away as soon P 6= I.

To say it differently, two individuals are more likely to meet the closer they live to each

other. Figure 2 visualizes this effect. Since for all α ∈ [0, 1), q4,5(B,α) > q2,5(A,α) and

q5,4(B,α) > q5,2(A,α), the segregation of the blacks is higher in City B than in City A.

According to Massey and Denton (1988), this is entirely due to clustering.9
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Figure 2: Clustering.

From a formal point of view, we establish that the segregation index captures the dimen-

sion of clustering by showing that it naturally extends the homophily measures developed in

Currarini et al. (2009). The concept of homophily in social networks reflects the propensity

of individuals to be directly linked to other individuals of the same type. In particular, the

homophily index hg(C) of group g ∈ G in city C is the expected fraction of individuals in

neighboring census tracts who belong to the same group:

hg(C) =
∑

i∈M

dg,i
∑

j∈M

ng,j ai,j
∑

k∈M

nk ai,k
.

As usual, we define the normalized homophily index as h̄g(C) = (ng/n)
−1hg(C). In the

example corresponding to Figure 2, hblacks(A) = 1/2 · (1/3 + 1/2) = 5/12 and hblacks(B) =

1/2 · (2/3 + 1) = 5/6 — the homophily index for the blacks is higher in City B. Our next

9They write on page 293: “..., suppose we have two urban areas with the same number of minority members,

who comprise the same proportion of the total population. In each place, no minority member shares a common

residential area with a majority member, all minority areas are located the same average distance from the

central business district, and all areas are of the same geographic size. In this case, both urban areas would

display identical measures of evenness, exposure, concentration, and centralization. However, if all minority

areas in one of the urban areas were contiguous to one another, but in the other area they were separated from

one another, then we would probably consider the former urban area to be more segregated, since all minority

members live within one single homogeneous ghetto, compared to the latter area, where they reside in minority

neighborhoods that are scattered throughout the urban area.”
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proposition shows that if α = 0 and the transition probabilities are proportional to the sizes of

the neighborhoods, the segregation index coincides with the homophily index. Consequently,

the segregation index can be interpreted as a generalized measure of homophily that reaches

beyond immediate neighbors for strictly positive α.

Proposition 2. If pi,j = (ai,j nj)/(
∑

k∈M ai,k nk) for all i, j ∈ M , then σg(C, 0) = hg(C).

Proof. See Appendix A.

3.3 Centralization

Generally speaking the centrality of a node in a network captures its well–connectedness.

Depending on the specific context, it can for example be assessed using the notions of degree

(the number of connections a node has), betweenness (determine the shortest paths between

any two nodes and calculate then, for each node, to how many of these shortest paths it

belongs to), or closeness (the mean geodesic distance between a node and all nodes reachable

from it). In our case, the segregation index belongs to the class of eigenvector–based centrality

measures and, in particular, it is related to the PageRank index of Brin and Page (1998) that

underlies Google’s search engine.10

The main idea of the PageRank vector is that a webpage is more important when it is

linked by other relevant pages. This idea is formalized with a finite Markov chain according

to which an individual “surfs” randomly over the web. The entries of the PageRank vector

are then just the stationary probabilities of this process. More formally, an individual starts

at any node (webpage) and surfs the web randomly according to the (column–stochastic)

matrix S that represents the actual links of the web. Additionally, at any point in time, the

surfer is “teleported” to page j (even if the current page i is not directly linked with j) with

probability 1−β, while she continues her random–walk by crossing links normally following ST

with probability β. In case of teleportation, the surfer is taken to page j with probability rj .

The vector r = (ri)i∈M is the personalizaction vector of the PageRank index summarizing the

10See Wasserman and Faust (1994) for an excellent overview of centrality measures.
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teleporting mechanism. This process defines a Markov chain whose stationary probabilities

are gathered in the PageRank vector, the principal eigenvector of the matrix (1−β)r1T+βS.

This notion of centrality can be straightforwardly adapted to our framework: An individ-

ual from group g ∈ G randomly walks in the city according to the transition matrix P (that

is, S = PT) and is teleported to node j with probability (1 − α) dg,j (that is, β = α and

r = dg).

Definition 3. Given the city C = 〈N,M,G, (ng,i)g∈G,i∈M ,P〉 and the continuation proba-

bility α ∈ [0, 1), the PageRank vector wg of group g ∈ G is the principal eigenvector of the

matrix (1− α)dg1
T + αPT.

Note that wg captures the centrality of the nodes for group g. It is group–dependent

because the personalization vector r is set equal to the density vector dg of group g. Thus, in

the PageRank model, wg,i is the stationary probability of neighborhood i when teleportation

takes place according to dg, and it accounts for the reachability of neighborhood i by members

of group g. Our next proposition is the dual of Proposition 1.

Proposition 3. The segregation index of group g is equal to σg(C,α) = wT
gPcg .

Proof. See Appendix A.

Proposition 3 shows that individuals who are more central in the sense of PageRank

contribute more to the overall segregation of their group because they are easier to reach by

other group members. Also, if pi,j = (ai,j nj)/(
∑

k∈M ai,k nk) for all i, j ∈ M (i.e., transition

probabilities are proportional to the sizes of the neighborhoods as in Proposition 2), then

σg(C,α) = wT
g hg, where

hg,i =
∑

j∈M

ng,j ai,j
∑

k∈M nk ai,k

is the homophily index of neighborhood i ∈ M for group g ∈ G. This equation highlights the

interaction between the position of a neighborhood in the network (centrality) and its cluster-

ing (homophily): In the computation of σg(C,α), the homophily index hg,i of neighborhood
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i ∈ M is weighted by its PageRank index wg,i. Note also that wg = dg if the network is empty

(P = I) or if there is no spatial mobility beyond one’s own neighborhood (α = 0). In the

first case, σg reduces to the isolation index (because hg,i is then equal to cg,i). In the second

case, σg becomes equal to the homophily index. But if network effects are present (P 6= I

and α > 0), groups that are located more central in the network everything else equal have

a higher possibility of intra–group interactions and, as a consequence, a higher segregation

index.11 This is made visible with the help of the following example.

Example. Consider the city C depicted in Figure 3.
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Figure 3: Centrality.

There are eleven individuals belonging to three ethnic groups (blacks, whites, and squares).

There is exactly one individual in each neighborhood. The particularity of the network

structure is that the blacks and the whites are allocated in a very similar way. Every black

is connected to two other blacks plus herself, one white, and one square. Every white is

also connected to two other whites plus herself, one black, and one square. The important

difference is that all blacks are connected to the same square (individual 11), while two whites

are connected to square 9 and two whites to square 10. Square 11 is thus the most central

individual of her group, which implies that the blacks are relatively more central.

Since Iblacks(C) = Iwhites(C) = 1 and hblacks(C) = hwhites(C) = 3/5, both groups are

11There is a vast literature that recognizes the importance of centrality in determining socioeconomic out-
comes. Examples include eduction (Calvo-Armengol et al. 2009), criminal behavior (Haynie 2001), worker’s
performance (Mehra et al. 2001), power in organizations (Brass 1984), and the formation and performance of
R&D networks (Boje and Whetten 1981, Powell et al. 1996 and Uzzi 1997).
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equally isolated and clustered. Hence, σg(C,α) incorporates the difference between the two

groups entirely through the PageRank vectors. Straightforward computations yield that

σblacks(C, 0.85) = 0.48 > 0.47 = σwhites(C, 0.85).
12

�

We complete this part of the analysis with an important comment regarding the imple-

mentability of the segregation index in real–life applications. The computation of σg is simple

and very fast, even for large matrices. One can apply first a simple iterative power method to

compute the PageRank vectorwg, and then Proposition 3 to compute the productwT
g Pcg. To

calculate wg, one departs from a randomly chosen probability vector w
(0)
g (that is, w

(0)
g,i ≥ 0 for

all i ∈ M and
∑

i∈M w
(0)
g,i = 1) and then iterates by calculating w

(t+1)
g = (1−α)dg +αPTw

(t)
g

for all t = 0, 1, 2, . . . . The asymptotic convergence rate of this iterative power method is

equal to α, see Langville and Meyer (2006). For example, if α = 0.85, α50 ≈ 0.00296; that is,

one expects at least 2-3 places of accuracy after only 50 iterations.13

3.4 Evenness

Evenness refers to how equal the individuals of a given group are spread over the city. For-

mally, we say that the distribution of group g is even if for all i ∈ M , dg,i = ni/n, or

equivalently, cg,i = ng/n. In this case, σ̄g(C,α) = (ng/n)
−1dT

gPcg = dT
gP1 = dT

g 1 = 1 inde-

pendently of the network structure. This calculation shows that we can use a unit-normalized

segregation index as a benchmark level in the sense that uneven distributions will lead to a

higher or lower normalized segregation. If σ̄g(C,α) > 1, group g is on average overrepresented

in neighborhoods. It is underrepresented whenever σ̄g(C,α) < 1. We show next that no group

can on average be underrepresented if the isolation index is applied. Hence, in this case, there

12Section 4 shows that the Spectral Segregation Index (SSI) does not relate directly to the dimension of
centralization because it only considers the network of within–group interactions. In the example, it misses
that the blacks are connected to a more central square than the whites.

13Note that P is a sparse matrix meaning that the number of non–zero entries in each row is negligible. Thus,
for large datasets (over 5,000 nodes), it is key to work with special data structures representing sparse matrices
(sparse function in Matlab and SparseArray function in Mathematica). Otherwise, one spends a considerable
amount of memory space to store zeroes that do not affect matrix multiplications. Also, in order to compute
σg, it is not necessary to determine all connected components even though the measure is component–separable
by definition. Finally, σg has a computational advantage over the SSI : The asymptotic convergence rates of
the SSI can be very low compared to those of σg, which are bounded if α is well below 1.
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is an immediate connection between uneven distributions and a high segregation.

Proposition 4. For all cities C = 〈N,M,G, (ng,i)g∈G,i∈M ,P〉, all continuation probabilities

α ∈ [0, 1), and all groups g ∈ G, Īg(C) ≥ 1.

Proof. See Appendix A.

Since individuals can interact in several neighborhoods as soon as the network matters,

it becomes possible that a group is on average underrepresented (low segregation), even if its

distribution is uneven. The following example illustrates this effect.

Example. Consider the city depicted in Figure 4.

•
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2

P =





1/3 1/3 1/3
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 .

Figure 4: Evenness.

Using the node–to-node transition matrix P one finds that the probabilities that the

random–walk terminates in a given neighborhood are equal to

dT

blacksQ =
1

12 + 2α
(4 + 2α, 4, 4) and dT

whitesQ =
1

12 + 2α
(6, 3 + α, 3 + α).

We see that the black individual living in the city center is more likely to terminate her walk in

her area of residence. Similarly, the black center is also more likely to absorb a walk starting

from the white edges. We then obtain that

σ̄blacks(C,α) =
12 + 6α

12 + 2α
≥ 1 and σ̄whites(C,α) =

18 + 6α

24 + 4α
< 1.

We stress that the normalized segregation of the whites is lower than one even though the

distribution of the group is uneven. This highlights the idea that an uneven distribution can

potentially make individuals hardly accessible by members of the same group. �

4 Discontinuity of the SSI

In this part of the paper, it is shown that the SSI proposed in Echenique and Fryer (2007) is

not continuous in the strength of the social ties. Even though cities do not experience abrupt
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changes in the short run, people may move within the city or change their pattern of social

interactions, and we therefore think that a measure of segregation should behave in a stable

way to these changes. Since the only difference in the primitives between Echenique and Fryer

(2007) and our model is that they assume a one–to–one mapping between neighborhoods and

individuals, it is assumed for the time being that ni = 1 for all i ∈ M .14

Given the matrix P, the SSI for group g ∈ G is calculated by determining first the

subgraph Pg of P that only contains interactions between members of g. All individuals

belonging to a different group are eliminated from the network and, consequently, from the

matrix P. Such a subgraph Pg of P generally consists of more than one strongly connected

component, so the next step is to calculate the SSI for each component separately. In

particular, the SSI for group g in the (strongly connected) component Pg,γ of Pg — denoted

by SSI(Pg,γ) — is set equal to the spectral radius of the matrix Pg,γ , the largest absolute

value of the eigenvalues of Pg,γ .15 The segregation of a node (individual) i in this component

is denoted by SSIi(P
g,γ), and it is the i−th entry of the principal eigenvector of the matrix

Pg,γ , normalized so that the vector average is SSI(Pg,γ). The segregation of group g is a

weighted average over the segregation levels of group g in all components of Pg. In particular,

SSI(Pg) =
∑

γ

dγg · SSI(P
g,γ),

where dγg = 1/ng ·
∑

i∈Pg,γ ng,i is the fraction of individuals from group g that live in Pg,γ .16

Alternatively, the SSI of group g can also be expressed as the average over the individual

segregation levels:

SSI(Pg) =
1

ng

∑

γ

∑

i∈Pg,γ

SSIi(P
g,γ).

14The next section presents an extension of the SSI to a setting with multiple inhabitants in the same node.
15For the sake of simplicity, given any such matrix Pg , we will also use Pg to refer to the network corre-

sponding to Pg . Formally, the subgraph Pg,γ is said to be a strongly connected component of the network
represented by Pg if Pg,γ is a network of maximal size such that there is a path between any pair of its nodes.

16Proposition 13 in Echenique and Fryer (2007) shows that the SSI is approximately proportional to the
probability that two individuals from the same social group meet without leaving the subgroup network. Hence,
the SSI is also related to a probability but, at the same time, differs substantially from the segregation index.
Indeed, for σg it does not matter whether i meets somebody from a different group on his way to j, yet the
walks undertaken are restricted to within group interactions according to the SSI . This important distinction
can lead to substantial differences in applications; i.e., our empirical analysis in the next section shows that
the correlation between the segregation index and the SSI can be rather low.
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To see how the SSI is applied consider the panel on the left–hand side of Figure 5, which

corresponds to the motivating example in Echenique and Fryer (2007). The society in City

1 is composed of two groups, blacks and whites. Each dot represents one individual. It is

also assumed that individuals only interact with their horizontal and vertical neighbors. So,

individual (A,1) spends 50% of her time with each (A,2) and (B,1) each. The subgraph Pblacks

in City 1 consists therefore of two connected components Pblacks,1 and Pblacks,2.
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1 2 3 4 5 6

◦ ◦ ◦ ◦ ◦ ◦
• • • • ◦ ◦
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�
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Figure 5: Calculation of the SSI .

The SSI for the blacks is determined by taking a weighted average over the spectral radii of

the two black connected components. The upper part of Table 1 shows that SSI(Pblacks,1) =

0.72 and SSI(Pblacks,2) = 0.25. Since 80% of the blacks reside in component 1 and 20% in

component 2, the segregation of the blacks is SSI(Pblacks) = 0.8 · 0.72 + 0.2 · 0.25 = 0.63.

Components Blacks SSI

City 1

Component 1 (B,1) (B,2) (C,1) (C,2) (D,1) (D,2) (D,3) (D,4)
0.87 0.62 1.26 0.92 0.93 0.75 0.29 0.10 0.72

Component 2 (B,5) (C,5)
0.25 0.25 0.25

Weighted Average 0.63

City 2

Component (B,1) (B,2) (C,1) (C,2) (D,1) (D,2) (D,3) (D,4) (B,5) (C,5)
1.09 0.78 1.58 1.14 1.16 0.93 0.37 0.13 0.00 0.00 0.72

Table 1: Calculation of the SSI .

To see that the SSI is not continuous in the entries of Pblacks suppose that the black
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individuals (D,4) and (C,5) start communicating with each other 1% of their respective times.

It is irrelevant which neighbor(s) receive now relative less attention from (D,4) and (C,5), for

the sake of the example just suppose that this extra time is taken away from the white

neighbors. This small change in the network leads to City 2 on the right–hand side of Figure

5, which has now a single component. As it can be seen in the lower part of Table 1, the

effect of this change on the segregation of the blacks is substantial, SSI(Pblacks) increases

from 0.63 to 0.72. In particular, the spectral radius of the integrated component converges

to the larger of the two spectral radii. Finally, one also sees that the segregation levels of

individuals (B,5) and (C,5) are now very close to 0, whereas they were 0.25 in City 1.

More formally, SSI(Pg) is discontinuous in Pg, as opposed to what is stated in Proposition

5 in Echenique and Fryer (2007). This becomes evident when two connected components of

Pg are merged or when one component of Pg is split up.17 The reason for the discontinuity is

the component additivity attached to the measure: The SSI of a connected component Pg,γ

of Pg is defined as the spectral radius of the submatrix Pg,γ , but the spectral radius of Pg

—which is continuous in Pg— can generally not be averaged over its components. In fact,

ρ(Pg) = max
γ

ρ(Pg,γ),

where ρ(·) denotes the spectral radius. So, the property of component additivity sacrifices

continuity. To restore the continuity of the SSI, one would therefore have to drop this

component additivity. However, in this case, the segregation of group g would be equal to

the largest (and not the average) segregation of all components of Pg, and the segregation

levels in all other components of Pg would be zero. So, if additivity is dropped, one would

still need to explain why this asymmetric outcome is a reasonable measure of segregation.18

There are several circumstances that can trigger the discontinuity problem of the SSI.

The reader should observe first that the disconnectedness of a group inside a social network

causes the SSI to be discontinuous. Thus, even if a city or social network is connected, the

17However, we also note that problems still arise when Pg is connected but near disconnectedness. In that
case, the SSI can still display very unstable behavior.

18Note that Proposition 5 on page 475 indicates continuity of SSI(Pg) in the entire network Pg, which is
not true. Indeed, SSI(Pg) is continuous as long as Pg is connected.
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assumption that all groups within this network are connected is possibly violated. Second, if

several individuals live in a node, the majority rule employed in Echenique and Fryer (2007)

is a sensible choice to determine the representative individual of a census tract. However, one

cannot exclude the possibility that the majority group in a node changes (even though the

U.S. Census data revealed a considerable margin in most districts) and that this causes two

or more smaller components to merge into one big component or vice versa. Third, even if no

particular representativeness rule has to be considered because there is only a single individual

in each node, it could happen that one individual changes her location in the spatial network,

thus changing the network structure of her group by merging previously separated components

or separating previously integrated components. Hence, the movement of a single individual

can provoke a significant variation in the segregation of her group. Finally, the definition

of adjacent nodes in a spatial network is also likely to become problematic if the measure

is not continuous. Echenique and Fryer (2007) reasonably assume that two census tracts

are connected whenever their centroids are not more than one kilometer away from each

other. Yet, a small change in this distance could potentially merge or separate components

of some groups, triggering an abrupt change in the segregation of these groups. Even though

it turns out that the application to the U.S. Census in Echenique and Fryer (2007) is robust

with respect to this kind of variation in the network, one cannot exclude the possibility that

difficulties appear in future applications with different datasets.

To conclude we point out that σg and σ̄g are continuous in all their arguments. In

particular, continuity with respect to α and P follows from the fact that P is stochastic

and that |α| < 1. Moreover, our measures are quite stable in applications since we are

choosing values for α well below 1. Finally, the next proposition provides an upper bound

to the change in the segregation index when connections are modified. For that, given two

cities C = 〈N,M,G, (ng,i)g∈G,i∈M ,P〉 and C ′ = 〈N,M,G, (ng,i)g∈G,i∈M ,P′〉 with a common

distribution of individuals over nodes, let U be the subset of nodes whose connection change

across the two cities; that is, U = {i ∈ M : pi,j 6= p′i,j for some j ∈ M}.
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Proposition 5. The change in segregation index between C = 〈N,M,G, (ng,i)g∈G,i∈M ,P〉

and C ′ = 〈N,M,G, (ng,i)g∈G,i∈M ,P′〉 is bounded above by

|σg(C
′, α)− σg(C,α)| ≤ max

i∈M
{cg,i}

2α

1− α

∑

j∈U

wg,j .

Proof. This follows from Theorem 6.5.1 in Langville and Meyer (2006) and Proposition 3.

5 Applications

5.1 Residential Segregation in Spain

We next apply the segregation index to the Spanish census tract data from January 2009.

Among the developed countries Spain is particularly interesting to look at because the country

attracted a lot of immigrants from many different parts of the world. During the boom years

in the beginning of the century it was easy for the young South Americans to find a job in

the construction or the (private) service sector because they were relatively cheaper to hire

and had the advantage of speaking the same native language. But also immigrants from

the Eastern European countries that recently entered the European Union or Africa were

attracted by the vast job opportunities in the labor market. These combined effects led to

the situation that more than 10% of the 45 million residents in Spain in 2009 were foreigners.

Table 3 in the Appendix B presents the population shares of 27 nationalities in Spain.19

It can be seen that the Romanians form the largest foreign group with 1.76% of the total

population followed by the Moroccans who account for 1.56% of the residents. The high

number Moroccans in Spain is of no surprise given their long tradition in the country. Next

are Ecuador (0.93%) and Colombia (0.65%). The Nigerians form the smallest foreign group

(0.09%) for which we have data.

The Spanish territory is officially divided into 52 provinces, 47 of those are on the Iberian

Peninsula. The remaining ones are the Balearic Islands in the Mediterranean Sea, the Canary

19Our analysis excludes immigrants from Britain and Germany who amount to more than 1% of the Spanish
population because these groups can be expected to be less of a “social problem” than poor migrants from
Africa. Many of them are pensioners who bought second homes in the coastal area of the Mediterranean
Sea and it is not clear how much time they actually spend in these residences. We are very grateful to an
anonymous referee for pointing out this effect.
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Islands in the Atlantic Ocean (2 provinces), and the autonomous cities Ceuta and Melilla in

North Africa. We abstain from incorporating Ceuta and Melilla in our analysis because they

are too small — each of the two cities has only about 75,000 residents, and very few of

them are non–Africans. As of January 2009, the National Statistical Institute of Spain (INE)

divides the 50 main provinces into a total of 35,757 census tracts. The mean number of

residents per census tract is 1,268.98, the corresponding standard deviation is 625.74. As in

Echenique and Fryer (2007), we use the geographical location of the centroids of the census

tracts to derive the network. In particular, we define two census tracts to be connected if the

distance between their centroids is less than 400 meters. A node has then on average 4.84

connections. The corresponding standard deviation is 5.48. Also, there are 16,908 isolated

nodes.20 In order to make consistent comparisons with the homophily index (see Proposition

2), we set the transition probabilities equal to

pi,j =
ai,j nj

∑

k∈M ak nk

,

which means than the transition probability to node j is proportional to the total population

in census tract j. Observe that our results remain identical if we choose pi,j = 1/ai.

5.1.1 Results

We first report on the normalized segregation index σ̄g(C, 0.85) for all provinces; that is,

C is defined by the borders of the provinces.21 Recall that only the normalized measure is

invariant to the relative group sizes, which is a crucial property if one wants to compare the

segregation of different nationalities.

We can see from Figure 6 that the segregation index is rather low in some parts of the

20Even though the network is constructed from geographical positioning data, we nevertheless proxy true
social interactions. This is so because geographical proximity is correlated to close relationships, despite the
fact that the new era of information has made weak social links less dependent on physical distance (see,
Goldenberg and Levy 2009 and Mok et al. 2010). Also, our qualitative results remain identical for radii of
1,000 and 1,500 meters.

21The numerical results for α ∈ {0.00; 0.50; 0.85; 0.99} and the normalized isolation index are detailed for all
groups and all provinces in Appendix B. Setting the continuation probability α equal to 0.85 is a prominent
choice in applications related to PageRank because in this way, relevant network effects are introduced, and
the analysis is not compromised with computation inefficiencies or ill–conditioned problems that can appear
if α grows closer to 1.
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Figure 6: Normalized segregation in Spain by provinces as of January 2009 for α = 0.85 and a neighborhood radius of
400 meters. The names of the different provinces can be identified with the help of Tables 5 in Appendix B.

autonomous communities of Galicia (provinces 15, 27, and 32), Asturias (province 33), and

the Basque Country (provinces 01, 20, and 48) that are all in northern part of Spain touching

the Cantabrian Sea and the Atlantic Ocean. Also, some parts of Andalusia such as Cadiz,

Cordoba, Jaén, and Seville (provinces 11, 14, 23, and 41) have a segregation index that

lies between 1.00 and 1.10. A substantial portion of the country has a segregation index

between 1.11 and 1.20. The central region close to the capital Madrid (province 28), the

second biggest city of Barcelona (province 08), the coastal sides of Alicante (province 03) and

Murcia (province 30), the Balearic and the Canarian islands (provinces 07, 35, and 38), as

well as Salamanca and Badajoz that touch the Portuguese border (provinces 10 and 37) have

a moderate segregation index. The segregation index takes high values within other provinces

of the autonomous community of Catalonia in northeastern part of the country (for example

provinces 17 and 43) and Teruel (province 44). It is highest in Almeŕıa (province 04).

Figure 6 uncovers how segregated different parts of the country are, but so far we have
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not analyzed which groups are causing the results we see. To say it in different words, we

still have to investigate which groups are, on average, more segregated. We detail on this by

calculating the normalized segregation index for each of the 27 groups in the whole country;

that is, C consists now of all 35,757 census tracts. Again, α = 0.85.
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Figure 7: Normalized segregation in Spain by groups as of January 2009 for α = 0.85 and a neighborhood
radius of 400 meters. The ordering of the different groups corresponds to that in Table 3.

It can be seen in Figure 7 that the Spanish are by far the least segregated group. Since

the normalized segregation index for group g takes a value of one if cg,i = ng/n for all nodes,

this finding supports the interpretation that the Spanish are very evenly distributed over all

census tracts. Also, since the normalized segregation index is considerably larger than one

for all other nationalities, the foreign groups show the general tendency to stick together.

The by far most segregated immigrants are the Pakistanis, σ̄PK(Spain, 0.85) = 23.56,

which implies that interactions within this group occur about 23 times more often than if

their members were uniformly spread. Immigrants from Russia and African countries like

Nigeria and Senegal have a normalized segregation index between 10–15. The immigrants of

the South American countries are the most integrated ones, their segregation index ranges

from 2.28 for the Colombians to 5.99 for the Uruguayans. Finally, we can also say why Almeŕıa

is very segregated. In Almeŕıa, 4.3% of the population are Romanians (their segregation index

in this province is 2.67) and 5.9% are Moroccans (their segregation index in this province is

3.94). Consequently, the segregation in Almeŕıa is high because two of the largest groups of
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immigrants are overrepresented in this province.

5.1.2 Network Effects

One important question at this point is whether the incorporation of the network as an ad-

ditional dimension adds to our understanding of segregation. To investigate this, one has to

compare the normalized segregation index when α = 0.85 with the situation when P = I and

the measure reduces to the normalized isolation index. This comparison will in particular

reveal which nationalities cluster in neighborhoods close to each other. To see this, imagine

that the isolation index of group g is 1 (no individual outside of g is living in a census tract

with members of g). There are now two opposite scenarios to be investigated as the network

is introduced: The census tracts with inhabitants of group g are spread evenly across the

city or they are clustered in one particular area. If the members of g live in evenly spread

census tracts, new connections to neighboring census tracts will increase the interactions with

members outside of g and the segregation will decrease. If, on the other hand, g forms a clus-

tered group, the segregation of the group will also decrease, but the effect will now be smaller

because the new interactions are more likely to be intra–group related as the neighboring

nodes are populated by group g as well. Hence, the decrease in segregation due to an increase

in α is lower for clustered groups.
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Figure 8: Network effects (in proportions) in Spain by groups as of January 2009 for a neighborhood radius of
400 meters. The ordering of the different groups corresponds to that in Table 3.

Figure 8 calculates the degree by which the measure decreases when the network is con-
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sidered; that is, we calculate 1 − σ̄g(C, 0.85)/Īs(C). One sees that the network effect is

substantial for some groups but negligible for others. The clearest effect can be identified for

the Pakistanis and the Nigerians. Considering the actual network P with α = 0.85 reduces

the normalized isolation index of these groups by 40–60%. However, it is not only the relative

changes that matter. For example, the Russians have the fourth highest normalized isolation

index (ĪR(C) = 13.26), while they are the second most segregated group when the network

matters and α = 0.85. Actually, the network effects for the Russians are rather low because

the segregation index does not change much when the network is incorporated. As mentioned

before, the differences in the change of the measure is due to clustering. The Russians are

overrepresented in the coastal sides of Alicante (province 03), Almeŕıa (province 04), Girona

(province 17), Málaga (province 29), and Tarragona (province 43), whereas the Pakistanis

are spread over many cities, even though they live very concentrated within these cities.22
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Figure 9: Proportion of the network effect that is due to connections beyond immediate neighbors in Spain
by groups as of January 2009 for a neighborhood radius of 400 meters. The ordering of the different groups
corresponds to that in Table 3.

Finally, Figure 9 analyzes which part of the network effect is due to a change from α = 0

(the normalized homophily index) to α = 0.85. In fact, the ratio between σ̄g(C, 0)−σ̄g(C, 0.85)

and Īg(C)− σ̄g(C, 0.85) shows which percentage of the clustering is due to connections beyond

22The British and the Germans that were excluded from our study because of the before mentioned reasons
show a very similar residence pattern to that of the Russians. They live highly segregated in few areas, in
particular in Alicante and the Balearic Islands (province 07), so that their network effect is rather small.
Actually, the British and the Germans are two most segregated groups if α = 0.85 (the Pakistanis remain to
be the most segregated group if the normalized segregation index is applied).
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immediate neighbors. The data clearly reveals that the normalized homophily index already

captures most of the network effects. Nevertheless, there are several group of immigrants

for which higher–order relations explain between 20% and 40% of the overall network effect

(e.g., French, Moroccans, Nigerians, Chinese, and Pakistanis). We also note that almost 40%

of the clustering of Spanish residents is explained by higher-order relations.

5.1.3 Correlation with the SSI

Next, we calculate the correlation between the SSI and the segregation index. Recall that

the basic idea behind the SSI is that individuals interact with their neighbors. If one node

corresponds to one individual, the set of neighbors naturally includes all nodes an individual

is connected to. We allow for multiple individuals in the same neighborhoods, but the two

frameworks become comparable if one defines the set of neighbors as all those individuals

that can be reached within one step. The within group substochastic interaction matrix Pg

for group g is thus defined as

pgi,j =
ai,j ng,j

∑

j∈M ai,j nj
.

Hence, an individual from group g living in neighborhood i interacts with all g−members

that can be reached within one step with equal probability. As before, the SSI of group g

can then be defined as

SSI(Pg) =
∑

γ

dγg · SSI(P
g,γ).

Since the spectral radius for each connected component can be set equal to the weighted

average of the corresponding eigenvector, we obtain that

SSI(Pg) =
∑

γ

dγg
∑

i∈Pg,γ

dγg,i · SSIi(P
g,γ),

where dγg,i = ng,i/
∑

j∈Pg,γ ng,j is the fraction of individuals of group g from component γ who

live in neighborhood i. Rewriting this equation as

SSI(Pg) =
∑

γ

∑

i∈Pg,γ

dγg · d
γ
g,i · SSIi(P

g,γ) =
∑

i∈M

dg,i · SSIi(P
g,γ(i))
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shows that the SSI can be envisioned as a weighted average over all neighborhoods. Since

the SSI is not invariant to group sizes, we have to compare it to the size dependent version of

the segregation index, which according to Proposition 1 is equal to σg(C,α) =
∑

i∈M dg,i vg,i.

Consequently, we proceed by calculating the correlation between the vectors vg = (vg,i)i∈M

and (SSIi(P
g,γ(i)))i∈M of size 35,757 corresponding to Spain as a whole.
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Figure 10: Correlation between σg(C, 0.85) and the SSI in Spain by groups as of January 2009 for a neigh-
borhood radius of 400 meters. The ordering of the different groups corresponds to that in Table 3.

Figure 10 shows a positive correlation between the SSI and the segregation index for

all nationalities. For several groups, the correlation ranges between 0.20 and 0.40. The

correlation is rather small for immigrants from Morocco, Chile and Bolivia. Consequently,

the data reveals that the SSI and the segregation are rather different in their structure even

though they both relate to the probability that two members from the same group meet. This

is because the measures use a different underlying network structure to determine this kind

of probability (see Footnote 16).

5.2 Segregation in Scientific Publications

5.2.1 Model

Using citation data from scientific publications, we now show that the model of residential

segregation can be readily applied to a wide range of socioeconomic questions. Let the set of

nodes M now be equal to the set of scientific journals. The set of all fields G partitions M .

The number of articles published by journal i ∈ M constitutes the population ni at node i.
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Since each journal is assumed to belong to exactly one field, cg,i = 1 if journal i belongs to

field g ∈ G, and cg,i = 0 otherwise. The total number of articles published by journals from

field g is then equal to ng =
∑

i∈M cg,i ni. Similarly, dg,i = (cg,i · ni)/ng is the fraction of all

articles from journals belonging to field g ∈ G that are published by journal i. We can see

that dg,i = 0 whenever journal i does not belong to field g.

Let li,j be the number of citations from articles in journal i to articles in journal j. The

total number of articles cited by articles in journal i is denoted by li =
∑

j∈M li,j. Setting

pi,j = li,j/li induces the stochastic matrix P with the following interpretation: Imagine a

researcher who is currently reading an article from journal i ∈ M . The matrix P then

indicates which journal the researcher is going to read next (following some citation from the

current article).23 If the probability that the random–walk continues after the first step is

0 ≤ α < 1 — the interpretation of α is akin to that in the model of residential segregation

—, the matrix Q = (1 − α) (I − αP)−1P can be derived in exactly the same way as before.

In particular, pi,j corresponds to the probability that the researcher stops at journal j given

that her random–walk started at journal i.

Given the tuple C = 〈N,M,G, (ng,i)g∈G,i∈M ,P〉 and the continuation probability α ∈

[0, 1), the segregation index σg(C,α) of field g ∈ G measures the probability that a researcher

who starts reading a randomly chosen article from a journal from field g (that is, each journal

i from field g is taken with probability dg,i) and follows the citations therein, stops reading

an article from a journal that also belongs to field g ∈ G. Formally, by Proposition 3,

σg(C,α) = wT
gPcg, where wg is the PageRank vector of field g.

5.2.2 Results

We use citation data from the 2010 Journal Citation Reports for a five year window. It

includes citations made in 2010 to articles published in 2005–2009. The set M consists of

140 leading Economics journals according to the measures of Impact FactorTM and Article

23Modelling citation patterns using transition matrices is standard in the literature. See, for instance,
Palacios-Huerta and Volij (2004), and impact measures like EigenfactorTM , Article InfluenceTM and SCImago
Journal Rank.
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InfluenceTM. We classify the journals in 18 fields following the CEFAFE–EU ranking from the

University of Évora, Portugal.24 For each of the 18 fields, we compute both the homophily

index hg(C) = σg(C, 0), which indicates the percentage of citations that stay within a field,

and the segregation index σg(C, 0.85). The results are presented in Table 2.

Field ID # Journals ng/n hg(C) σg(C, 0.85) h̄g(C) σ̄g(C, 0.85)

AccAud 1 0.004 (17) 0.000 (17) 0.011 (14) 0.000 (16) 2.617 (6)

AgrEnvEn 17 0.120 (2) 0.530 (2) 0.163 (5) 4.414 (9) 1.358 (14)

DevTrans 11 0.062 (7) 0.341 (7) 0.118 (7) 5.468 (7) 1.887 (9)

EconStat 9 0.055 (8) 0.474 (5) 0.164 (4) 8.636 (3) 2.983 (4)

FinIns 11 0.094 (3) 0.691 (1) 0.351 (2) 7.356 (4) 3.742 (3)

GenEcon 33 0.288 (1) 0.479 (4) 0.458 (1) 1.662 (14) 1.589 (12)

HistPolMet 3 0.011 (13) 0.365 (6) 0.084 (9) 31.999 (1) 7.343 (1)

HRM 1 0.004 (17) 0.000 (17) 0.001 (18) 0.000 (16) 0.170 (18)

InnovEntrSB 2 0.009 (14) 0.036 (13) 0.009 (15) 4.097 (11) 1.054 (16)

IO 6 0.032 (10) 0.193 (11) 0.061 (10) 5.799 (6) 1.846 (10)

LaborHealth 11 0.079 (4) 0.528 (3) 0.207 (3) 6.672 (5) 2.622 (5)

Law 2 0.006 (15) 0.029 (14) 0.012 (13) 4.306 (10) 1.741 (11)

Macro 10 0.074 (5) 0.222 (10) 0.111 (8) 3.000 (12) 1.497 (13)

PubEcon 5 0.049 (9) 0.121 (12) 0.051 (12) 2.575 (12) 1.095 (15)

Sector 1 0.001 (18) 0.000 (17) 0.004 (17) 0.000 (16) 3.927 (2)

Socio 3 0.016 (12) 0.001 (15) 0.007 (16) 0.001 (15) 0.411 (17)

Theory 9 0.070 (6) 0.331 (8) 0.143 (6) 4.749 (8) 2.057 (8)

UrbSpaReg 5 0.024 (11) 0.264 (9) 0.059 (11) 10.982 (2) 2.467 (7)

Table 2: Field, number of journals per field, article shares, homophily index (non–normalized and normalized),
and segregation index (non–normalized and normalized) for 18 different areas in Economics using the citation
data from 2010 for 140 economics journals. In parentheses, we present the corresponding ordinal rankings.
The abbreviations of the fields are explained in Table 4 in Appendix B.

One can see that the size dependent measures hg(C) and σg(C, 0.85) yield very similar

results. In fact, the set of the five most segregated fields is identical in both cases, and the

corresponding rank correlation is very high (0.942). Also, these two rankings resemble very

much the ranking that one obtains if the fields are simply ordered according by their relatives

sizes. One should look at the normalized measures to filter out this effect.

The last two columns show that the set of the five most segregated fields is still very much

the same for both indices, however there are important changes with respect to the non–

normalized measures. For the non–normalized measures, General Economic, which contains

24http://www.cefage.uevora.pt/en/links/revistas cientificas rankings.
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all general interest journals and is with 33 journals by far the biggest field, is among the most

segregated fields. Yet, it is far less segregated for the normalized measures, which intuitively

makes sense. Similarly, Economic History is not much segregated for the size dependent

measures but by far the most segregated field if the normalized measures are applied. Also

note that the rank correlation between the normalized homophily index and the normalized

segregation index for α = 0.85 is 0.554. This shows that there is some clustering beyond

immediate neighbors that is explained by the segregation index σ: Even if a journal from

field g does not cite a journal from the same field, it may cite journals from other fields that

usually cite journals from g.

This type of higher order clustering is exactly captured by the difference between h̄g(C)

and σ̄g(C, 0.85), and it is this difference that allows us to uncover some interesting citation

patterns. For example, concentrating on the four small fields with a very low normalized

homophily index — AccAud, HRM, Sector, and Socio —, one sees that σ̄g(C, 0.85) − h̄g(C)

is large for Sector and AccAud but low for HRM and Socio. Hence, while neither of these

four fields has many self citations, there are cycles for Sector and AccAud (these journals

cite journals from other fields that then cite back) that do not occur to this large extent for

HRM and Socio. Also, these are the only four fields for which the segregation raises as the

expected walk length increases, which makes us conclude that these kind of cycles play only

a minor/no importance in all other fields.

Among the fields that reduce their segregation when indirect citations are taken into

account, General Economics (GenEcon) and Urban, Spatial, Regional, and Transport Eco-

nomics (UrbSpaReg) deserve some special attention. While GenEcon does not show any

network effects (the normalized fraction of field–self–citations is in both cases 1.6 times larger

than that obtained from the uniform distribution), UrbSpaReg turns out to have a lot of

field–self–citations (roughly 11 times more if compared to the uniform distribution), yet this

fraction is reduced by 75% when indirect citations are considered as well. So, journals from

other fields that are cited by UrbSpaReg do not have the tendency to cite back. This is to

say that UrbSpaReg has a rather high homophily index but a normalized segregation index
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when α = 0.85 that compares to that of many other fields.

6 A Model of Time Investment

We now adapt the model of Currarini et al. (2009) to show that the segregation index σg is

directly related to the equilibrium outcome of a game in which individuals have to decide how

to spend their time.25 We depart from the spatial network defined through the matrix A on

the set of nodes M = {1, 2, . . . ,m}. We assume that A is symmetric and that ai > 0. There

is a set of groups/cultures G. At each moment in time, a continuum of individuals of mass

ng,i of group g ∈ G arrives (is born) in neighborhood i ∈ M . We say that an individual is an

i−citizen if she is born in neighborhood i, and an g−member if she belongs to group g.

Each individual decides how much time to invest in meeting other cultures. We consider

an unbiased payoff function that does not depend on the type of the individual so that we

can identify how the spatial setting alone shapes separation in equilibrium. Thus, let tg,i ≥ 0

be the time invested by an i−citizen in culture g ∈ G, independently of her group. The total

time invested by an i−citizen is ti =
∑

g∈G tg,i. It is the time an individual from neighborhood

i spends in the matching process, interacting with other citizens who also invest time. After

time ti expires, the i−citizen exits the process.

Meetings between individuals are only possible if they live in neighboring census tracts.

In particular, an i−citizen meets a j−citizen with probability pi,j = ai,j/ai; that is, the

transition probability is uniform. For all neighborhoods i, j ∈ M and all groups g, s, u ∈ G,

we write [(i, g) → (j, s)]u to denote the event in which an i−citizen who invests in culture g

meets a j−citizen who is an u−member and invests in culture s. Note that the neighborhoods

i and j, or the groups g, s and u may coincide or not. A mutual–interest–based meeting of an

i−citizen with a j−citizen (I–meeting from now on) is a meeting of the form [(i, g) → (j, g)]
q

;

that is, an i−citizen meets a j−citizen, and they are investing in the same culture. Let τ gi,j

be the total time an i−citizen spends in I–meetings related to culture g with j−citizens. A

25Alternatively, one could also follow an axiomatic approach to rationalize the measure. See, Palacios-Huerta
and Volij (2004) and Frankel and Volij (2010) for related examples.
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cultural meeting of an i−citizen with a j−citizen (C–meeting from now on) is a meeting of the

form [(i, g) → (j, q )]g; that is, an i−citizen who invests in culture g meets an j−citizen who

is a g−member. Let τ̄ gi,j be the total time an i−citizen spends in C–meetings with j−citizens

who are g−members. Finally, note that the meeting [(i, g) → (j, g)]g is both I and C.

We assume that individuals only benefit from meetings that are I or C. First, the i−citizen

gets A1 ≥ 0 for each unit of time in the I–meeting [(i, g) → (j, g)]
q

. Second, each unit of time

in the C–meeting [(i, g) → (j, q )]g produces a benefit of A0 > 0 for the i−citizen. In case a

meeting is both I and C, the i–citizen gets A0+A1 per unit of time in the meeting. The total

benefits of an i−citizen are then equal to

Bi ((tg,j)g∈G,j∈M ) =
∑

g∈G

∑

j∈M

(

A0 τ̄
g
i,j +A1 τ

g
i,j

)

.

Costs are supposed to be additively separable with respect to the time spent in the different

cultures. Also, they are identical for all cultures and independent of the group:

Ci((tg,i)g∈G) =
D

2

∑

g∈G

t2g,i,

where D > 0. The utility of an i−citizen is then

Ui ((tg,j)g∈G,j∈M ) =
∑

g∈G



Ao

∑

j∈M

τ̄ gi,j +A1

∑

j∈M

τ gi,j



−
D

2

∑

g∈G

t2g,i.

One sees that the incentives to express interest in a particular culture g are determined by

three factors: The likelihood of meeting an g−member (the compositional effect that produces

a payoff of A0), the chance of finding other citizens who are also interested in culture g (the

complementarity effect that produces a payoff ofA1), and the parameterD of the cost function.

Next, and in order to be able to calculate the total time spent in different meetings, we have

to make some assumptions on the probability that a particular meeting occurs. We follow

Currarini et al. (2009) and impose an unbiased process. Formally, the probability ρgi,j that an

i−citizen has an I−meeting related to culture g with a j−citizen is

ρgi,j ≡ pi,j
pj,i (nj tg,j)

pj,i
∑

k∈G

nj tk,j
= pi,j

tg,j
tj

;
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that is, the probability is determined by the fraction of time j−citizens spend in culture g.

Similarly, the probability ρ̄gi,j that an i−citizen has a C−meeting with an g−member from

neighborhood j is driven by the size of group g at j:

ρ̄gi,j ≡ pi,j
pj,i (ng,j tj)

pj,i (nj tj)
= pi,j

ng,j

nj

= pi,j cg,j.

We then find that τ gi,j = ρgi,j · tg,i = pi,j · tg,i · tg,j · 1/tj and τ̄ gi,j = ρ̄gi,j · tg,i = pi,j · tg,i · cg,j ,

respectively. Using this information, the utility function of an i−citizen becomes

Ui ((tg,j)g∈G,j∈M ) =
∑

g∈G



Ao tg,i
∑

j∈M

pi,j cg,j +A1 tg,i
∑

j∈M

pi,j
tg,j
tj



−
D

2

∑

g∈G

t2g,i. (1)

We study the simultaneous move game with utilities given by (1) and where each i−citizen

chooses the investment times (tg,i)g∈G ≥ 0. Given the investment times from all individuals,

the resulting meetings are balanced if the following three conditions are satisfied:

• Total balancedness: The time i−citizens meet j−citizens is equal to the time j−citizens

meet i−citizens.

• I–balancedness: The time i−citizens have I−meetings related to culture g with j−citizens

is equal to the time j−citizens have I−meetings related to culture g with i−citizens.

• C–balancedness: The time i−citizens have C−meetings with g−members from node j is

equal to the time that g−members from node j spend in these meetings with i−citizens.

Balancedness states that every i−citizen who invests ti units of time has bilateral meetings

during this time. Due to the unbiased setting, all three conditions are equivalent and reduce

to ni · pi,j · ti = nj · pj,i · tj (for details, see the proof of Theorem 1 in Appendix A). It is

also important to note that balancedness can only be ensured in equilibrium if we impose

some additional restrictions on the structure of the network. For this reason, we assume from

now on that for all i, j ∈ M , ni/nj = ai/aj ; that is, the mass of newborns in neighborhood

i ∈ M is proportional to its number of neighbors ai. Only then meetings with all neighbors

are feasible. We nevertheless point out that this condition still gives us the freedom to choose

any vectors of group concentrations (cg)g∈G.
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We say that (t∗g,i)i∈M,g∈G is a steady state equilibrium if (t∗g,i)i∈M,g∈G is a Nash equilibrium

of the simultaneous move game, meetings are balanced, and the inflow and outflow of indi-

viduals are equal at any given point in time. The following result states that in the unique

steady state equilibrium, the average time invested by g−members in their own culture, t̄g,

is proportional to the segregation index of group g.

Theorem 1. For all groups g ∈ G,

t̄g ≡
1

ng

∑

i∈M

ng,i t
∗
g,i =

A0 +A1

D
σg

(

C,
A1

A0 +A1

)

.

Proof. See Appendix A.

Observe that the relative magnitude of A1/A0 directly relates to the parameter α. As

α increases in the model of residential segregation, the complementarity effect in the game

becomes stronger. We conclude with an example.

Example. Consider the city depicted in Figure 11.
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Figure 11: Connections and arrival rates.

There are four neighborhoods and two groups. It is assumed that for all i ∈ M , ai,i = 1.

The vectors of group concentration are equal to cTblacks = (0, 1, 1, 0) and cTwhites = (1, 0, 0, 1).

Since the steady state equilibrium is only balanced if the condition ni/nj = ai/aj is met for all

i, j ∈ M , we consider the arrival rates n1 = n2 = 3, n3 = 4, and n4 = 2. Hence, in Figure 11

each dot indicates a continuum of individuals of mass 1. Also, dT

blacks = (0, 3/7, 4/7, 0)

and dT

whites = (3/5, 0, 0, 2/5). If A0 = 1, A1 = 3, and D = 2, then α = 0.75. In this
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case, the total time invested in the steady state is t∗i = 2 for all i ∈ M , and the average

equilibrium investments are twice the segregation indices: t̄blacks = 2σblacks(C, 0.75) = 1.17

and t̄whites = 2σwhites(C, 0.75) = 0.83.26

Theorem 1 allows us to interpret the segregation index as the result of a game where

individuals benefit from meetings. In the example, the blacks are more segregated because

of the following game–theoretical interpretation. First, a black is more likely to meet blacks

since the group is rather clustered (hblacks = 4/7). Second, also a white is more likely to meet

a black (hwhites = 2/5). This higher chance of meeting blacks for all individuals increases

the compositional incentives to spend time with blacks. Third, complementarities further

increase the incentives to spend time in black–related meetings. Finally, we also find that the

whites spend more time in black–related than in white–related meetings (1.16 vs. 0.83). This

is not surprising in a theoretical framework where individuals do not have any bias towards

their own culture. �

7 Conclusion

We have developed a new measure of residential segregation. In our theoretical model, the

nodes of a network represent neighborhoods or census tracts, and links indicate which census

tracts are adjacent in the urban space. It has also been assumed that multiple individuals from

possibly different social groups can be located in the very same node. Using this information

as the only primitive of our analysis, we have studied the following Markov chain: In the

first period, an individual moves from her area of residence to a neighboring node. In each

subsequent period, the individual advances from her current position in the network to an

adjacent node with a given probability, or the process stops. The segregation index has then

been defined as the probability that a randomly chosen individual from a given group meets

an individual from the same social group in the node where her random–walk terminates.

We have shown in our analysis that the segregation index has several favorable aspects.

First, the measure reduces to the isolation index in case the network is empty. Consequently,

26The latter equations can be verified with the help of the proof of Theorem 1.
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the segregation index can be interpreted as a natural generalization of the isolation index to

spatial networks. Second, in case the network is not empty and the exogenous probability

that the random–walk stops is one, the only interactions that are taken into account are those

between nodes that are direct neighbors, and the segregation index reduces to the homophily

index introduced by Currarini et al. (2009). Third, the segregation index incorporates the

idea that social groups that are located closer to the (relative) city center are more segregated

everything else equal. In particular, the segregation index turns out to be proportional to the

PageRank index applied by Google to determine the importance of webpages in the World

Wide Web. Finally, the segregation index is a continuous function in the social ties. Indeed,

the SSI suggested by Echenique and Fryer (2007), who have been the first to study a graph–

theoretical model to develop a measure of segregation, fails to satisfy this important criterion.

In our empirical analysis, we have studied first the Spanish 2009 census tract data. The

main result in this regard is that the province of Almeria on the Mediterranean coast is the

most segregated area, mainly because two of the more segregated groups, the Romanians and

the Morrocans, are highly overrepresented in these regions. Immigrants from Latin America,

on the other hand, turn out to be very much integrated, an effect that may be related to the

fact that these groups speak Spanish natively. We have also seen that clustering effects are

important to understand the segregation of some of the some smaller nationalities like the

Pakistanis and immigrants from African countries like Nigeria and Senegal, but not for the

European communities.

Afterwards, we have indicated that our model residential segregation can be easily adapted

to answer a wide range of empirical questions. To illustrate this, we have calculated the segre-

gation of 18 different fields in Economics using citation data from 140 scientific publications.

The difference between the normalized homophily index and the normalized segregation index

found in the data indicates a substantial amount of higher–order clustering: Journals from

field g may not cite journals from the same field but journals from another field that cite

journals from g.

Finally, in the last section of the paper, we rationalized the segregation index from a game–
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theoretical point of view. We considered a model in which individuals arrive continuously at

the nodes of an exogenous network and have to decide how much time to invest in the different

groups/cultures (stay in the matching process). Using an unbiased utility function, we found

that the equilibrium outcome of this induced game is related to the segregation index. In

fact, it turned out that the average amount of time an individual from group g invests in her

own culture is directly proportional to segregation index.
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Appendix A: Proofs

Proof of Lemma 1

Consider qi,j, which is the probability that a walk starting at node i ends at node j. With

probability (1 − α) the walk has length one, and it will end at node j with probability

pi,j. With probability α, the walk continues following i’s neighbors and it will reach node

j with probability
∑

k∈M pi,k qk,j. Thus, qi,j = (1 − α)pi,j + α
∑

k∈M pi,k qk,j. Rewriting

these equations in matrix form yields Q = (1 − α)P + αPQ, which is equivalent to Q =

(1 − α)(I − αP)−1P, where the inverse (I − αP)−1 is well-defined and non-negative because

P ≥ 0 and α ∈ [0, 1).

Proof of Proposition 2

Note first that σg(C, 0) = dT
gPcg. Hence, we show that hg(C) = dT

gPcg. By definition of the

homophily index,

hg(C) =
∑

i∈M
dg,i

∑

j∈M

ai,j ng,j∑
k∈M ai,k nk

=
∑

i∈M
dg,i

∑

j∈M

ai,jnj∑
k∈M ai,knk

cg,j

=
∑

i∈M
dg,i

∑

j∈M
pi,j cg,j

= dT
gPcg.

This concludes the proof of the proposition.

Proof of Proposition 3

By Lemma 1 and Proposition 1 , σg(C,α) = (dT
gM)Pcg, whereM = (1−α)(I−αP)−1. Hence,

it only remains to be shown that wg = MTdg = (1− α)(I − αPT)−1dg. By definition, wg is

equal to the principal eigenvector of the matrix S = (1 − α)dg1
T + αPT. Since S is column

stochastic, its spectral radius is 1 and the principal eigenvector wg satisfies the equation

Swg = wg. Taking a wg whose coordinates sum up to 1, we get that (1−α)dg+αPTwg = wg.

Solving this equation we get that wg = (1− α)(I − αPT)−1dg.
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Proof of Proposition 4

Since P = I,

σ̄g(C,α) = (ng/n)
−1Ig(C) = (ng/n)

−1
∑

i∈M

dg,i cg,i = n
∑

i∈M

1

ni

d2g,i.

The sum of squares is minimized if dg,i = ni/n for all i ∈ M . Thus,

σ̄g(C,α) ≥ n
∑

i∈M

1

ni

n2
i

n2
=

1

n

∑

i∈M

ni = 1.

This concludes the proof of the proposition.

Proof of Theorem 1

The proof is organized as follows. First, we show existence of a steady state equilibrium and

relate it to the segregation index. Afterwards, we establish the uniqueness of the equilibrium.

Finally, we prove matching balancedness.

1) Existence

Take any time investments (tg,i)i∈M,g∈G. Using the utility function (1), one sees that the

marginal utility of the time investment tg,i in culture g of an individual born in neighborhood

i equals

∂Ui

∂tg,i
= A0

∑

j∈M

pi,jcg,j +A1

∑

j∈M

pi,j
tg,j
tj

−D tg,i. (2)

In order to prove existence, we derive an equilibrium where ∂Ui/∂tg,i = 0. We will show first

that the total time efforts are equal for all individuals; that is, in this equilibrium, individuals

will only differ in the way they distribute their time over all cultures. Summing over all

groups and recalling that
∑

g∈G cg,j = 1 for all j ∈ M and
∑

j∈M pi,j = 1, we have that

A0 +A1 −D ti = 0. It follows then that for all i ∈ M ,

t∗i =
A0 +A1

D
. (3)

Now, we are going to determine the time spent in g−related meetings. Let tg = (tg,i)i∈M be

the vector of times spent in culture g ∈ G. Using equation (3), the first order conditions can

be rewritten in matrix form as

A0

D
Pcg +

A1

A0 +A1
Ptg − tg = 0.
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It follows that

t∗g =
A0

D

(

I−
A1

A0 +A1
P

)−1

Pcg ≥ 0.

The non–negativity of t∗g follows from the fact that the inverse exists and that it is non–

negative (remember that P is stochastic and that 0 ≤ A1/(A0 + A1) < 1). Hence, t∗g is the

unique equilibrium satisfying ∂Ui/∂tg,i = 0 for all i ∈ M and g ∈ G.

Next, we will will relate the equilibrium time investments to the segregation index. Recall

that the vector of local segregations vg for the continuation probability α = A1/(A0 +A1) is

defined as

vg =
A0

A0 +A1

(

I−
A1

A0 +A1
P

)−1

Pcg .

Consequently,

t∗g =
A0 +A1

D
vg.

Finally, the average time investment in culture g by members of group g is

t̄g ≡
1

ng

∑

i∈M

ng,i t
∗
g,i =

∑

i∈M

dg,i t
∗
g,i =

A0 +A1

D

∑

i∈M

dg,i vg,i =
A0 +A1

D
σg

(

C,
A1

A0 +A1

)

.

This concludes the first part of the proof.

2) Uniqueness

In any equilibrium, ∂Ui/∂tg,i ≤ 0 for all i ∈ M and g ∈ G, with strict inequality only if

t∗g,i = 0. We show that ∂Ui/∂tg,i = 0. Suppose, by contradiction, that ∂Ui/∂tg,i < 0 for some

i ∈ M and g ∈ G. Then, t∗g,i = 0 and it follows from equation (2) that

A0

∑

j∈M

pi,jcg,j +A1

∑

j∈M

pi,j
tg,j
tj

< 0.

However, this cannot be because all values in the equation are non–negative by definition.

Hence, ∂Ui/∂tg,i = 0, and the unique equilibrium is the one calculated in the first part of the

proof. This concludes the second part of the proof.

3) Balancedness

The balancedness conditions can be written formally as:

• Total balancedness. For all i, j ∈ M , ni · ti · pi,j = nj · tj · pj,i.
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• I–balancedness. For all i, j ∈ M and g ∈ G, ni ·pi,j ·tg,i ·tg,j ·1/tj = nj ·pj,i ·tg,j ·tg,i ·1/ti,

which is equivalent to ni · ti · pi,j = nj · tj · pj,i.

• C–balancedness. For all i, j ∈ M and g ∈ G, ni · pi,j · tg,i · cg,j = ng,j · tj · pj,i · tg,i · 1/ti,

which is equivalent to ni · ti·i,j = nj · tj · pj,i.

The three conditions are therefore equivalent, and we only have to show that ni t
∗
i pi,j =

nj t
∗
j pj,i. Using that ai/aj = ni/nj by assumption, t∗i = t∗j , and pij = 1/ai, we obtain that

pi,j
pj,i

=
1/ai
1/aj

=
aj
ai

=
nj

ni

=
nj

ni

t∗j
t∗i
.

This concludes the proof of the Theorem.
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Appendix B: Tables and Figures

Nationality ID Number of Residents Share

Spain E 40,956,149 90.26%

Europe

Bulgaria BU 164,716 0.36%

France F 120,262 0.27%

Italy I 175,232 0.39%

Poland PO 85,007 0.19%

Portugal P 140,801 0.31%

Romania RU 798,869 1.76%

Russia R 47,428 0.10%

Ukraine UC 82,263 0.18%

Africa

Algeria AR 56,194 0.12%

Morocco MA 708,939 1.56%

Nigeria NI 42,322 0.09%

Senegal SE 56,589 0.12%

South America

Argentina A 142,239 0.31%

Bolivia BO 230,693 0.51%

Brazil B 126,172 0.28%

Colombia CO 296,619 0.65%

Cuba CU 54,598 0.12%

Chile CH 51,032 0.10%

Ecuador EC 421,385 0.93%

Paraguay PA 81,549 0.18%

Peru PE 139,167 0.31%

Dominican Republic RD 88,102 0.19%

Uruguay UR 50,422 0.11%

Venezuela VE 61,448 0.14%

Asia

China C 147,373 0.32%

Pakistan PK 54,100 0.12%

Table 3: Residents in Spain as of January 2009 according to the country of origin (nationality). The data is

made available by the National Statistical Institute (INE) of Spain. Only 39,915 of the Romanians living in

Spain were also born in Spain.

.
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Field ID Full Name

AccAud Accounting and Auditing

AgrEnvEn Agricultural, Environmental and Energy Economics

DevTrans Development and Transition Economics

EconStat Econometrics and Statistics Applied to Economics

FinIns Finance and Insurance

GenEcon General Economics

HistPolMet History of Economic Thought, Political Economy, Methodology

HRM Human Resource Management and Industrial Relations

InnovEntrSB Innovation, Entrepreneurship, Small Business

IO Industrial Organization, Productivity Analysis

LaborHealth Labor, Education, Population and Health Economics

Law Law and Economics

Macro Macroeconomics, International and Monetary Economics

PubEcon Public Economics, Public Choice

Sector Sectorial Studies

Socio Social Economics, Political Science, Philosophy, Sociology, International Relations

Theory Economic Theory, Game and Decision Theory

UrbSpaReg Urban, Spatial, Regional and Transport Economics

Table 4: Field abbreviations in the citation model using the CEFAGE–EU ranking from the University of

Évora, Portugal.
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Province E BU F I PO P RU R UC AR MA NI SE A BO B CO CU CH EC PA PE RD UR VE C PA Ī(C)

01 Alava 1.00 9.58 3.02 2.86 5.53 2.22 2.25 7.81 4.86 2.11 2.30 4.75 7.70 2.71 3.14 1.80 1.63 3.08 5.55 2.15 2.55 3.98 3.63 14.49 3.65 4.61 4.64 1.13

02 Albacete 1.00 3.37 3.19 3.05 8.85 6.11 2.68 5.77 8.39 5.17 3.64 20.36 8.70 3.47 3.75 3.74 1.89 4.23 11.86 3.36 2.07 5.14 4.22 7.88 5.37 8.15 23.90 1.21

03 Alicante 1.01 3.94 4.23 2.53 3.89 3.26 2.52 7.25 4.19 4.19 3.18 17.76 12.79 2.16 5.19 4.54 2.13 2.93 4.95 2.40 5.06 3.96 5.15 3.00 4.43 4.41 18.93 1.36

04 Almeria 1.03 3.93 4.18 3.71 4.58 3.50 2.72 3.02 4.19 7.27 4.23 17.00 8.65 1.95 7.88 3.55 2.39 4.44 6.14 4.33 14.84 5.28 6.75 7.51 5.29 5.02 12.95 1.53

05 Avila 1.00 7.69 5.59 4.91 4.05 3.86 2.17 17.25 6.76 9.39 3.63 10.77 65.85 6.14 7.00 3.18 2.39 6.76 10.72 2.89 18.05 4.36 2.77 7.13 10.73 4.63 84.63 1.22

06 Badajoz 1.00 20.14 6.35 5.55 16.03 4.16 5.81 17.76 10.17 10.04 3.23 23.77 26.51 5.64 7.42 3.09 3.32 7.98 19.68 5.25 12.44 8.77 7.91 21.53 13.35 7.08 42.30 1.15

07 Baleares 1.01 2.95 2.77 1.87 3.12 2.98 2.64 3.92 3.65 3.74 2.88 19.83 7.84 1.53 4.52 2.12 1.81 1.93 2.45 2.28 4.62 2.44 2.59 2.41 2.64 5.14 21.25 1.34

08 Barcelona 1.01 5.94 4.02 2.63 5.13 3.34 2.86 3.42 4.41 7.79 3.52 17.26 13.51 1.98 3.75 3.33 1.82 2.52 2.83 2.85 6.55 2.71 4.36 3.52 2.81 5.50 16.57 1.41

09 Burgos 1.00 3.63 3.63 4.48 5.63 4.26 2.09 8.82 8.61 4.21 2.63 11.72 10.02 4.27 5.53 2.64 2.29 5.26 10.00 2.46 4.88 4.44 3.16 23.20 4.12 6.65 8.75 1.22

10 Caceres 1.00 26.13 9.99 9.47 13.12 6.75 5.13 14.57 21.61 11.74 10.92 60.79 15.10 5.91 8.46 3.55 3.61 9.05 17.61 5.36 13.04 6.02 9.10 22.88 9.46 9.08 101.07 1.26

11 Cadiz 1.00 19.67 4.44 4.82 7.40 6.33 13.64 9.10 8.66 15.21 5.57 18.63 22.39 5.29 6.98 4.29 3.34 5.05 12.09 5.91 12.24 5.92 5.76 15.38 6.31 6.58 85.18 1.16

12 Castellon 1.01 6.58 4.59 2.85 4.33 3.50 1.48 7.15 4.82 2.90 2.33 7.39 10.47 2.17 17.47 5.21 1.76 2.66 5.01 4.77 7.67 3.73 5.41 6.29 3.76 3.29 8.57 1.24

13 Ciudad Real 1.00 7.38 4.88 4.82 6.64 6.09 2.18 14.72 4.62 8.01 2.41 39.28 35.96 5.34 4.06 4.83 2.60 6.68 16.42 4.27 3.72 6.74 5.32 19.19 6.52 6.06 35.61 1.19

14 Cordoba 1.00 24.10 5.13 4.28 16.16 6.30 3.58 8.03 8.80 11.32 3.03 25.21 34.05 6.26 10.76 5.34 3.44 8.42 15.05 6.25 7.50 12.96 11.65 25.29 8.40 8.08 17.46 1.13

15 Coruna 1.00 17.97 3.85 2.58 10.24 2.87 5.01 8.77 13.84 29.83 10.78 15.76 22.82 3.07 17.53 3.58 2.68 3.60 9.77 7.25 10.55 5.30 5.80 4.54 3.10 8.24 45.11 1.14

16 Cuenca 1.01 7.88 6.24 5.14 5.97 8.20 1.66 8.20 3.24 6.88 2.52 29.69 20.15 4.13 10.67 8.41 2.70 9.73 12.15 3.40 3.47 3.88 4.88 56.18 10.35 11.62 47.83 1.28

17 Girona 1.02 6.38 5.96 2.33 3.49 3.53 1.99 6.18 2.62 5.63 2.33 21.51 6.13 2.48 7.33 3.17 2.08 2.65 3.57 2.80 7.95 3.51 3.70 3.70 3.02 5.19 6.33 1.42

18 Granada 1.00 17.98 3.45 3.30 7.58 4.85 5.27 3.26 6.39 6.70 4.29 47.14 8.95 2.41 7.13 3.29 2.93 4.08 6.44 5.22 9.86 6.77 6.40 9.87 5.06 7.12 24.27 1.23

19 Guadalajara 1.01 7.49 3.52 2.27 3.17 6.47 1.57 5.07 5.97 3.98 2.21 6.77 16.84 2.36 6.08 4.01 1.58 2.94 4.24 2.28 5.65 1.90 2.67 5.26 3.21 5.31 19.51 1.27

20 Guipuzca 1.00 8.57 2.95 2.83 6.74 2.45 5.65 5.05 3.70 4.16 2.83 19.51 15.54 2.58 4.20 2.68 2.21 2.43 5.28 2.27 7.84 3.86 3.04 9.08 4.02 7.11 10.50 1.14

21 Huelva 1.01 5.94 3.94 3.75 6.14 5.32 2.74 8.53 3.77 6.38 3.93 21.92 10.21 5.02 6.21 4.16 3.27 4.12 16.11 6.29 17.21 8.09 11.19 17.26 7.50 6.19 40.06 1.25

22 Huesca 1.01 6.03 5.22 3.27 4.85 4.09 1.85 4.04 3.11 4.88 2.86 20.76 6.94 3.26 14.46 5.30 3.26 4.61 8.27 3.07 8.72 4.23 3.12 5.37 4.43 20.32 17.26 1.30

23 Jaen 1.00 16.97 5.33 5.83 18.50 6.35 2.63 5.87 12.51 4.41 4.84 31.05 16.92 4.78 6.35 6.14 4.63 8.72 22.43 4.29 10.65 7.96 7.09 31.15 12.81 7.23 24.75 1.13

24 Leon 1.00 5.61 3.59 3.96 10.56 4.13 5.20 6.99 12.11 14.21 4.08 23.05 26.48 3.23 9.58 2.48 2.65 4.12 17.62 5.03 6.96 5.28 3.83 13.36 3.72 8.37 29.48 1.20

25 Lleida 1.01 4.67 7.94 2.47 3.69 7.36 1.62 2.22 10.40 3.30 2.06 5.84 3.59 2.46 5.04 3.99 2.00 3.64 6.65 3.34 7.78 3.62 3.04 4.83 5.68 4.88 8.95 1.36

26 Rioja 1.01 3.45 2.82 2.44 10.07 6.09 1.96 4.30 6.36 4.35 3.00 6.51 10.30 2.33 2.70 2.84 2.18 2.47 22.39 2.54 8.59 8.24 3.84 9.04 3.67 4.41 4.93 1.33

27 Lugo 1.00 34.91 4.66 3.41 40.72 1.87 3.75 16.97 15.04 26.26 4.87 18.23 27.57 3.55 12.73 2.95 2.85 3.91 15.47 8.96 8.38 10.08 3.65 5.97 3.83 9.97 30.11 1.14

28 Madrid 1.01 3.78 8.00 2.28 3.07 2.28 2.93 4.15 3.43 8.71 3.31 8.13 26.08 1.92 3.28 2.86 1.71 2.51 3.66 2.38 2.97 1.88 3.27 4.89 2.79 5.03 27.91 1.34

29 Malaga 1.01 3.75 3.42 2.61 4.78 3.32 2.84 5.16 2.88 7.04 2.18 7.64 10.31 1.95 4.87 2.95 2.22 3.43 3.71 6.24 2.76 3.96 4.87 3.17 2.95 4.19 14.59 1.22

30 Murcia 1.01 5.62 4.26 2.97 7.21 5.47 2.92 4.51 4.65 7.13 3.06 12.18 13.81 2.81 2.59 3.33 2.39 4.10 7.29 2.07 15.62 6.67 5.28 7.64 5.36 4.44 47.94 1.37

31 Navarra 1.00 2.88 6.47 2.35 4.04 2.54 2.30 4.06 3.52 5.87 4.49 6.53 5.21 2.49 3.84 2.46 1.91 3.03 4.39 2.17 7.88 2.80 2.96 8.13 3.41 5.07 17.15 1.24

32 Ourense 1.00 12.95 5.39 3.11 11.75 3.05 3.99 20.68 10.67 16.72 9.88 18.34 11.50 2.64 8.37 2.99 2.82 3.96 14.20 8.12 7.35 8.10 3.77 13.55 2.55 8.34 43.72 1.14

33 Asturias 1.00 8.64 3.29 3.07 9.31 3.14 2.77 6.99 5.76 9.05 4.01 12.56 11.99 2.64 8.81 2.25 2.89 3.03 7.95 5.47 4.51 5.59 3.87 6.90 3.24 5.45 56.24 1.14

34 Palencia 1.00 2.79 3.51 3.40 5.99 11.59 3.69 10.45 17.59 20.17 4.36 119.34 15.32 4.16 11.56 3.10 2.84 7.82 19.05 3.45 3.89 3.73 9.95 49.58 9.15 5.58 57.14 1.16

35 Palmas 1.01 7.50 3.96 4.11 4.77 4.68 9.07 4.78 6.68 6.95 4.91 7.02 9.69 2.48 6.11 3.20 3.13 2.45 4.19 3.74 9.35 3.55 6.82 4.17 2.21 6.50 40.35 1.32

36 Pontevedra 1.00 34.31 3.56 2.53 25.44 2.24 6.97 7.65 13.75 48.87 7.06 20.43 18.74 2.49 24.91 3.39 2.89 4.60 11.50 11.46 8.29 6.05 6.37 3.53 2.88 10.24 105.68 1.18

37 Salamanca 1.00 7.38 4.69 3.72 9.36 11.36 4.50 6.33 6.49 30.26 2.85 8.75 30.32 4.80 4.75 3.21 2.94 5.44 7.39 7.88 9.10 4.46 24.62 12.35 5.70 4.96 78.69 1.26

38 SantaCruz 1.01 7.59 7.02 4.67 6.34 3.82 5.17 12.50 10.58 8.14 7.40 8.23 18.94 2.96 7.56 4.17 3.94 2.70 4.99 5.80 9.77 3.34 4.58 4.33 1.76 19.33 69.67 1.40

39 Cantabria 1.00 15.81 2.44 2.32 21.61 4.18 2.10 4.19 3.93 10.63 4.12 10.80 10.37 2.61 12.17 2.40 2.06 3.04 5.80 3.92 3.66 3.17 3.11 7.33 3.14 5.80 11.03 1.17

40 Segovia 1.01 1.76 5.83 6.57 2.69 13.12 4.01 18.04 6.29 11.12 2.36 39.15 31.17 6.37 9.72 3.52 1.98 7.56 7.95 2.77 13.52 2.47 3.18 8.08 7.66 7.62 51.74 1.27

41 Sevilla 1.00 16.18 4.39 3.86 7.83 5.27 4.50 5.12 5.73 10.23 2.89 13.61 26.68 3.66 7.81 3.48 2.91 4.82 11.55 9.73 8.27 5.09 19.91 11.72 5.73 7.86 98.96 1.17

42 Soria 1.00 2.42 5.33 4.52 5.74 3.51 2.51 8.95 8.48 4.87 2.71 11.54 8.60 2.74 2.83 2.32 2.97 3.00 17.97 2.06 7.08 2.68 3.03 21.01 3.63 4.24 28.83 1.18

43 Tarragona 1.01 4.05 3.80 2.33 3.61 2.87 2.26 4.27 3.52 3.49 2.12 20.77 17.72 2.33 5.13 3.14 1.96 2.71 3.33 2.78 4.77 2.56 8.14 4.10 3.18 3.22 9.06 1.38

44 Teruel 1.01 14.77 5.75 5.31 10.59 5.33 1.70 81.03 6.38 5.69 2.12 64.03 29.52 9.43 24.61 4.91 4.19 7.71 27.43 5.30 20.36 3.21 4.72 44.55 17.98 7.85 13.11 1.42

45 Toledo 1.00 3.64 3.81 3.03 3.76 3.81 1.84 10.26 5.50 7.93 2.17 10.92 32.06 2.98 6.78 3.63 2.16 3.88 5.37 2.17 7.86 3.63 3.23 13.39 4.85 5.56 31.64 1.22

46 Valencia 1.01 5.77 2.74 2.19 4.20 4.60 2.20 3.68 3.14 3.31 3.03 6.92 8.93 2.07 3.32 2.92 2.04 2.73 6.18 3.18 5.21 3.99 5.32 3.60 3.35 3.99 8.76 1.26

47 Valladolid 1.00 3.66 4.12 4.40 10.87 3.81 3.10 9.36 10.54 18.38 4.94 32.28 20.95 4.16 5.84 2.49 2.36 3.95 16.18 4.62 9.42 4.97 3.97 55.79 5.16 5.63 30.72 1.19

48 Vizcaya 1.00 16.47 4.39 3.51 14.31 4.05 2.93 9.40 9.46 6.16 3.72 13.24 18.84 3.16 2.58 2.40 2.09 3.26 7.04 3.54 2.72 3.75 6.38 10.71 3.90 7.32 18.96 1.16

49 Zamora 1.00 2.79 5.01 12.26 62.33 3.78 5.41 19.35 13.00 14.00 7.26 82.57 188.74 5.62 9.70 3.93 3.78 6.65 15.41 11.38 9.22 6.01 4.37 12.47 8.70 9.83 65.38 1.18

50 Zaragoza 1.01 10.48 2.93 2.31 10.20 3.23 1.91 4.13 3.63 4.55 3.83 6.29 5.37 3.27 5.89 2.67 1.98 3.52 6.04 2.51 13.72 3.55 3.31 7.56 3.43 4.13 39.62 1.28

Spain 1.01 8.78 7.76 5.76 7.41 6.81 4.22 13.26 7.21 9.99 5.23 17.61 18.82 3.27 5.59 3.70 2.66 4.96 5.68 4.37 6.77 4.73 6.60 7.16 4.94 7.82 50.66 1.52

Table 5: Normalized segregation index in Spain as of January 2009 for G = I (normalized isolation index) and a neighborhood radius of 400 meters.
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Province E BU F I PO P RU R UC AR MA NI SE A BO B CO CU CH EC PA PE RD UR VE C PA h̄(C)

01 Alava 1.00 4.76 1.96 1.93 3.40 1.97 1.77 2.06 2.15 1.61 1.78 2.43 2.83 1.70 1.76 1.34 1.37 2.13 2.25 1.50 1.77 3.19 2.32 5.52 1.80 2.32 2.34 1.06

02 Albacete 1.00 3.03 2.74 2.17 7.75 4.92 2.60 3.38 8.02 3.25 3.42 9.38 4.83 2.36 3.45 2.22 1.63 2.87 5.19 3.09 1.68 3.19 2.54 3.76 3.43 4.85 6.68 1.16

03 Alicante 1.01 3.67 4.12 2.36 3.56 2.81 2.27 7.03 3.80 3.06 2.78 13.47 8.68 1.97 4.46 3.96 1.92 2.44 4.03 2.08 3.20 2.56 3.37 2.50 3.69 3.65 11.74 1.29

04 Almeria 1.02 3.68 4.13 3.56 4.41 3.25 2.69 2.89 4.04 6.94 4.01 16.54 8.25 1.80 7.69 3.19 2.23 3.85 5.50 4.25 14.54 5.10 5.88 6.88 3.68 4.24 12.04 1.50

05 Avila 1.00 7.64 5.27 4.76 3.61 3.74 2.08 16.01 6.23 6.06 3.59 5.00 57.50 6.09 6.96 3.07 2.29 6.58 10.24 2.73 18.03 4.16 2.56 6.83 10.39 3.66 84.63 1.21

06 Badajoz 1.00 18.94 5.54 4.75 13.43 4.02 5.27 13.17 8.00 6.94 2.72 12.19 20.05 4.38 5.81 2.52 2.76 5.34 16.43 3.75 9.37 7.00 6.04 16.74 10.83 4.75 21.74 1.12

07 Baleares 1.01 2.69 2.70 1.80 2.94 2.66 2.44 3.44 2.74 2.62 2.74 13.12 6.83 1.44 3.80 1.94 1.68 1.72 2.08 2.12 3.70 2.06 2.00 2.24 2.05 3.57 16.49 1.27

08 Barcelona 1.01 3.87 3.61 2.34 4.12 2.09 2.31 2.00 2.86 3.26 2.89 11.64 9.94 1.65 2.67 2.05 1.41 1.63 1.91 2.39 4.86 2.11 2.97 2.68 1.72 3.84 9.15 1.26

09 Burgos 1.00 3.30 2.95 2.95 3.91 3.69 1.93 5.85 6.84 2.44 2.25 4.13 5.10 3.24 3.71 1.95 2.04 3.60 5.23 1.90 3.37 3.06 2.40 19.93 2.45 3.14 5.82 1.16

10 Caceres 1.00 20.59 9.77 8.37 11.32 6.68 4.97 11.59 15.45 9.67 10.83 59.24 12.35 5.28 5.98 3.14 2.76 6.56 15.40 3.90 6.89 5.18 7.54 19.93 6.95 4.60 68.95 1.24

11 Cadiz 1.00 14.91 3.66 4.05 5.23 5.51 12.98 6.49 5.07 6.80 4.47 10.80 10.70 4.19 4.72 3.50 2.62 3.27 6.26 3.93 7.33 3.70 3.32 12.32 3.77 3.63 35.81 1.11

12 Castellon 1.01 6.06 4.53 2.73 3.90 3.20 1.37 6.41 4.31 2.25 2.08 3.93 5.15 1.87 16.28 5.01 1.53 2.05 3.70 4.44 4.81 2.70 3.15 5.92 2.88 2.34 4.55 1.19

13 Ciudad Real 1.00 7.25 4.51 3.62 6.16 4.67 2.15 11.92 3.73 6.16 2.33 26.18 32.61 4.27 3.84 3.74 2.37 5.68 10.25 3.72 3.16 3.88 3.95 12.31 5.22 3.92 27.20 1.17

14 Cordoba 1.00 18.49 3.81 2.62 10.84 3.55 3.17 4.27 7.05 7.90 2.34 13.13 12.09 4.77 5.59 3.16 2.79 4.03 6.74 3.82 4.23 3.78 4.69 12.91 3.92 3.57 8.62 1.08

15 Coruna 1.00 10.16 2.78 2.12 8.31 2.62 4.13 5.63 8.96 11.14 9.67 9.48 10.74 2.58 6.89 3.05 2.19 2.59 8.10 3.92 6.70 3.65 3.67 3.50 2.58 4.03 11.31 1.09

16 Cuenca 1.01 7.78 6.02 3.92 5.65 7.97 1.64 7.29 2.87 5.24 2.48 29.01 15.07 3.65 10.45 8.25 2.53 8.40 9.32 3.27 3.41 3.47 3.70 55.19 9.18 6.51 45.77 1.25

17 Girona 1.02 5.87 5.93 2.26 3.41 3.32 1.96 6.14 2.48 4.33 2.15 15.77 5.40 2.40 6.85 2.76 1.92 2.36 3.28 2.57 7.34 3.10 3.42 3.53 2.67 4.77 5.42 1.38

18 Granada 1.00 17.10 3.13 2.98 6.07 3.70 5.16 2.63 4.21 5.39 3.90 21.21 6.00 2.17 6.53 2.74 2.58 3.12 5.00 4.56 7.48 4.33 4.39 8.00 3.81 4.11 10.20 1.19

19 Guadalajara 1.01 7.41 3.45 2.06 3.07 6.41 1.54 4.06 5.58 2.99 2.12 6.45 13.96 2.23 5.54 3.87 1.53 2.63 3.19 2.04 5.34 1.75 2.35 3.96 2.77 3.07 9.99 1.24

20 Guipuzca 1.00 6.87 2.60 2.32 3.66 2.15 5.21 3.10 2.39 2.93 2.38 9.29 13.88 1.84 3.32 1.99 1.82 1.74 4.10 1.79 3.44 2.55 2.06 4.83 2.59 3.28 7.67 1.10

21 Huelva 1.00 5.67 3.44 3.06 5.57 5.27 2.62 6.62 3.07 5.85 3.39 10.61 4.69 3.76 3.99 3.22 2.57 2.97 12.67 5.61 12.04 4.28 5.29 11.13 3.86 3.74 21.21 1.20

22 Huesca 1.00 5.97 5.18 3.10 4.74 3.75 1.78 3.52 2.80 3.61 2.57 8.54 5.60 2.81 14.19 3.38 3.09 3.84 6.52 2.77 6.32 3.71 2.51 5.02 3.69 19.27 15.33 1.26

23 Jaen 1.00 15.96 3.45 4.16 14.92 4.67 2.33 3.23 9.46 3.46 4.19 9.56 7.47 2.99 4.51 4.28 3.30 6.37 16.76 2.89 6.57 4.77 5.43 19.51 8.97 3.84 10.98 1.09

24 Leon 1.00 5.44 3.18 2.95 8.98 4.08 3.05 5.27 6.78 5.36 3.36 9.12 18.52 2.61 7.33 1.93 2.30 2.86 11.12 3.73 5.56 3.10 3.07 7.50 2.52 4.52 26.76 1.14

25 Lleida 1.01 4.40 7.64 2.14 3.40 7.30 1.57 1.95 10.17 2.72 1.84 4.07 3.17 2.15 4.49 3.64 1.83 3.14 6.04 3.00 5.61 3.37 2.59 3.82 4.17 3.77 5.56 1.31

26 Rioja 1.01 2.73 2.43 1.92 9.44 6.07 1.87 3.46 5.66 3.96 2.84 3.34 4.06 2.08 2.18 2.25 1.98 2.08 21.91 2.23 3.82 7.57 2.46 7.59 2.52 2.71 3.62 1.28

27 Lugo 1.00 33.17 4.36 2.79 38.92 1.84 3.36 9.48 8.32 18.27 4.40 9.29 21.93 2.92 6.68 2.70 2.42 2.85 14.94 4.53 6.60 9.75 3.20 4.11 3.11 5.93 11.24 1.11

28 Madrid 1.01 3.02 7.36 1.95 2.35 1.78 2.71 2.18 2.31 3.18 2.90 5.88 14.04 1.52 2.71 2.00 1.46 1.58 2.37 2.02 2.19 1.54 2.45 2.62 2.18 3.63 14.09 1.24

29 Malaga 1.01 2.84 3.30 2.47 4.14 2.90 2.38 4.83 2.31 4.87 1.94 4.14 7.48 1.77 3.97 2.51 1.90 2.56 2.63 5.13 2.24 2.48 3.43 2.43 2.25 3.19 8.05 1.16

30 Murcia 1.01 4.83 4.08 2.60 6.54 4.96 2.72 3.52 3.45 6.33 2.72 7.67 11.47 2.20 2.22 2.68 2.12 2.92 4.66 1.94 15.08 5.19 3.28 5.46 3.24 2.86 39.31 1.30

31 Navarra 1.00 2.58 6.29 1.97 3.29 2.45 2.05 2.83 2.74 5.51 4.45 5.26 4.04 2.10 3.23 2.13 1.77 2.45 3.13 2.02 4.74 2.15 2.56 5.70 2.45 2.98 14.28 1.20

32 Ourense 1.00 11.28 5.21 2.82 9.37 3.03 3.39 8.42 8.37 10.79 9.64 10.23 8.28 2.26 6.16 2.80 2.43 3.23 12.54 5.28 6.47 5.44 3.00 12.30 2.31 5.17 32.36 1.12

33 Asturias 1.00 4.30 2.48 2.08 8.56 2.36 2.28 3.34 3.41 4.19 3.16 5.07 6.09 1.93 3.88 1.78 2.30 2.16 4.14 3.61 3.00 2.97 2.84 4.60 2.34 2.52 14.05 1.08

34 Palencia 1.00 2.31 2.74 2.50 5.32 11.40 3.17 4.29 15.24 15.86 4.01 113.95 9.47 3.17 10.56 2.46 1.95 4.21 13.51 2.12 3.46 2.87 3.25 35.86 7.78 3.51 53.26 1.13

35 Palmas 1.01 6.71 3.84 4.06 4.38 4.57 8.82 3.97 4.61 6.02 4.66 4.26 6.90 2.33 4.14 2.75 3.02 2.25 3.76 3.42 7.82 3.05 6.08 3.96 1.88 5.32 38.22 1.28

36 Pontevedra 1.00 30.43 3.12 2.00 18.42 2.16 5.97 5.31 7.67 29.34 6.66 6.15 9.69 1.94 12.84 2.40 2.37 3.10 4.99 7.69 3.83 4.36 3.76 2.74 2.35 5.75 19.65 1.12

37 Salamanca 1.00 7.22 4.26 3.06 7.20 11.31 4.20 4.26 4.83 20.04 2.49 5.45 29.86 4.11 3.49 2.66 2.45 3.78 5.07 6.77 5.90 3.06 22.89 10.06 3.66 3.18 33.57 1.22

38 SantaCruz 1.01 7.23 6.97 4.62 6.27 3.74 4.97 12.43 9.86 7.72 7.35 7.55 17.91 2.82 5.01 3.85 3.85 2.55 4.62 5.12 5.76 2.82 3.32 4.18 1.70 18.85 69.31 1.37

39 Cantabria 1.00 15.42 2.13 1.89 19.95 3.94 1.90 2.75 2.59 5.54 3.43 4.47 6.40 2.06 4.96 1.91 1.73 1.81 2.94 2.88 2.35 2.64 2.36 5.30 2.22 3.26 5.77 1.12

40 Segovia 1.01 1.68 5.41 6.12 2.59 13.08 4.01 17.18 5.92 8.15 2.25 29.29 14.86 5.77 8.52 3.42 1.87 7.07 6.74 2.54 11.22 2.15 2.78 7.47 5.11 5.50 43.68 1.24

41 Sevilla 1.00 9.94 3.44 2.84 5.28 3.84 3.96 2.73 3.33 7.55 2.14 6.33 18.14 2.41 4.77 2.44 2.01 2.53 5.58 5.64 4.74 3.12 10.99 6.85 2.84 4.72 14.76 1.10

42 Soria 1.00 2.36 5.06 3.66 5.66 3.45 2.48 6.70 8.28 4.14 2.67 9.43 4.80 2.27 2.38 2.25 2.89 2.90 17.65 1.86 6.00 2.30 2.46 19.71 2.82 3.11 22.86 1.16

43 Tarragona 1.01 3.74 3.72 2.24 3.31 2.65 2.14 3.99 3.19 2.53 1.88 18.30 16.13 2.16 3.54 2.95 1.74 2.42 2.84 2.52 3.64 1.98 7.63 3.63 2.73 2.45 7.25 1.32

44 Teruel 1.00 14.59 5.58 4.77 10.57 4.99 1.67 78.89 5.49 4.66 2.05 42.62 28.67 9.20 24.46 4.77 3.98 6.71 26.62 5.10 19.67 2.92 4.16 43.86 15.93 4.76 12.11 1.39

45 Toledo 1.00 3.31 3.49 2.74 3.69 3.20 1.80 9.00 5.16 6.11 2.11 10.55 25.01 2.81 5.98 3.38 2.04 3.69 4.32 2.04 6.17 3.45 2.99 12.98 4.21 4.41 31.52 1.20

46 Valencia 1.00 5.27 2.48 1.85 3.45 3.83 1.96 2.15 2.36 2.14 2.35 4.15 5.00 1.62 2.59 2.07 1.64 1.69 4.19 2.60 3.27 2.31 2.75 2.64 2.10 2.21 4.46 1.17

47 Valladolid 1.00 3.32 3.69 3.23 6.42 3.44 2.73 5.62 4.10 4.49 3.13 15.68 6.00 2.47 3.20 1.75 1.87 2.54 5.94 2.72 4.31 3.32 2.27 54.53 2.86 2.83 9.69 1.12

48 Vizcaya 1.00 10.02 2.87 2.08 7.14 3.65 2.52 3.95 5.51 3.69 2.56 7.93 13.70 2.01 2.05 1.76 1.67 1.86 2.98 2.52 1.79 2.36 2.76 5.56 2.17 3.45 5.26 1.09

49 Zamora 1.00 2.67 4.40 11.89 17.35 3.70 5.14 16.05 12.64 11.98 7.13 35.42 150.78 4.86 7.81 2.99 3.34 6.11 9.75 10.87 6.16 4.92 3.70 10.52 6.84 5.31 11.20 1.15

50 Zaragoza 1.00 10.00 2.38 1.68 9.33 2.84 1.79 2.25 2.38 3.33 3.34 2.83 3.35 2.43 3.25 1.82 1.54 2.37 2.83 1.96 6.40 2.30 2.25 4.84 1.73 2.42 36.04 1.21

Spain 1.01 7.98 7.41 5.45 6.41 6.42 3.96 12.23 5.91 7.55 4.67 12.04 14.92 2.90 4.43 2.85 2.33 4.12 4.13 3.79 5.10 3.81 4.92 6.10 4.11 5.64 28.99 1.41

Table 6: Normalized segregation index in Spain as of January 2009 for α = 0.00 (normalized homophily index) and a neighborhood radius of 400 meters.
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Province E BU F I PO P RU R UC AR MA NI SE A BO B CO CU CH EC PA PE RD UR VE C PA σ̄(C, 0.50)

01 Alava 1.00 4.57 1.92 1.91 3.30 1.96 1.77 2.02 2.11 1.57 1.71 2.31 2.67 1.67 1.75 1.32 1.37 2.12 2.22 1.50 1.74 3.17 2.27 5.27 1.77 2.27 2.33 1.06

02 Albacete 1.00 3.01 2.71 2.12 7.69 4.96 2.60 3.41 7.91 3.23 3.41 9.36 4.75 2.33 3.42 2.19 1.61 2.88 4.95 3.08 1.67 3.06 2.51 3.70 3.44 4.75 6.49 1.16

03 Alicante 1.01 3.65 4.11 2.35 3.54 2.79 2.25 6.99 3.75 2.99 2.75 13.07 8.55 1.96 4.43 3.92 1.91 2.42 4.00 2.06 3.13 2.50 3.30 2.47 3.66 3.60 11.21 1.29

04 Almeria 1.02 3.66 4.13 3.56 4.40 3.24 2.68 2.89 4.02 6.93 4.00 16.45 8.19 1.79 7.69 3.17 2.22 3.83 5.49 4.24 14.53 5.09 5.87 6.84 3.67 4.21 11.99 1.49

05 Avila 1.00 7.64 5.27 4.76 3.62 3.74 2.08 16.00 6.18 5.99 3.59 5.22 57.39 6.09 6.95 3.06 2.28 6.54 10.25 2.74 18.03 4.15 2.54 6.83 10.39 3.56 84.63 1.21

06 Badajoz 1.00 18.85 5.49 4.71 13.34 4.01 5.25 12.99 7.86 6.74 2.69 12.00 19.62 4.32 5.66 2.50 2.71 5.29 16.40 3.65 9.08 6.93 5.99 16.60 10.69 4.71 20.83 1.12

07 Baleares 1.01 2.68 2.68 1.79 2.94 2.64 2.43 3.41 2.71 2.59 2.72 11.61 6.72 1.43 3.70 1.92 1.68 1.71 2.08 2.12 3.67 2.05 2.00 2.24 2.05 3.44 16.42 1.26

08 Barcelona 1.01 3.83 3.55 2.32 4.09 2.06 2.28 1.97 2.84 3.17 2.81 11.43 9.65 1.64 2.62 2.01 1.40 1.61 1.89 2.35 4.81 2.09 2.90 2.67 1.70 3.69 8.55 1.25

09 Burgos 1.00 3.28 2.94 2.92 3.87 3.61 1.92 5.77 6.81 2.38 2.23 4.02 4.59 3.24 3.74 1.92 2.03 3.53 5.25 1.88 3.31 3.06 2.36 19.85 2.46 3.01 5.84 1.15

10 Caceres 1.00 20.38 9.76 8.33 11.32 6.68 4.96 11.50 15.31 9.60 10.82 59.10 12.13 5.23 5.76 3.11 2.76 6.48 15.34 3.84 6.83 5.15 7.51 19.64 6.92 4.48 67.34 1.24

11 Cadiz 1.00 14.65 3.62 3.99 5.11 5.45 12.94 6.40 4.97 6.70 4.41 10.61 10.33 4.13 4.57 3.46 2.58 3.20 5.95 3.87 7.14 3.57 3.22 12.21 3.71 3.52 32.25 1.11

12 Castellon 1.01 6.03 4.53 2.72 3.88 3.18 1.36 6.40 4.27 2.21 2.07 3.78 5.05 1.86 16.24 5.00 1.52 2.02 3.68 4.42 4.77 2.69 3.08 5.88 2.87 2.30 4.43 1.19

13 Ciudad Real 1.00 7.24 4.50 3.57 6.14 4.67 2.15 11.71 3.71 6.07 2.33 24.93 32.56 4.23 3.83 3.71 2.37 5.61 9.95 3.69 3.15 3.75 3.89 11.99 5.24 3.88 26.05 1.17

14 Cordoba 1.00 18.01 3.73 2.54 10.53 3.53 3.15 4.19 6.99 7.79 2.31 12.64 11.82 4.74 5.37 3.10 2.75 3.92 6.31 3.70 4.06 3.68 4.60 12.68 3.89 3.39 8.42 1.08

15 Coruna 1.00 9.92 2.77 2.10 8.29 2.61 4.11 5.51 8.90 10.82 9.64 9.30 10.38 2.55 6.39 3.03 2.17 2.56 8.05 3.74 6.40 3.60 3.52 3.45 2.57 3.94 11.47 1.09

16 Cuenca 1.01 7.77 6.01 3.95 5.64 7.94 1.64 7.29 2.85 5.08 2.48 28.97 15.02 3.63 10.45 8.24 2.53 8.42 9.31 3.27 3.41 3.44 3.73 55.16 9.17 6.11 45.81 1.25

17 Girona 1.02 5.86 5.93 2.26 3.41 3.32 1.96 6.13 2.47 4.28 2.15 15.72 5.39 2.40 6.85 2.76 1.91 2.36 3.28 2.56 7.35 3.09 3.42 3.53 2.66 4.78 5.38 1.38

18 Granada 1.00 17.08 3.11 2.95 5.99 3.69 5.16 2.60 4.11 5.34 3.85 20.55 5.76 2.17 6.48 2.72 2.56 3.08 4.93 4.54 7.37 4.25 4.35 7.97 3.76 3.99 10.06 1.19

19 Guadalajara 1.01 7.40 3.44 2.06 3.06 6.40 1.54 3.98 5.53 2.98 2.11 6.44 13.88 2.22 5.50 3.86 1.53 2.62 3.18 2.02 5.34 1.74 2.32 3.90 2.75 3.05 9.84 1.24

20 Guipuzca 1.00 6.84 2.59 2.29 3.52 2.14 5.18 3.01 2.36 2.88 2.38 9.08 13.62 1.83 3.29 1.96 1.79 1.73 4.08 1.78 3.35 2.50 2.04 4.76 2.50 3.21 7.71 1.10

21 Huelva 1.00 5.65 3.42 3.05 5.48 5.27 2.62 6.56 3.03 5.75 3.31 9.44 4.51 3.70 3.95 3.15 2.54 2.93 12.58 5.50 12.02 4.26 4.99 11.25 3.84 3.60 21.37 1.20

22 Huesca 1.00 5.97 5.17 3.10 4.73 3.76 1.78 3.50 2.80 3.53 2.56 8.67 5.56 2.82 14.17 3.34 3.09 3.83 6.34 2.74 6.29 3.70 2.49 5.00 3.64 19.22 15.29 1.26

23 Jaen 1.00 15.88 3.42 4.08 14.77 4.61 2.32 3.17 9.46 3.41 4.14 8.95 7.49 2.93 4.48 4.14 3.21 6.34 16.32 2.85 6.50 4.65 5.36 19.15 8.92 3.69 10.60 1.08

24 Leon 1.00 5.43 3.17 2.91 8.94 4.08 3.05 5.23 6.79 5.35 3.31 9.10 18.31 2.60 7.21 1.93 2.27 2.85 11.43 3.65 5.53 3.05 3.02 7.29 2.50 4.39 26.70 1.14

25 Lleida 1.01 4.39 7.64 2.13 3.38 7.30 1.57 1.93 10.17 2.65 1.82 3.93 3.16 2.12 4.45 3.63 1.83 3.14 6.03 2.99 5.54 3.37 2.57 3.80 4.15 3.72 5.30 1.31

26 Rioja 1.01 2.70 2.43 1.92 9.42 6.06 1.87 3.44 5.65 3.95 2.81 3.21 3.94 2.07 2.16 2.23 1.98 2.06 21.94 2.21 3.78 7.55 2.47 7.55 2.47 2.68 3.48 1.28

27 Lugo 1.00 33.15 4.34 2.78 38.77 1.84 3.31 9.35 8.34 17.64 4.38 8.92 21.76 2.91 6.65 2.70 2.43 2.79 14.95 4.50 6.36 9.73 3.18 4.02 3.06 5.67 10.82 1.11

28 Madrid 1.01 2.99 7.29 1.93 2.32 1.77 2.70 2.13 2.29 3.04 2.87 5.78 13.03 1.50 2.68 1.97 1.45 1.56 2.33 2.00 2.15 1.53 2.40 2.55 2.16 3.48 13.95 1.23

29 Malaga 1.01 2.82 3.29 2.45 4.11 2.88 2.35 4.81 2.28 4.82 1.93 4.04 7.26 1.76 3.95 2.48 1.89 2.54 2.59 5.14 2.20 2.47 3.39 2.42 2.24 3.14 7.80 1.16

30 Murcia 1.01 4.77 4.07 2.58 6.50 4.95 2.70 3.48 3.40 6.31 2.67 7.39 11.37 2.17 2.18 2.67 2.11 2.88 4.63 1.94 15.05 5.16 3.18 5.35 3.19 2.79 39.38 1.29

31 Navarra 1.00 2.57 6.28 1.96 3.27 2.44 2.05 2.78 2.69 5.46 4.45 5.12 3.95 2.08 3.18 2.13 1.76 2.43 3.12 1.99 4.61 2.13 2.54 5.60 2.45 2.95 14.23 1.20

32 Ourense 1.00 11.23 5.21 2.81 9.35 3.02 3.35 8.20 8.36 10.50 9.63 10.08 7.94 2.25 6.00 2.79 2.42 3.22 12.48 4.95 6.41 5.45 2.94 12.29 2.30 5.01 32.88 1.12

33 Asturias 1.00 4.22 2.45 2.05 8.55 2.35 2.28 3.26 3.34 4.07 3.15 4.93 5.88 1.91 3.77 1.78 2.29 2.12 4.03 3.49 2.96 2.85 2.82 4.59 2.31 2.43 12.70 1.08

34 Palencia 1.00 2.30 2.74 2.47 5.30 11.40 3.18 4.30 15.19 15.79 4.00 113.98 9.26 3.16 10.54 2.46 1.92 4.25 13.57 2.11 3.46 2.81 3.19 34.95 7.72 3.49 53.27 1.13

35 Palmas 1.01 6.71 3.83 4.05 4.35 4.56 8.80 3.94 4.53 5.95 4.64 4.16 6.77 2.33 4.11 2.71 3.01 2.24 3.74 3.39 7.76 3.04 5.99 3.95 1.86 5.15 38.06 1.28

36 Pontevedra 1.00 30.30 3.10 1.98 16.93 2.16 5.92 5.23 7.56 29.22 6.62 5.88 9.04 1.93 12.02 2.37 2.34 3.05 4.89 7.03 3.75 4.31 3.75 2.70 2.34 5.68 18.56 1.11

37 Salamanca 1.00 7.21 4.24 3.03 7.15 11.30 4.21 4.20 4.74 18.70 2.47 5.36 29.84 4.09 3.44 2.65 2.43 3.76 5.04 6.75 5.76 3.01 22.89 9.97 3.63 3.09 33.34 1.22

38 SantaCruz 1.01 7.22 6.97 4.62 6.26 3.74 4.96 12.43 9.85 7.71 7.35 7.51 17.90 2.82 4.86 3.82 3.85 2.54 4.59 5.11 5.59 2.80 3.30 4.18 1.69 18.83 69.31 1.37

39 Cantabria 1.00 15.41 2.13 1.89 19.94 3.93 1.89 2.75 2.56 5.34 3.38 4.44 6.38 2.05 4.63 1.90 1.72 1.81 2.91 2.85 2.30 2.62 2.34 5.26 2.20 3.18 5.79 1.12

40 Segovia 1.01 1.68 5.42 6.10 2.58 13.08 4.00 17.16 5.90 8.08 2.24 29.19 15.05 5.69 8.46 3.41 1.88 7.06 6.72 2.52 11.18 2.14 2.78 7.43 5.01 5.42 43.63 1.24

41 Sevilla 1.00 9.45 3.37 2.78 5.19 3.68 3.93 2.66 3.29 7.49 2.11 6.19 17.96 2.37 4.62 2.41 1.97 2.46 5.38 5.46 4.59 3.02 10.75 6.76 2.78 4.57 14.23 1.10

42 Soria 1.00 2.35 5.06 3.64 5.65 3.45 2.48 6.66 8.29 4.08 2.66 9.52 4.91 2.29 2.33 2.24 2.88 2.90 17.63 1.85 5.98 2.28 2.49 19.65 2.80 2.89 22.74 1.16

43 Tarragona 1.01 3.74 3.72 2.23 3.30 2.64 2.13 3.98 3.19 2.50 1.87 18.18 16.12 2.16 3.44 2.94 1.72 2.42 2.82 2.50 3.60 1.97 7.63 3.62 2.71 2.43 7.14 1.32

44 Teruel 1.00 14.57 5.54 4.75 10.57 4.98 1.67 78.91 5.48 4.51 2.05 42.62 28.67 9.19 24.46 4.76 3.95 6.66 26.62 5.10 19.63 2.91 4.12 43.84 15.91 4.60 12.08 1.39

45 Toledo 1.00 3.28 3.48 2.73 3.69 3.18 1.80 8.96 5.15 6.09 2.11 10.54 24.84 2.80 5.95 3.37 2.04 3.69 4.30 2.03 6.10 3.45 2.98 12.96 4.19 4.38 31.52 1.20

46 Valencia 1.00 5.22 2.46 1.82 3.42 3.81 1.94 2.10 2.33 2.08 2.30 3.96 4.79 1.60 2.55 2.05 1.63 1.67 4.11 2.54 3.18 2.25 2.69 2.61 2.07 2.14 4.26 1.17

47 Valladolid 1.00 3.31 3.65 3.20 6.41 3.43 2.73 5.61 4.04 4.39 3.00 15.31 5.70 2.43 3.11 1.74 1.86 2.50 5.76 2.66 4.16 3.29 2.22 54.53 2.86 2.77 9.63 1.12

48 Vizcaya 1.00 9.92 2.80 2.03 7.07 3.63 2.50 3.86 5.48 3.48 2.47 7.44 13.17 2.00 1.99 1.74 1.64 1.81 2.92 2.46 1.76 2.32 2.72 5.45 2.14 3.30 5.07 1.09

49 Zamora 1.00 2.67 4.37 11.87 14.62 3.70 5.14 15.96 12.64 11.93 7.10 35.47 150.76 4.85 7.72 2.97 3.34 6.08 9.30 10.85 6.12 4.94 3.67 10.45 6.58 5.15 11.06 1.15

50 Zaragoza 1.00 9.99 2.35 1.66 9.33 2.83 1.78 2.22 2.38 3.22 3.28 2.72 3.22 2.41 3.20 1.78 1.53 2.36 2.79 1.92 6.32 2.28 2.23 4.80 1.72 2.36 36.01 1.21

Spain 1.01 7.93 7.37 5.42 6.36 6.39 3.95 12.17 5.86 7.41 4.61 11.48 14.67 2.89 4.37 2.82 2.31 4.10 4.10 3.75 5.04 3.77 4.82 6.07 4.08 5.46 27.27 1.40

Table 7: Normalized segregation index in Spain as of January 2009 for α = 0.50 and a neighborhood radius of 400 meters.
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Province E BU F I PO P RU R UC AR MA NI SE A BO B CO CU CH EC PA PE RD UR VE C PA σ̄(C, 0.85)

01 Alava 1.00 4.14 1.84 1.85 3.10 1.93 1.75 1.85 1.98 1.50 1.60 2.08 2.34 1.60 1.68 1.29 1.36 2.07 2.08 1.47 1.67 3.12 2.15 4.78 1.69 2.13 2.24 1.06

02 Albacete 1.00 2.96 2.66 2.01 7.52 4.97 2.59 3.37 7.76 3.10 3.38 8.90 4.46 2.24 3.33 2.08 1.58 2.83 4.41 3.05 1.64 2.79 2.42 3.54 3.38 4.47 5.67 1.16

03 Alicante 1.01 3.60 4.09 2.32 3.51 2.75 2.22 6.91 3.64 2.82 2.69 11.92 8.12 1.94 4.35 3.83 1.88 2.39 3.91 2.02 2.93 2.38 3.14 2.41 3.61 3.49 10.30 1.28

04 Almeria 1.02 3.61 4.13 3.55 4.39 3.22 2.67 2.88 4.00 6.91 3.94 16.33 8.11 1.76 7.67 3.12 2.18 3.76 5.46 4.22 14.49 5.08 5.84 6.77 3.62 4.15 11.89 1.49

05 Avila 1.00 7.64 5.25 4.75 3.63 3.73 2.07 15.95 6.10 5.53 3.59 5.22 56.91 6.09 6.95 3.05 2.26 6.47 10.23 2.74 18.03 4.14 2.51 6.81 10.38 3.39 84.63 1.20

06 Badajoz 1.00 18.66 5.38 4.60 13.11 3.98 5.21 12.40 7.52 6.31 2.62 11.21 18.86 4.20 5.39 2.43 2.60 5.04 16.20 3.41 8.51 6.75 5.85 16.09 10.46 4.54 18.80 1.12

07 Baleares 1.01 2.65 2.64 1.77 2.92 2.61 2.40 3.37 2.66 2.51 2.69 8.61 6.48 1.42 3.44 1.90 1.67 1.70 2.06 2.11 3.59 2.02 1.97 2.23 2.02 3.16 16.14 1.25

08 Barcelona 1.00 3.69 3.43 2.26 4.01 1.97 2.23 1.90 2.77 2.93 2.63 10.89 9.02 1.61 2.48 1.91 1.38 1.56 1.84 2.26 4.68 2.03 2.73 2.61 1.65 3.35 7.25 1.23

09 Burgos 1.00 3.26 2.90 2.84 3.76 3.46 1.90 5.57 6.70 2.25 2.19 3.68 3.61 3.19 3.71 1.86 2.01 3.35 5.07 1.83 3.17 3.03 2.28 19.66 2.43 2.77 5.80 1.15

10 Caceres 1.00 19.88 9.73 8.26 11.22 6.68 4.96 11.27 15.05 9.42 10.80 58.86 11.74 5.15 5.27 3.06 2.73 6.27 15.07 3.71 6.64 5.09 7.44 19.15 6.78 4.14 64.84 1.24

11 Cadiz 1.00 14.04 3.51 3.86 4.88 5.32 12.84 6.18 4.66 6.05 4.29 10.09 9.39 4.00 4.25 3.37 2.50 3.04 5.27 3.73 6.72 3.27 2.96 11.96 3.52 3.20 26.62 1.10

12 Castellon 1.01 5.99 4.52 2.71 3.83 3.14 1.35 6.35 4.19 2.13 2.05 3.39 4.71 1.85 16.16 4.98 1.50 1.97 3.62 4.38 4.64 2.65 2.93 5.81 2.83 2.21 4.15 1.18

13 Ciudad Real 1.00 7.21 4.48 3.47 6.08 4.59 2.14 11.27 3.67 5.84 2.31 22.73 32.39 4.13 3.81 3.62 2.36 5.50 9.46 3.63 3.12 3.47 3.77 11.35 5.20 3.78 23.92 1.16

14 Cordoba 1.00 17.03 3.54 2.36 9.91 3.41 3.10 3.93 6.81 7.58 2.23 11.50 10.34 4.67 4.87 2.94 2.67 3.69 5.56 3.39 3.58 3.34 4.18 11.74 3.65 3.05 7.75 1.07

15 Coruna 1.00 9.45 2.71 2.06 8.22 2.58 4.06 5.30 8.66 10.16 9.55 8.88 9.35 2.48 5.38 2.99 2.14 2.50 7.96 3.38 5.70 3.50 3.29 3.34 2.53 3.69 11.05 1.08

16 Cuenca 1.00 7.76 5.99 3.95 5.62 7.87 1.64 7.25 2.80 4.82 2.47 28.89 14.79 3.60 10.44 8.22 2.52 8.38 9.20 3.26 3.40 3.36 3.68 55.08 9.11 5.43 45.79 1.25

17 Girona 1.02 5.82 5.93 2.25 3.40 3.32 1.96 6.13 2.45 4.18 2.13 15.30 5.33 2.39 6.84 2.74 1.90 2.34 3.27 2.53 7.34 3.05 3.40 3.51 2.63 4.77 5.27 1.38

18 Granada 1.00 17.02 3.04 2.88 5.82 3.64 5.15 2.53 3.92 5.18 3.74 18.83 5.26 2.14 6.40 2.66 2.51 3.00 4.75 4.46 7.08 4.07 4.21 7.84 3.64 3.72 9.17 1.18

19 Guadalajara 1.01 7.40 3.44 2.06 3.04 6.39 1.54 3.81 5.43 2.89 2.08 6.41 13.58 2.20 5.42 3.85 1.52 2.59 3.12 2.00 5.33 1.71 2.26 3.77 2.71 2.97 9.08 1.24

20 Guipuzca 1.00 6.72 2.55 2.21 3.16 2.09 5.14 2.83 2.28 2.77 2.35 8.53 13.28 1.78 3.22 1.88 1.73 1.69 4.01 1.75 3.14 2.41 1.98 4.49 2.32 2.98 7.68 1.09

21 Huelva 1.00 5.63 3.39 3.01 5.33 5.26 2.60 6.46 2.95 5.56 3.18 7.25 4.11 3.57 3.81 3.04 2.47 2.86 12.28 5.28 11.94 4.11 4.40 11.28 3.69 3.29 21.15 1.19

22 Huesca 1.00 5.96 5.17 3.09 4.70 3.75 1.78 3.45 2.79 3.40 2.53 7.84 5.41 2.81 14.14 3.23 3.09 3.80 5.92 2.70 6.21 3.67 2.44 4.99 3.57 19.13 15.22 1.26

23 Jaen 1.00 15.70 3.29 3.91 14.48 4.45 2.29 2.98 9.22 3.30 3.92 7.52 7.15 2.80 4.34 3.87 3.00 6.21 15.54 2.76 6.26 4.40 5.17 18.17 8.73 3.31 8.98 1.08

24 Leon 1.00 5.41 3.14 2.82 8.81 4.07 2.91 5.12 6.65 4.95 3.14 8.41 17.86 2.56 7.03 1.91 2.22 2.81 11.36 3.48 5.44 2.92 2.89 6.83 2.41 4.14 26.45 1.14

25 Lleida 1.01 4.36 7.63 2.11 3.34 7.29 1.56 1.90 10.15 2.52 1.78 3.69 3.13 2.07 4.33 3.60 1.82 3.12 5.99 2.98 5.36 3.36 2.51 3.74 4.08 3.62 4.65 1.30

26 Rioja 1.00 2.66 2.40 1.90 9.39 6.06 1.87 3.39 5.61 3.93 2.75 2.87 3.53 2.05 2.10 2.15 1.98 2.03 21.95 2.16 3.61 7.52 2.46 7.44 2.40 2.60 3.12 1.27

27 Lugo 1.00 33.08 4.30 2.75 38.50 1.84 3.22 8.97 8.04 16.71 4.32 7.95 21.43 2.85 6.35 2.68 2.41 2.68 14.93 4.29 5.90 9.68 3.15 3.85 2.95 5.20 9.60 1.10

28 Madrid 1.00 2.94 7.13 1.87 2.26 1.73 2.67 2.01 2.21 2.69 2.80 5.54 10.78 1.47 2.59 1.88 1.43 1.49 2.26 1.94 2.07 1.49 2.27 2.42 2.12 3.17 13.11 1.22

29 Malaga 1.00 2.74 3.25 2.39 4.03 2.82 2.30 4.78 2.20 4.65 1.89 3.74 6.77 1.73 3.87 2.43 1.87 2.48 2.49 5.12 2.13 2.41 3.28 2.36 2.20 3.01 7.15 1.15

30 Murcia 1.01 4.66 4.05 2.53 6.41 4.91 2.68 3.41 3.28 6.26 2.59 6.77 11.16 2.12 2.12 2.63 2.09 2.78 4.48 1.91 14.99 5.07 2.99 5.14 3.07 2.64 39.10 1.28

31 Navarra 1.00 2.54 6.26 1.91 3.21 2.44 2.03 2.68 2.60 5.38 4.44 4.89 3.78 2.04 3.04 2.11 1.74 2.40 3.06 1.95 4.36 2.09 2.49 5.42 2.39 2.83 14.09 1.19

32 Ourense 1.00 11.14 5.21 2.79 9.26 3.02 3.27 7.21 8.19 9.94 9.60 9.77 6.86 2.23 5.49 2.76 2.39 3.18 12.25 4.38 6.30 5.31 2.83 12.23 2.26 4.67 32.90 1.12

33 Asturias 1.00 4.04 2.37 1.99 8.51 2.30 2.25 3.04 3.21 3.78 3.10 4.52 5.29 1.87 3.52 1.75 2.23 2.06 3.83 3.27 2.88 2.64 2.76 4.51 2.25 2.27 9.40 1.07

34 Palencia 1.00 2.28 2.72 2.40 5.25 11.39 3.17 4.10 15.07 15.59 3.97 113.73 8.26 3.11 10.48 2.43 1.84 4.06 13.39 2.06 3.43 2.71 3.01 33.16 7.58 3.40 53.20 1.13

35 Palmas 1.01 6.68 3.82 4.04 4.29 4.55 8.75 3.85 4.36 5.79 4.59 3.96 6.47 2.32 3.97 2.62 2.99 2.21 3.69 3.33 7.60 2.99 5.84 3.94 1.81 4.86 37.76 1.27

36 Pontevedra 1.00 29.96 3.07 1.93 13.88 2.15 5.83 5.00 7.27 29.08 6.56 5.30 7.78 1.91 9.95 2.30 2.29 2.92 4.58 5.78 3.48 4.18 3.65 2.61 2.31 5.39 14.17 1.11

37 Salamanca 1.00 7.20 4.21 2.95 7.06 11.30 4.19 4.07 4.57 15.98 2.45 5.13 29.80 4.04 3.33 2.60 2.38 3.70 4.94 6.69 5.43 2.90 22.85 9.69 3.52 2.93 32.39 1.22

38 SantaCruz 1.01 7.19 6.96 4.61 6.26 3.73 4.95 12.42 9.82 7.67 7.34 7.45 17.87 2.80 4.50 3.78 3.85 2.52 4.55 5.07 5.15 2.73 3.20 4.16 1.68 18.78 69.30 1.37

39 Cantabria 1.00 15.40 2.11 1.87 19.87 3.92 1.87 2.72 2.50 4.83 3.26 4.25 6.14 2.03 4.02 1.88 1.71 1.79 2.78 2.77 2.20 2.56 2.30 5.18 2.15 2.97 5.63 1.11

40 Segovia 1.01 1.66 5.39 6.03 2.56 13.07 4.00 17.09 5.84 7.84 2.22 28.62 14.81 5.55 8.36 3.39 1.88 6.99 6.60 2.46 11.00 2.09 2.74 7.35 4.79 5.29 43.40 1.24

41 Sevilla 1.00 8.41 3.17 2.62 4.95 3.43 3.85 2.50 3.13 7.21 2.01 5.69 17.44 2.26 4.20 2.34 1.88 2.30 4.87 4.93 4.18 2.80 9.95 6.43 2.60 4.25 11.34 1.09

42 Soria 1.00 2.34 5.04 3.56 5.63 3.45 2.47 6.53 8.29 3.95 2.64 9.48 4.74 2.28 2.27 2.23 2.87 2.88 17.60 1.83 5.90 2.22 2.48 19.55 2.76 2.57 22.35 1.16

43 Tarragona 1.01 3.73 3.71 2.22 3.27 2.62 2.12 3.95 3.18 2.42 1.83 17.95 16.10 2.15 3.17 2.92 1.70 2.41 2.78 2.48 3.50 1.94 7.61 3.59 2.66 2.38 6.89 1.31

44 Teruel 1.00 14.52 5.47 4.69 10.56 4.96 1.66 78.90 5.45 4.23 2.04 42.62 28.65 9.14 24.44 4.74 3.90 6.60 26.57 5.08 19.55 2.88 4.08 43.80 15.80 4.29 11.98 1.39

45 Toledo 1.00 3.22 3.45 2.70 3.67 3.16 1.80 8.87 5.13 5.98 2.11 10.53 24.30 2.77 5.90 3.36 2.04 3.68 4.21 2.01 5.90 3.43 2.96 12.93 4.13 4.30 31.51 1.19

46 Valencia 1.00 5.12 2.40 1.76 3.36 3.75 1.90 1.98 2.27 1.97 2.20 3.57 4.36 1.57 2.46 2.01 1.59 1.61 3.94 2.40 2.95 2.10 2.52 2.54 1.99 1.99 3.81 1.16

47 Valladolid 1.00 3.29 3.57 3.13 6.28 3.41 2.70 5.52 3.90 4.00 2.78 14.64 5.10 2.34 2.93 1.70 1.84 2.42 5.19 2.50 3.81 3.24 2.13 54.51 2.78 2.62 9.03 1.11

48 Vizcaya 1.00 9.64 2.60 1.92 6.82 3.60 2.48 3.54 5.29 3.02 2.26 6.25 12.05 1.96 1.85 1.70 1.59 1.71 2.77 2.35 1.69 2.23 2.59 5.22 2.05 2.93 4.54 1.08

49 Zamora 1.00 2.66 4.32 11.83 10.64 3.69 5.14 15.71 12.62 11.77 7.03 31.93 149.34 4.82 7.54 2.92 3.33 6.03 8.58 10.81 5.94 4.92 3.61 10.31 6.19 4.69 9.08 1.14

50 Zaragoza 1.00 9.96 2.30 1.62 9.31 2.81 1.77 2.14 2.34 3.02 3.16 2.45 2.89 2.38 3.07 1.71 1.50 2.31 2.68 1.83 6.04 2.23 2.18 4.69 1.67 2.23 35.88 1.20

Spain 1.01 7.83 7.28 5.36 6.25 6.34 3.91 12.05 5.73 7.09 4.49 10.30 14.11 2.85 4.20 2.75 2.28 4.03 4.00 3.65 4.88 3.68 4.60 5.99 4.02 5.06 23.56 1.39

Table 8: Normalized segregation index in Spain as of January 2009 for α = 0.85 and a neighborhood radius of 400 meters.
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Province E BU F I PO P RU R UC AR MA NI SE A BO B CO CU CH EC PA PE RD UR VE C PA σ̄(C, 0.99)

01 Alava 1.00 3.24 1.72 1.74 2.89 1.86 1.72 1.63 1.77 1.40 1.46 1.73 1.88 1.49 1.57 1.27 1.34 1.98 1.86 1.41 1.54 3.08 2.02 4.02 1.61 1.87 2.01 1.04

02 Albacete 1.00 2.90 2.58 1.82 7.23 4.95 2.57 3.27 7.66 2.88 3.33 8.06 3.96 2.09 3.15 1.86 1.55 2.77 3.57 3.02 1.61 2.30 2.28 3.34 3.28 4.05 4.48 1.15

03 Alicante 1.01 3.54 4.06 2.28 3.47 2.70 2.17 6.81 3.50 2.47 2.57 7.11 6.43 1.89 4.24 3.70 1.83 2.34 3.81 1.94 2.51 2.25 2.93 2.33 3.54 3.35 9.43 1.26

04 Almeria 1.02 3.53 4.12 3.54 4.38 3.20 2.66 2.86 3.98 6.89 3.84 16.24 8.05 1.72 7.66 3.05 2.10 3.68 5.42 4.19 14.45 5.06 5.82 6.66 3.54 4.06 11.75 1.48

05 Avila 1.00 7.63 5.24 4.75 3.62 3.72 2.05 15.89 6.05 4.38 3.58 5.08 56.36 6.08 6.94 3.03 2.21 6.40 10.20 2.73 18.03 4.12 2.49 6.79 10.35 3.21 84.63 1.20

06 Badajoz 1.00 18.38 5.22 4.42 12.81 3.92 5.15 11.31 6.91 5.64 2.55 10.07 18.05 4.07 4.98 2.34 2.45 4.67 15.87 3.09 7.76 6.47 5.66 15.45 10.21 4.29 16.31 1.11

07 Baleares 1.00 2.61 2.58 1.74 2.89 2.57 2.37 3.30 2.59 2.37 2.63 4.23 6.14 1.41 2.91 1.87 1.66 1.69 2.03 2.07 3.48 1.98 1.92 2.22 1.99 2.62 15.71 1.22

08 Barcelona 1.00 3.44 3.08 2.02 3.89 1.75 2.15 1.78 2.66 2.32 2.31 10.11 7.95 1.54 2.13 1.70 1.34 1.49 1.75 2.00 4.51 1.90 2.32 2.54 1.56 2.73 4.64 1.18

09 Burgos 1.00 3.21 2.85 2.76 3.66 3.32 1.87 5.31 6.53 2.10 2.12 3.26 2.37 3.08 3.67 1.77 1.98 3.15 4.79 1.74 3.00 2.96 2.20 19.44 2.38 2.54 5.54 1.14

10 Caceres 1.00 19.33 9.67 8.16 10.85 6.67 4.95 11.01 14.83 9.20 10.79 58.60 11.30 5.09 4.60 2.98 2.67 5.99 14.55 3.55 6.41 5.01 7.35 18.77 6.56 3.74 62.88 1.23

11 Cadiz 1.00 13.24 3.37 3.70 4.58 5.15 12.70 5.89 4.21 4.75 3.98 9.57 8.37 3.81 3.74 3.23 2.39 2.84 4.39 3.53 5.98 2.90 2.55 11.66 3.24 2.69 21.31 1.10

12 Castellon 1.01 5.93 4.51 2.69 3.75 3.08 1.33 6.29 4.09 2.02 2.02 2.82 4.24 1.83 16.07 4.96 1.46 1.92 3.55 4.34 4.48 2.61 2.73 5.74 2.77 2.08 3.83 1.18

13 Ciudad Real 1.00 7.17 4.46 3.36 5.99 4.49 2.14 10.75 3.63 5.35 2.30 20.80 32.11 4.03 3.78 3.48 2.35 5.39 9.05 3.55 3.09 3.15 3.66 10.71 5.09 3.61 21.81 1.16

14 Cordoba 1.00 15.88 3.24 2.09 8.55 3.21 3.03 3.48 6.52 7.38 2.13 10.26 7.09 4.58 3.86 2.72 2.59 3.31 4.74 2.79 2.76 2.87 3.55 10.44 3.31 2.63 6.96 1.06

15 Coruna 1.00 8.82 2.60 1.99 8.11 2.55 3.98 5.06 8.27 9.34 9.45 8.40 6.82 2.37 4.00 2.93 2.09 2.43 7.88 2.92 4.62 3.34 3.01 3.08 2.48 3.28 10.23 1.08

16 Cuenca 1.00 7.75 5.98 3.90 5.59 7.77 1.64 7.20 2.68 4.35 2.46 28.71 14.40 3.57 10.41 8.18 2.47 8.24 9.07 3.24 3.38 3.24 3.36 54.97 8.98 4.45 45.74 1.24

17 Girona 1.02 5.77 5.93 2.24 3.38 3.30 1.95 6.12 2.42 4.04 2.06 11.74 5.07 2.38 6.78 2.71 1.88 2.32 3.25 2.44 7.31 2.99 3.37 3.48 2.56 4.73 5.03 1.37

18 Granada 1.00 16.94 2.91 2.76 5.62 3.57 5.14 2.46 3.71 4.89 3.50 13.05 4.15 2.10 6.32 2.55 2.39 2.90 4.49 4.24 6.70 3.85 3.82 7.57 3.44 3.18 7.03 1.17

19 Guadalajara 1.01 7.39 3.42 2.04 3.03 6.38 1.53 3.44 5.30 2.76 2.05 6.38 12.82 2.18 5.34 3.83 1.52 2.55 3.07 1.96 5.31 1.67 2.20 3.62 2.66 2.86 7.12 1.23

20 Guipuzca 1.00 6.58 2.49 2.07 2.69 1.95 5.10 2.61 2.14 2.65 2.32 7.90 13.03 1.73 3.15 1.79 1.65 1.64 3.90 1.72 2.87 2.30 1.91 4.14 2.11 2.59 7.62 1.09

21 Huelva 1.00 5.61 3.33 2.97 5.21 5.25 2.59 6.36 2.81 5.33 3.03 4.02 3.55 3.40 3.40 2.89 2.33 2.79 11.87 5.00 11.84 3.81 3.83 11.24 3.43 2.76 20.64 1.19

22 Huesca 1.00 5.95 5.16 3.08 4.68 3.75 1.77 3.41 2.77 3.28 2.50 6.01 5.14 2.79 14.10 3.08 3.08 3.78 5.13 2.65 6.14 3.64 2.37 4.98 3.48 19.06 15.17 1.25

23 Jaen 1.00 15.51 3.09 3.70 14.15 4.24 2.25 2.74 8.82 3.16 3.59 6.11 6.47 2.65 4.06 3.60 2.58 5.99 14.73 2.67 5.93 4.14 4.94 17.11 8.48 2.78 5.94 1.07

24 Leon 1.00 5.37 3.11 2.73 8.65 4.07 2.40 4.98 6.28 4.19 2.76 6.37 17.12 2.50 6.88 1.85 2.14 2.76 10.95 3.17 5.34 2.76 2.65 6.32 2.26 3.81 26.02 1.13

25 Lleida 1.01 4.32 7.62 2.08 3.29 7.28 1.54 1.83 10.13 2.34 1.74 3.47 3.10 2.02 4.10 3.55 1.81 3.10 5.93 2.95 5.14 3.33 2.38 3.62 3.97 3.47 3.66 1.30

26 Rioja 1.00 2.61 2.37 1.85 9.33 6.06 1.86 3.32 5.49 3.90 2.65 2.33 2.87 2.03 2.00 2.01 1.98 1.99 21.96 2.06 3.42 7.51 2.43 7.30 2.34 2.52 2.34 1.25

27 Lugo 1.00 32.98 4.25 2.67 38.16 1.83 3.08 8.51 7.53 15.88 4.20 6.31 20.90 2.74 5.69 2.66 2.36 2.55 14.88 4.00 5.47 9.62 3.12 3.57 2.83 4.73 8.16 1.10

28 Madrid 1.00 2.83 6.71 1.69 2.16 1.66 2.61 1.83 2.06 2.14 2.64 5.10 5.82 1.39 2.27 1.69 1.38 1.38 2.15 1.76 1.89 1.42 1.94 2.22 2.05 2.40 11.53 1.19

29 Malaga 1.00 2.58 3.20 2.30 3.93 2.76 2.22 4.71 2.02 4.34 1.82 2.88 6.11 1.69 3.72 2.36 1.83 2.38 2.37 5.09 2.01 2.32 3.13 2.26 2.13 2.74 6.17 1.14

30 Murcia 1.01 4.52 4.03 2.47 6.29 4.85 2.64 3.33 3.13 6.17 2.46 5.79 10.89 2.06 2.04 2.56 2.05 2.65 4.23 1.88 14.88 4.93 2.71 4.90 2.87 2.46 38.64 1.27

31 Navarra 1.00 2.47 6.23 1.83 3.12 2.41 1.98 2.57 2.43 5.29 4.43 4.65 3.56 1.99 2.46 2.08 1.70 2.34 2.96 1.87 4.06 2.01 2.41 5.22 2.27 2.59 13.91 1.19

32 Ourense 1.00 11.02 5.19 2.75 9.13 3.02 3.14 5.76 7.84 9.21 9.54 9.21 4.54 2.19 4.58 2.70 2.31 3.13 11.83 3.59 6.12 5.04 2.65 12.08 2.15 4.22 32.30 1.11

33 Asturias 1.00 3.81 2.26 1.92 8.48 2.24 2.22 2.81 3.09 3.23 3.02 3.72 3.91 1.83 3.18 1.69 2.05 2.01 3.64 2.95 2.77 2.38 2.68 4.38 2.18 2.12 5.15 1.06

34 Palencia 1.00 2.23 2.70 2.33 5.20 11.38 3.14 3.74 14.92 15.37 3.93 113.39 6.23 3.03 10.39 2.38 1.66 3.16 12.96 1.97 3.39 2.58 2.72 31.06 7.39 3.15 53.01 1.12

35 Palmas 1.01 6.64 3.76 4.01 4.20 4.53 8.68 3.68 4.15 5.54 4.49 3.72 6.06 2.28 3.67 2.44 2.97 2.17 3.59 3.24 7.40 2.92 5.66 3.91 1.74 4.49 37.37 1.27

36 Pontevedra 1.00 29.47 3.03 1.88 9.47 2.14 5.70 4.58 6.78 28.97 6.51 4.64 4.88 1.86 5.54 2.19 2.23 2.75 4.19 4.45 2.94 3.89 3.49 2.44 2.24 4.95 8.48 1.10

37 Salamanca 1.00 7.18 4.18 2.80 6.98 11.29 4.17 3.95 4.39 12.22 2.41 4.85 29.75 3.97 3.11 2.51 2.29 3.63 4.79 6.57 5.03 2.74 22.81 9.13 3.38 2.68 30.72 1.21

38 SantaCruz 1.01 7.15 6.95 4.60 6.25 3.72 4.94 12.41 9.79 7.61 7.34 7.35 17.84 2.78 3.91 3.73 3.84 2.50 4.50 5.01 4.54 2.61 3.04 4.15 1.66 18.69 69.28 1.36

39 Cantabria 1.00 15.38 2.08 1.85 19.81 3.90 1.85 2.65 2.39 3.98 3.07 3.92 5.52 2.00 3.34 1.86 1.68 1.76 2.59 2.62 2.04 2.45 2.22 5.09 2.10 2.71 5.27 1.11

40 Segovia 1.00 1.64 5.26 5.90 2.52 13.05 4.00 17.00 5.77 7.55 2.21 27.79 14.19 5.39 8.27 3.37 1.89 6.91 6.47 2.37 10.65 2.01 2.67 7.29 4.54 5.05 43.11 1.24

41 Sevilla 1.00 6.32 2.55 2.15 4.55 3.16 3.68 2.24 2.84 6.77 1.81 4.15 16.47 2.10 3.11 2.24 1.72 2.10 4.10 3.40 3.37 2.37 8.33 5.81 2.32 3.80 6.82 1.07

42 Soria 1.00 2.31 5.03 3.38 5.61 3.45 2.47 6.41 8.28 3.79 2.63 8.99 3.61 2.26 2.16 2.21 2.85 2.84 17.53 1.80 5.68 2.13 2.46 19.41 2.71 2.30 21.79 1.15

43 Tarragona 1.01 3.71 3.70 2.21 3.23 2.59 2.11 3.93 3.17 2.30 1.76 17.45 16.08 2.14 2.85 2.90 1.67 2.39 2.70 2.46 3.38 1.91 7.55 3.56 2.60 2.30 6.48 1.30

44 Teruel 1.00 14.48 5.40 4.64 10.56 4.94 1.65 78.88 5.41 3.98 2.04 42.62 28.63 9.08 24.43 4.72 3.86 6.56 26.51 5.06 19.48 2.86 4.05 43.77 15.70 4.02 11.85 1.38

45 Toledo 1.00 3.14 3.42 2.67 3.66 3.13 1.79 8.78 5.10 5.79 2.10 10.52 23.67 2.74 5.85 3.35 2.04 3.67 4.03 1.99 5.61 3.40 2.93 12.86 4.07 4.14 31.51 1.19

46 Valencia 1.00 5.03 2.30 1.64 3.29 3.69 1.87 1.79 2.17 1.79 2.06 2.89 3.79 1.52 2.31 1.93 1.53 1.51 3.74 2.08 2.58 1.90 2.26 2.41 1.88 1.76 3.12 1.14

47 Valladolid 1.00 3.24 3.43 3.02 6.04 3.38 2.64 5.36 3.75 3.12 2.30 13.79 4.32 2.23 2.60 1.64 1.78 2.34 4.41 2.19 3.13 3.15 1.96 54.48 2.63 2.46 7.95 1.10

48 Vizcaya 1.00 9.34 2.27 1.78 6.50 3.56 2.44 2.95 5.01 2.31 1.92 4.13 10.41 1.89 1.61 1.62 1.50 1.59 2.55 2.19 1.54 1.95 2.40 4.96 1.92 2.24 3.68 1.07

49 Zamora 1.00 2.63 4.25 11.78 5.66 3.68 5.14 15.29 12.56 11.46 6.88 12.44 146.65 4.76 7.30 2.78 3.32 5.95 8.00 10.77 5.67 4.86 3.51 10.14 5.85 3.82 6.50 1.14

50 Zaragoza 1.00 9.92 2.21 1.57 9.27 2.74 1.74 2.02 2.29 2.67 2.90 1.94 2.20 2.32 2.84 1.64 1.45 2.23 2.50 1.67 5.70 2.10 2.04 4.56 1.61 2.02 35.69 1.18

Spain 1.00 7.69 7.06 5.18 6.11 6.27 3.86 11.87 5.53 6.56 4.26 8.31 13.09 2.78 3.78 2.61 2.23 3.94 3.85 3.40 4.57 3.49 4.06 5.87 3.92 4.24 16.13 1.35

Table 9: Normalized segregation index in Spain as of January 2009 for α = 0.99 and a neighborhood radius of 400 meters.
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