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Abstract

This paper is based upon the paper by Peter Ireland ’A method
for taking models to the data’ Ireland (2004a). The model analysed
by Ireland is a DSGE model and the method suggested is to add some
autocorrelated error terms to the identities derived from theory, and
estimate the statistical model by maximum likelihood methods using
the Kalman filter. This method is undoubtedly a useful idea to make
the economic relations more elastic, see Haavelmo (1943), but the ap-
plication of the Gaussian likelihood has its price. We discuss, using
some simple examples, how it is easy to make mistakes when apply-
ing Gaussian maximum likelihood without checking that the model
chosen fits the data at hand. Many different methods can be derived
by Gaussian maximum likelihood, and many give different results for
inference when applied to a given data set. Thus one has to check the
basic assumption of likelihood theory, namely that the density of the
data is in the statistical model chosen. We suggest a number ways
in which the statistical model embedding the DSGE model could be
checked against the data. We conclude by a simulation experiment
which investigates the consequence of insisting that a root of 0.9987
is in fact a highly persistent stationary root. We demonstrate that
one cannot conduct inference on the steady state values and conclude
by showing how a cointegration analysis gives a useful formulation of
the problem.

*I would like to thank Massimo Franchi, Christian Groth, Henrik Hansen, Mikael
Juselius and the members of the EFS-EMM network, as well as the audiences in Rome
and Helsinki for useful comments.



1 Introduction

When taking an economic model to the data in order to conduct inference
'we need a stochastic formulation to make simplified relations elastic enough
for applications’, to quote Haavelmo (1943). Thus the relations derived from
theory should be supplemented by some extra error terms to describe the
stochastic variation of the measurements. We thereby extend the economic
model to a statistical model, where we have embedded the economic model
(or some of its consequences) as relations in the statistical model. In this
way one can obtain estimates of relevant parameters and their uncertainty,
and hence conduct inference on the economic relations.

The papers by Ireland (2001, 2004a) suggest such a method for taking a
DSGE model to the data, a method which we describe briefly as follows:

The DSGE model delivers relations and first order conditions involving
forward looking expectations and, assuming the variables are trend station-
ary, the relations are expanded around their steady state values. This gives
identities and stochastic difference equations driven by the shocks of the
theory model. The identities are then made 'more elastic’ by adding an au-
tocorrelated error term. The statistical model thus formulated is analyzed
by Gaussian maximum likelihood methods.

This can clearly be a useful way of taking an economic model to the
data, as it allows one to conduct inference on coefficients, provided one has
successfully described the stochastic variation of the data.

The analyses of both the economic DSGE model and the embedding sta-
tistical model require mathematics.

The first order conditions for the optimization problem and the condi-
tions for stability of the economic model, for instance, obviously have to be
correctly derived by proper use of mathematics. Nobody wants a good guess
of a first order condition. It is not enough just to assume that a first order
condition has a certain form, or assume that the stability assumption is sat-
isfied. That has to be checked, and that is of course done, see Ireland (2004a,
2004b).

On the other hand, when it comes to conducting inference applying the
asymptotic theory of mathematical statistics, the mathematical assumptions
behind these results are dealt with in a much less stringent fashion. It seems
as if it is enough to assume stationarity of a process, and it seems as if it is
enough to assume that a chosen model can be used for conducting inference
for a given data set. Asymptotic results are used without mentioning that



there could be finite sample problems, it is just assumed that there are enough
observations.

There are, therefore, two aspects of the proposed methodology which need
careful attention and the present note will focus on these:

e Which statistical model should one choose to embed the economic re-
lations?

e Given a well chosen model, can we rely on the asymptotic results found
in the statistical literature for the analysis of the data at hand?

In section 2 we describe the method proposed by Ireland in connection
with the example analysed and briefly summarize the findings. We then dis-
cuss in section 3 the method of maximum likelihood and the basic assumption
behind likelihood methods. We give some suggestions for how the statisti-
cal model formulated by Ireland can be checked before reliable inference can
be conducted. Finally we have in section 4 some comments on the role of
unit roots. We show by a simple simulation that if we insist that a root
very close to one is a highly persistent stationary root, we may need many
more observations than what is usually available for conducting inference on
steady state values. Even so, some combinations of the steady state values
allow valid inference and this can be formulated as a cointegration analysis
assuming the root is one. Section 5 concludes.

2 The model, method and findings of Ireland

The DSGE model considered by Ireland (2001, 2004a, 2004b) has a represen-
tative agent producing output Y; with capital K; and labor H;, measured as
hours worked, according to

Y = AKY (' Hy)' ™" (1)

The coefficient n > 1 measures the 'gross rate of labor-augmenting techno-
logical progress’. The agent has preferences over consumption C; and hours
worked H; and wants to maximize

E

> B(InC, - yHt)] : (2)
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with respect to {Cy, H;}$2, subject to a number of constraints. The technol-
ogy shocks A; follow a stationary AR(1) process

In(4;) = (1= p)In A+ pln(A;-1) +&. (3)
The variables Y;, Ky, C; and investment I; obey the identities
Y, =Ci+ 1, (4)

and
Kt+1 - (1 - (S)Kt + It. (5)

The first order conditions become

YC H; = (1 - 0)Y,, (6)

and C, oY,
1=8E, |—— (= +1_9)]. 7
6 ! C’t—l—l ( Kt+1 ) ( )

The assumption of trend stationarity of the variables is added, in order to
linearize the solution of these equations around their steady state values. We
define the means or steady states y, ¢, 1, k, a, h of Y;/n', Cy/nt, I /nt, Ki/n', A,
H, respectively. For the observations Y;, C;, and Hy, expressed as deviations
of their logarithm from their trend, the three variables

logY; —tlogn —logy
fi=1 logC;—tlogn—logc
log H; — logh

are introduced.
The two variables A; and K, are considered unobserved and define

[ log K, —tlogn —logk
= log A; — loga '

A linearization of the model equations around the steady state of the variables
gives equations of the form

St = AStfl + BEt,
Ji = Csy.



Here the matrices A, B, and C and the steady state values are computable
functions of the parameters of the model: 3,~,0,n,6,v, A, p, o.

Because C is 3 x 2 and f; = Cs;, there must be a vector £ so that £'C =
0, and hence £'f; = 0. No such identity holds in the data, so the method
suggested for taking the model to the data is to consider the enlarged system

St = ASt_l + BEt,
fi = Cs 4wy,
uy = Dup_q + &,

where u; is an unobserved AR(1) process with innovations &, i.i.d. N5(0, V).
Thus the statistical model for the five variables, Y;, K;, Cy, H;, and A; are
driven by four errors, &y, &1y, €or, and &3;. It is also assumed that g; is i.i.d.
N(0,0?), and independent of &;.

This model can be written in state space form with state vector x; =
(s}, uy)’, state equation

St _ .A 0 St—1 + Be t
Ut 0 D Ug—1 gt ’
and observation equation

fi=Csi+u, = (C, 1I3) ( ot ) .
Ut

In this form the Gaussian likelihood function can be calculated using the
Kalman filter and from these values the estimates of the parameters can be
found by optimizing the likelihood function. The standard deviations are

then found from the second derivative of the likelihood function.
The economic model is supplemented with the assumption that g = 0.99
and ¢ = 0.025, as these coefficients were difficult to determine from the data.

2.1 The data

The data for consumption, investment, output and population are taken
from the Federal Reserve Bank of St. Louis’ FRED database; data for hours
worked are from the Bureau of Labor Statistics’ Establishment Survey. All
data are quarterly from 1948:1 to 2002:2. The data can be found, together
with supplementary material on the solution of the equations, on the home
page http://www2.bc.edu/ irelandp.



There are observations of the variables

N,; = Civilian, noninstitutional population, age 16 and over.

Cy = Real Personal Consumption Expenditures in chained 1996 dollars/N;.
I; = Real Gross Private Domestic Investment in chained 1996 dollars/N;.
H; = Hours of wage and salary workers on private, non-farm payrolls/N;.

2.2 The findings

The main positive finding is that the model seems to predict well out of
sample as compared to some competitors, a VAR(1) and a VAR(2) model
and a model with diagonal D.

As model misspecification check it was found that by comparing the
smoothed values of ¢; and &, the estimated correlations were rather small (-
0.0634, 0.0133, 0.0010). It was also found by Wald tests that the parameters
of the economic model before and after 1980 have hardly been the same for
the whole period.

The estimated values of p (0.9987) and the largest eigenvalue of D (0.9399)
are very close to one, so that some doubt is thrown on the stationarity as-
sumptions.

3 The method of maximum likelihood

There is hardly any reason for giving the details of this method which is
standard in econometrics, but let me briefly summarize the method as follows:
We want to analyse data z1, ..., zr and define a statistical model by the
densities
p(zy,...,z7,0), 0 €O,

where O is the parameter space. A submodel, or hypothesis on the parameter
6, is formulated as 0 € Oy C ©. The likelihood function L(#) is the density
as a function of # defined on the set O.

Applying the method of maximum likelihood gives, under certain station-
arity and regularity conditions, the following benefits:

e The estimates are calculated by optimizing the likelihood function L(0)
over the parameter set O, and they are consistent and asymptotically
Gaussian.



e The observed information is (f) = —d?log L(#)/d*0|,_s, and an esti-
mate of the asymptotic variance can be found from 7(6)~!.

e The likelihood ratio test of § € O is —2log(maxgpeco, L(#)/ maxsco L(6))
and the asymptotic distribution is x?.

Thus, once we can apply this methodology, we have general theorems from
statistics and probability, which ensure that we have answers to a number
of relevant questions in inference, without having to do more than finding a
program to optimize the likelihood function and print out 8, I()~* and L(6),
for the various parameter spaces corresponding to the hypotheses we want
to test.

This looks like a free lunch, but of course the method has its price. We
have to choose a reasonable model on which to base our likelihood analysis,
and it is in the art of model choice that the cost involved in likelihood based
inference is found.

In order to make this point very clear, consider a univariate time series
generated from the following DGP

Ty = O.Q.thl + 1.0+€t, t= 1,,100

where ¢; are i.i.d. N(0,1). Note that E(x;) = 1/(1—0.9) = 10, and Var(x;) =
1/(1—0.9%) ~ 5.26. A sample of the data is shown in Figure 1.

Consider now two different methods for conducting inference in the form
of asymptotic confidence intervals on the mean of the process x;. Both meth-
ods are based on Gaussian maximum likelihood, but inference based upon
the two model is very different.

Method 1: We model the data as
Ty = [+ &,

with g; i.i.d. N(0,0?), so that F(z;) = p. We want to make inference on
E(x;) and find that the maximum likelihood estimator is the average i = & =
T-'S°7 | x;, which is distributed as N(u, 02/T), and 6% = T-* S (2, —Z)
so that an asymptotic 95% confidence interval is given by

1.96
[+ —=6=9.14+0.45.
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100 observations from the model x(t) = 0.9x(t-1)+1.0+e(t)
14.4

128

9.6 —

8.0 —

4.8 —|
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Figure 1: A simulation of 100 observations from a univariate AR(1) process
xy = 0.9241 + 1.0 + &4, where ¢; i.i.d. N(0,1).



Method 2: We could also model the data as a stationary time series
zy = pri1 + pu(l — p) + &,

where again E(x;) = u, if |p| < 1. We find the estimate

fr="=1—pT Y (zo — 2r)/(1 = p),
and 6% = T~V 0 (2 — pri_y — i(1 — p))2. For |p| < 1, ji has the same
asymptotic distribution as the average z, but now with a larger variance
o?T~1(1 — p)~2, which gives a wider asymptotic 95% confidence set for
1.96 o
o4 190 i
M T1-)

In order to conduct Gaussian likelihood inference we have to choose be-
tween these two model and possibly many more. If we choose the first model
we get a confidence interval which is much smaller than if we choose the
second model. Thus inference is seriously different depending on the model
we choose, even though in both cases we are interested in the same quantity,
namely the mean of the process.

= 9.20 £ 23.21.

3.1 What is the price of maximum likelihood?

The two methods outlined above are Gaussian maximum likelihood methods,
but they are evidently different, as they are based upon different models
and therefore different likelihoods and the confidence interval for the second
method is much wider than the interval given by the first method when
p = 0.9. Even though both methods give almost the same estimator, the
estimate of the variance of the estimator and hence the confidence intervals
are different.

Evidently using maximum likelihood does not in itself guarantee useful
inference, as different methods can be derived this way depending on the
model chosen. So one has to ask the question of which method can be
applied to the data at hand.

The price paid for applying the methods of maximum likelihood is that
the assumptions behind the results have to be satisfied. The assumption that
we focus upon here is the fundamental one which is sometimes forgotten:

Assumption : In order to apply the maximum likelihood methodology
to some data x1,...,x we need to assume that the density f(x1,...,xr) of

9



the data is a member of the statistical family to which we apply the method-
ology. This means that there is some parameters value 6y, the true value,
for which the density p(xy,...,xr,00) is the same as the density of the data
f(z1,...,x7).

Obviously the density of the data in Figure 1 corresponds to the para-
meter values p = 0.9, 4 = 2,0 = 1 in the AR(1) model, and hence the basic
assumption is satisfied for Method 2, but there are no parameters (u, 0%) from
the first model that correspond to the data density. Thus applying Method
2, we can use all the results of maximum likelihood, but with Method 1 we
cannot rely on the standard error of the estimate or the confidence interval
when applied to the data in 1. In the process of checking the Assumption
above we should be able to show that the model chosen for the first maximum
likelihood analysis does not satisfy the assumption that for some values of
the parameters the model captures the density generating the data. More
precisely, the residuals é; = x; — = based upon Method 1 will surely show
sign of autocorrelation, so that Model 1 cannot be used for inference. In fact
we find an estimate of the correlation between &; and £;_; to be 0.92, which
is clearly different from zero, which is the value assumed by the first model,
could be used for inference.

Thus we are warned that the mathematical results of the likelihood based
methods are no longer valid, and we shall have to derive the properties of the
estimator found as maximum likelihood estimator, from first principles. This
is clearly impossible without first establishing how to describe the density
of the data. The properties of the estimators are not automatically given
by the theory behind the maximum likelihood estimator if the fundamental
assumption is not satisfied.

Thus there is nothing wrong with the two models analyzed, they are both
standard models. What is wrong, in view of the data we want to analyse,
is that only the second model describes the data, the first does not. Hence
application of the asymptotic results of maximum likelihood of the second
method is valid and application of the asymptotic results for the first is not,
even though both are simple applications of Gaussian maximum likelihood.

3.2 What to do?

In practice there is obviously a serious problem with the method of maximum
likelihood, because we can of course never know with certainty if we have the
right model, and the basic Assumption is difficult, or even impossible, to
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check. But we can sometimes show that it s not satisfied, and this is a very
useful piece of information because it implies that we cannot use the model
considered for conducting inference.

What we have to do in this case is of course to find a new and better
statistical model by specifying a different and more flexible family of densities,
which has a better chance of capturing the density of the data. Only then
can we conduct inference on the validity of the economic model that is of
interest. More constructively we should ask the question

”Which statistical model describes the data.”

If we have a classical economic model, like the one analyzed by Ireland,
it looks like a waste of time to spend too much effort on the above question,
which is clearly a statistical question. But that depends on the purpose of
the analysis.

If the idea is to test hypotheses on the parameters of the economic model,
then we need to establish a sound statistical basis for doing so, that is, we
need to embed the economic model in a statistical model that describes the
data. This is then used as a platform for making inference on coefficients
and relations. In case we find that a model chosen does not describe the
data, the explanation can be that the economic model is inadequate, that
the error structure we have modelled is not flexible enough, and finally of
course that the data quality is not good enough, but the model cannot be
used for inference.

If the purpose of the analysis, however, is not to make inference on coef-
ficients or model equations, but to keep an economic model that we believe
firmly in with the purpose of making predictions, say, then perhaps it is
enough to pick some likelihood method to get some estimates. But then one
cannot count on consistency of the estimators, let alone their standard errors
derived from the likelihood theory. We can only believe that such results are
valid, if we have carefully checked the model for misspecification.

If we are in the first situation, that we want to learn from the data about
our model, we have to check the many assumptions behind the likelihood
methods. Thus, when we have suggested a statistical model, we should always
ask the question

”How can we prove that this model is incorrect?”

11



Having tried in many different ways to reject the model and not been
able to do so, we can be more confident in applying the general theory of
likelihood. For instance, with the above time series, we would try to deter-
mine the lag length, either by information criteria or by testing significance
of autocorrelations and partial autocorrelations, we would try to check the
distribution of residuals using histograms, test for ARCH effects, constant
parameters etc. If the model satisfies these criteria reasonably well, we can
apply the theory of likelihood based inference with some confidence, still run-
ning the risk, of course, that someone else will analyze the data, and show
that the model we have chosen is incorrect, and hence that the conclusions
we have reached may need to be modified.

In this methodology there is the implicit hope, that if a model passes all
the misspecification tests reasonably well, then the conclusions, which build
on likelihood methods, will also hold reasonably well.

3.3 Suggestions for checking the model analyzed by
Ireland

In the paper by Ireland the statistical model is used for inference without
seriously checking the validity of the model for the analysis of the given data.
This means that we can have no confidence what-so-ever that the standard
errors are valid, see the stylized examples above under Methods 1 and 2.
We give here a list of possible ways of checking for model misspecification,
some of which are related to the economic model and some to the embedding
statistical model.

1. By first fitting a model with a general 5 x5 matrix in the state equation,
one can test that is has the form

(5 5)

suggested by the theory. Then one can test whether the specific parametric
form given for A, see the Ireland (2004b), is a good description of what goes
on. One could also test for the diagonality of D, as has been assumed by
some authors.

2. One can test the zeros and singularity of the error variance matrix, by
comparing a model with a general 5 x 5 matrix > with the model where the
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matrix has the form
a’BB 0
(70 v)
Thus the idea that capital and technology is driven by the same shock could
be checked against the data.

3. The lag length is chosen to one. One could test whether this lag length
is the right one. A lag length of two for u;, say, would involve a state variable
of dimension eight of the form (s}, u}, u, ;)’, so that the same methodology
could be applied.

4. One of the basic assumptions in the economic model, and also in
the statistical model, is that of parameter constancy for the full period of
50 years. Omne should therefore perform a recursive analysis to check for
parameter stability, or a subsample analysis. This was done in the paper by
Ireland (2004a), where it was shown, under the assumption that the model
is well chosen for each subperiod, that preferences before and after 1980 were
not the same. This should have consequences for the economic model.

5. A main assumption behind the derivations of the equations which
are then made more elastic is the assumption of trend stationarity of the
logarithmic variables. In view of the very large root found: p = 0.9987, this
assumption appears not to be very useful, see the next section

4 Do unit roots matter?

It was found empirically that p = 0.9987, that the maximal eigenvalue of
D was 0.9399 and finally 1 — § was set to 0.975. Still it is maintained that
the processes are stationary (highly persistent) around a trend in order to
define the steady state values. The assumption of stationarity implies that
we have standard asymptotic y? inference for the estimated coefficients. It
is, however, to be expected that with such large roots the asymptotic results
offer poor approximations to the finite sample distribution, which is needed
for making reliable inference. This can be illustrated by a simple simulation
experiment, where we choose a bivariate VAR(1) model with a constant term
included, so that the process, under stationarity assumptions, has a mean.
We want to show that inference on this mean is problematic in the presence
of large roots.

13



4.1 Simulations

The equations determining the bivariate process z; are

ASL} = H(.thl —M) +€t,t = 1,..

where ¢; are i.i.d. N»(0, ). We use the notation

T T
T =T7" th_l,A_x =7 ZA:L} =T o — z0)
t=1 t=1

T
511 = T_l Z($t_1 — if'_)(l't_l - f_)/

t=1

T
S10=T"> (1,1 — 2 )(Az, — Az)

t=1

T
Soo =T (Azy — Az)(Az; — Az

t=1

and find the maximum likelihood estimators

Q = Sy — So1:511" S1o

T

Under the assumption of stationarity, the asymptotic distribution of /i is

given by

TYV2(ji — p) = No(0,TT1QIT ).

The problem we want to discuss is how inference can be distorted when
there is a root close to one. The roots are determined from det((1 — 2)I; —
[1z) = 0, so that 27! —1 is an eigenvalue of IT. We see immediately, that as the
root approaches one, the matrix II becomes near singular with the result that
the variance blows up and there is absolutely no information about the mean
of the two processes. Not only does the variance blow up, the finite sample
distribution deviates seriously from the asymptotic Gaussian distribution, so

that inference of the type

fy £1.96v/asVar(fi)
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Rejection probability in %
for test of p; = oy =0
NT 50 100 500
—-0.5 83 6.3 5.5
—-0.1 14.3 10.5 6.2
—0.01 214 19.0 13.2
—0.001 21.3 20.9 20.1

Table 1: In the DGP (11) we simulate the rejection probability of the like-
lihood ratio test statistic for the hypothesis p1 = ps = 0, for various values
of § and T using the quantile y?(2) = 5.99. The results are based on 10,000
simulations.

becomes highly misleading and tests on 1 become unreliable. In order to
illustrate this we choose as simulation experiment a DGP of the form

Al’lt = —0.5%11571 + <O5 + (5)5(321571 + et
Al’gt = 0.55(311/,1 — O.5.T2t71 + €94

(11)

that is, we specify II as given, take (2 = I5, and choose ;1 = 0. We do 10,000
simulations for 6 = —0.5, —0.1, —0.01, —0.001, corresponding to the largest
root being 0.5, 0.954, 0.995 and 0.9995. We choose T' = 50, 100, and 500. As
a statistical method we choose Gaussian maximum likelihood inference based
on model (8), which in this case happens to be the correct one because the
basic Assumption is satisfied. The estimators are calculated by (9) and (10).

We first simulate the distribution of the estimator of the first component
of 1. Figure 2 shows some QQ plots against the Gaussian distribution scaled
by the asymptotic standard deviation under the assumption of stationarity
for T' = 50. Note that for § = —0.5, the asymptotic distribution describes
the finite sample distribution quite well, but for smaller ¢ the distribution is
very distorted, and inference, assuming it is Gaussian, is highly misleading.

In Table 1 we calculate the rejection probabilities of the likelihood ratio
test that py = up = 0, using the asymptotic critical value of x32 45(2) = 5.99.
We see that even 500 observations are not enough for getting anywhere near
a 5% test when 0 is —0.01 or —0.001. Thus one can insist that a root of 0.995
is a highly persistent stationary root, but the price paid is that one cannot
make inference on the steady state values using usual sample sizes.
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QQ plots of the distribution of the estimate of mul

delta = 0.5 delta = -0.01

delta=-0.1 delta = -0.001

Figure 2: In the DGP (11) we simulate the distribution of the estimator of
py for various values of § and 7" = 50. The Gaussian distribution is scaled
with the asymptotic standard error under the assumption of stationarity.
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4.2 Imposing a unit root

The limiting covariance limy_ooVar(T-Y2 S ) = II7'QII"!, the so-
called long-run covariance, is singular in the limit of 6 — 0, corresponding
to the fact that for a process with a root of 0.9987, there is hardly any
information in the data on the mean of the process. But the singularity on
the other hand hides a very simple result, namely that for the DGP chosen the
variance of [i; — fio is relatively small and inference can be reliably conducted
for 11 — pe. Thus by investigating the singularity of the long run variance we
can get information about the linear combination of p; and us for which we
can make reliable inference. The estimated long-run variance is

1O = 1155, (So0 — S015771510) S35 S -
If we solve the eigenvalue problem

for eigenvalues A= d’iag(j\l,j\g) with 1 > A\, > Ay > 0, and eigenvectors
V = (01, 02) so that

V'S10950 501V = A, V'S,V = I,

then o X
VI IV = A — I,

which shows that the singularity of the long-run variance corresponds to a
near zero eigenvalue. The test for a zero eigenvalue in (12) is exactly the test
for cointegrating rank one.

If we find that a unit root is acceptable by the data, then x; is nonsta-
tionary, Ax; is stationary, that IT = o8’ and f'x; is stationary. In this model
the mean of the process x; is not well defined, but the stationary process
[z, has a mean (', for which we can test the hypothesis ' = 0. The
asymptotic distribution is y?(1), provided the data is actually a cointegrated
process. Now suppose the root is as indicated above, so that the processes
are stationary. What happens if we never-the-less impose the unit root and
perform the test in a cointegrated model. We evidently find that the basic
Assumption is not contradicted by the analysis, and we find the results in
Table 2, which show that although we have generated the data by a station-
ary (highly persistent) process the analysis by a simple cointegration analysis
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Rejection probability in %
for test of 5/ =0
O\T 50 100 500
—-05 79 6.3 5.4
-0.1 73 6.0 4.9
—-0.01 7.1 5.7 9.9
—0.001 74 6.0 5.0

Table 2: In the DGP (11) we simulate the rejection probability of the likeli-
hood ratio test statistic for the hypothesis 5’1 = 0 in the cointegrated model
Azxy = aff'(x4_1 — p) + & for various values of § and T' using the quantile
x?(1) = 3.84. The results are based on 10,000 simulations.

will give reliable inference on the parameter 'y, which is the only aspect of
[’ that is identified in the cointegrated model.

Thus cointegration can be seen as a way of investigating which aspects of
the mean can be reliably discussed in the case of a large root.

Finally we address briefly the question of what happens with the economic
model if we leave the assumption of trend stationarity. Going through the
derivations one can see that Y; = I; 4+ C} is consistent with y; — ¢; and y; — 44
being stationary. The relation K; .1 = (1 — §)K; + I; is consistent with Ak,
and k; — i; being stationary and finally vC;H; = (1 — 0)Y; is consistent with
h; being stationary. Finally the production function can be taken as the

definition of a; and implies that a; is non-stationary and cointegrates with
detrended k; :

ay — (1 - 9)(kt - tlogn) =y — Kk — (1 - Q)ht-

Thus the root 0.9987 is replaced by 1, but all the important relations between
the variables have an interpretation in terms of cointegrating relations, see
Ireland (2001). Note that imposing the unit root p = 1, also imposes a
number of known cointegrating relations, so that a test for p = 1 is simulta-
neously a test that these cointegrating relations are in accordance with the
data.
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5 Conclusion

We have not questioned the usefulness of Gaussian maximum likelihood in-
ference as suggested by Ireland, but we claim that the mathematical as-
sumptions behind the asymptotic theory of the Gaussian likelihood methods
requires at least as much thought and careful analysis as the mathematics
behind the derivation of the first order conditions of the economic model.
Only when it has been convincingly demonstrated that the assumptions be-
hind the Gaussian likelihood method are not too far from satisfied, can we
rely on the inference conducted.

Of special interest is the near unit roots found in the data. If one in-
sists that such roots are stationary, one may need a lot of data to conduct
inference, using asymptotic methods. By imposing the unit roots we get a
cointegration model that fits equally well, and the economic relations have
to be reinterpreted as cointegrating relations. Imposing the unit roots can
be seen as a way of finding those relations between the steady state value on
which we can conduct inference. We find that the statistical assumption of
stationarity around a linear trend, which is part of the economic model for-
mulation, is replaced by the assumption of stationarity around a stochastic
and linear trend.
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