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1. Introduction
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Motivation

Treatment Effects: The causal effect of a binary (0 - 1) variable on
an outcome of scientific or policy interest. E.g., Gov’t subsidizing
training program for disadvantaged workers, New drug,...

Treatment Heterogeneity: Treatment effects vary across different
subgroups and individuals. The usual average treatment effects for
the entire population or for the treated may not provide a full picture
of treatment effects.

There has been relatively little research on testing for the presence of
treatment effects that allows for the individual heterogeneity.

This paper: We provide a general nonparametric test for the
treatment effects conditional on covariates. The hypotheses can be
either one-sided or two-sided. We allow both conditional average
(CATE) and conditional distributional treatment effects (CDTE).
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Basic Concepts

Let

Yi(0) : potential outcome for individual i without treatment

Yi(1) : potential outcome for individual i with treatment

Zi : treatment intake indicator (0 or 1)
Xi : vector of characteristics of individual i (covariates)

Yi = Yi(1)Zi + Yi(0)(1− Zi) : realized outcome

⇒ For each i, we observe (Yi, Xi, Zi).
Under the unconfoundedness assumption (Y (0), Y (1) ⊥ Z | X ), we
have

CATE(x) ≡ E [Y (1)− Y (0) | X = x]
= E [Y (1) | X = x, Z = 1]− E [Y (0) | X = x, Z = 0]
= E [Y | X = x, Z = 1]− E [Y | X = x, Z = 0] ,

ATE ≡ E [Y (1)− Y (0)] = E [CATE(X)] .
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Hypotheses of Interest

Let (Y,X,Z) ∈ Y × X × {0, 1} be observed rv’s, where Z is a binary
rv. and X is a continuous rv. Let W =Wy ×Wx ⊆ Y × X .
One-sided Hypotheses:

H0 : E[G(Y, y)|X = x, Z = 1] ≤ E[G(Y, y)|X = x, Z = 0]
for each (y, x) ∈ W vs.

H1 : E[G(Y, y)|X = x, Z = 1] > E[G(Y, y)|X = x, Z = 0]
for some (y, x) ∈ W.

Examples:

G(Y, y) = −Y : testing positive conditional average treatment effect
for each x ∈ Wx. ( positive CATE)
G(Y, y) = 1(Y ≤ y): testing conditional stochastic dominance between
treatment and control groups for each x ∈ Wx. (positive CDTE)
G(Y, y) = (y − Y )s−11(Y ≤ y): testing higher-order (s-th order)
conditional stochastic dominance.
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Hypotheses of Interest (cont.)

Two-sided Hypotheses:

H0 : E[G(Y, y)|X = x, Z = 1] = E[G(Y, y)|X = x, Z = 0]
for each (y, x) ∈ W vs.

H1 : E[G(Y, y)|X = x, Z = 1] 6= E[G(Y, y)|X = x, Z = 0]
for some (y, x) ∈ W.

Examples:

G(Y, y) = −Y : testing no conditional average treatment effect for
each x ∈ Wx. (no CATE)
G(Y, y) = 1(Y ≤ y) : testing equal conditional distributional effect
between treatment and control groups for each x ∈ Wx. (no CDTE)
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Literature

Giné, Mason and Zaitsev (2003): L1-norm density estimator
process. If h→ 0 and n1/2h→∞, then

√
n

[∫
R
|fn(x)− Efn(x)| dx− E

∫
R
|fn(x)− Efn(x)| dx

]
→ N(0, σ2),

where

fn(x) =
1
nh

n∑
i=1

K

(
x−Xi

h

)
.
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Main Contributions of This Paper

We develop a general class of nonparametric tests of conditional
treatment effects.

Null of Positive TE Null of No TE

CATE ? Crump et. al.(2008)
Tests for equality b/ regression functions

CDTE ? Tests for conditional independence

We show that suitably studentized versions of our test statistics are
asymptotically standard normal under the null hypotheses.

We show that our tests are consistent against general fixed
alternatives and powerful against some n−1/2 local alternatives.

In the case of the one-sided hypothesis, we propose a more powerful
test by estimating the ”contact set” on which the inequality
restriction is binding.
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2. Test Statistics and Assumptions
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Test Statistics

Define

τ0(y, x) = E[G(Y, y)|X = x, Z = 1]− E[G(Y, y)|X = x, Z = 0].

The null hypotheses of interest:

H0 : τ0(y, x) ≤ 0 for each (y, x) ∈ W,

HD
0 : τ0(y, x) = 0 for each (y, x) ∈ W.

Test Statistics:

T̂ =
∫ ∫ √

nmax {τ̂(y, x), 0}w(y, x)dydx,

D̂ =
∫ ∫ √

n |τ̂(y, x)|w(y, x)dydx,

where w(y, x) is a weight function with support W.
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Definitions

Let

f(x) : density of X

pj(x) = Pr(Z = j|X = x)f(x) for j = 0, 1.

Estimator of τ0(y, x) :

τ̂(y, x) = Ê[G(Y, y)|X = x, Z = 1]− Ê[G(Y, y)|X = x, Z = 0]

= n−1
n∑
i=1

G(Yi, y)φ̂(x, Zi)Kh (x−Xi) ,

where

p̂j(x) = n−1
n∑
i=1

1(Zi = j)Kh (x−Xi) ,

φ̂(x, z) =
1(z = 1)
p̂1(x)

− 1(z = 0)
p̂0(x)

,

Kh(·) = K(·/h)/h.
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Definitions (cont.)

K∗(t) =
∫
K (ξ)K (ξ + t) dξ.

µ1(y, y′, x) :=
∑

j∈{0,1}

E [G(Y, y)G(Y, y′)|X = x, Z = j]
pj(x)

,

µ2(y, y′, x) :=
∑

j∈{0,1}

E [G(Y, y)|X = x, Z = j]E [G(Y, y′)|X = x, Z = j]
pj(x)

.

ρ1(y, y′, x, t) =
{
µ1(y, y′, x)− µ2(y, y′, x)

}
K∗(t),

ρ2(y, x) = {µ1(y, y, x)− µ2(y, y, x)}K∗(0),

ρ(y, y′, x, t) =
ρ1(y, y′, x, t)√
ρ2(y, x)ρ2(y′, x)

.
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Assumption 3.1

1. The distribution of X is absolutely continuous with respect to
Lebesgue measure and the probability density function f of X is
continuously differentiable;

2. The distribution of Y is absolutely continuous with respect to
Lebesgue measure;

3. w(·, ·) is a continuous function with support W =Wy ×Wx, where
Wy is a subset of Y (possibly, the entire Y) and Wx is a strict
compact subset of X ;

4. p1(·) and p0(·) are bounded away from zero on Wx;

5. K is a second-order kernel function with support [−1/2, 1/2],
symmetric, integrates to 1 and is twice continuously differentiable;
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Assumption 3.1

6. As functions of x, E[G(Y, y)|X = x, Z = j], f(x), pj(x) for j = 0, 1
are twice continuously differentiable for each y with uniformly
bounded derivatives;

7. sup(y,x)∈W E
[
|G(Y, y)|3 |X = x, Z = j

]
<∞ for j = 0, 1;

8. {G(·, y) : y ∈ Wy} is a VC class of functions with an envelope
function M satisfying E[M2(Y )|X = x] <∞;

9. The bandwidth satisfies h = c1n
−δ for some positive constant c1 with

1/4 < δ < 1/3.
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3. Asymptotic Null Distributions
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One-Sided Test

Result: If τ0(y, x) = 0 ∀ (y, x) ∈ W (i.e,. LFC), then

T̂ − an
σ0

d→ N(0, 1),

where

an = h−1/2

∫ ∞
−∞

∫ ∞
−∞

√
ρ2(y, x)w(y, x)dydx · Emax {Z1, 0} ,

σ2
0 =

∫ 1

−1

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Cov
[
max{

√
1− ρ2(y, y′, x, t)Z1

+ρ(y, y′, x, t)Z2, 0},max {Z2, 0}
]

×
√
ρ2(y, x)ρ2(y′, x)w(y, x)dydy′dxdt.
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Two-Sided Test

Result: Under HD
0 ,

D̂ − an,D
σ0,D

d→ N(0, 1),

where

an,D = h−1/2

∫ ∞
−∞

∫ ∞
−∞

√
ρ2(y, x)w(y, x)dydx · E |Z1| ,

σ2
0,D =

∫ 1

−1

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Cov
[∣∣∣√1− ρ2(y, y′, x, t)Z1

+ρ(y, y′, x, t)Z2

∣∣ , |Z2|
]

×
√
ρ2(y, x)ρ2(y′, x)w(y, x)dydy′dxdt.
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Remark
In the case of CATE, in which G(Y, y) = −Y, we have

ρ(y, y′, x, t) =
∫
K (ξ)K (ξ + t) dξ∫

K2 (ξ) dξ
≡ ρ(t),

so that the expressions for an and σ2
0 are simplified to:

an = h−1/2

∫ ∞
−∞

√
ρ2(x)w(x)dx · 1√

2π
,

σ2
0 =

∫ 1

−1
Cov

[
max{

√
1− ρ(t)Z1 + ρ(t)Z2, 0},max {Z2, 0}

]
dt

×
∫ ∞
−∞

ρ2(x)w(x)dx, where

ρ2(x) = κ2
2

∑
j∈{0,1}

E
[
Y 2|X = x, Z = j

]
− (E [Y |X = x, Z = j])2

pj(x)
.

and likewise for the two sided test.
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Feasible Tests

Standardized Test Statistics:

Ŝ =
T̂ − ân
σ̂

,

ŜD =
D̂ − ân,D

σ̂D
.

Decision Rules:

Reject H0 if Ŝ > z1−α ,

Reject HD
0 if ŜD > z1−α

at the nominal significance level α, where zα is the α quantile of the
standard normal distribution for 0 < α < 1.
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Asymptotic Size Properties

Theorem 1 : Let Assumption 3.1 hold. Then, (a) under the null
hypothesis H0,

lim
n→∞

Pr
(
Ŝ > z1−α

)
≤ α,

with equality when τ0(y, x) = 0 for each (y, x) ∈ W and (b) under
the null hypothesis HD

0 ,

lim
n→∞

Pr
(
ŜD > z1−α

)
= α.
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One-Sided Test (Normal P-P Plot)
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Two-Sided Test (Normal P-P Plot)
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Asymptotic Theory: Outline

Although the tests are easy to implement, the asymptotic theory for
the tests involves several lengthy steps.

1. The asymptotic approximation of T̂ by Tn, using the uniform
approximation of τ̂(y, x) by τn(y, x). (cf.) Ghosal, Sen, and van der
Vaart (2000).

2. Get the asymptotic distribution of TN , a Poissonized version Tn. (cf.)
Giné, Mason and Zaitsev (2003).

3. De-Poissonize TN to derive the asymptotic normality of Tn and
hence T̂ .
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Asymptotic Theory

First-order Approximation: Under Assumption 3.1,

T̂ = T ∗n + op(1),

where

T ∗n =
∫ ∫ √

nmax{τ0(y, x)+ [τn(y, x)− Eτn(y, x)] , 0}w(y, x)dydx,

τn(y, x) =
1
n

n∑
i=1

ϕ(Wi, y, x)

=
1
n

n∑
i=1

[G(Yi, y)φ(x, Zi)− χ(Zi, y, x)]Kh (x−Xi) ,

χ(z, y, x) = χ1(y, x)1(z = 1)− χ0(y, x)1(z = 0),

χj =
E[G(Y, y)|X = x, Z = j]

pj(x)
.
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4. Asymptotic Power Properties
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Consistency

Fixed Alternative Hypotheses:

H1 :
∫ ∫

max {τ0(y, x), 0}w(y, x)dydx > 0

HD
1 :

∫ ∫
|τ0(y, x)|w(y, x)dydx > 0

Theorem 2 : Let Assumption 3.1 hold. Then, (a) under the
alternative hypothesis H1,

lim
n→∞

Pr
(
Ŝ > z1−α

)
= 1

and (b) under the alternative hypothesis HD
1 ,

lim
n→∞

Pr
(
ŜD > z1−α

)
= 1.
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Local Alternatives

Local Alternatives:

Ha : τ0(y, x) = n−1/2δ(y, x),
HD
a : τ0(y, x) = n−1/2δD(y, x),

where δ(·, ·) is non-negative on W with
∫ ∫

δ(y, x)w(y, x)dydx > 0 and∫ ∫
|δD(y, x)|w(y, x)dydx > 0.

Theorem 3: Let Assumption 3.1 hold. Then, (a) under the
alternative hypothesis Ha ,

lim
n→∞

Pr
(
Ŝ > z1−α

)
> α

and (b) under the alternative hypothesis HD
a ,

lim
n→∞

Pr
(
ŜD > z1−α

)
≥ α.
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Remarks

Under Ha, we show that

Ŝ =
T̂ − ãn
σ0

+
ãn − an
σ0

+ op(1),

T̂ − ãn
σ0

d→ N(0, 1), where

ãn =
∫ ∫

Emax
{
δ(y, x) + h−1/2

√
ρ2(y, x)Z, 0

}
w(y, x)dydx.

Since a ≥ max{a+ b, 0} −max{b, 0} ≥ a1(b ≥ 0) for a ≥ 0,

ãn − an =
∫ ∫

E
[
max

{
δ(y, x) + h−1/2

√
ρ2(y, x)Z, 0

}
−max

{
h−1/2

√
ρ2(y, x)Z, 0

}]
w(y, x)dydx

≥ 1
2

∫ ∫
δ(y, x)w(y, x)dydx > 0.

⇒ Ŝ has asymptotically non-trivial local power against Ha.
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5. Extension: A More Powerful One-Sided Test
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Approximation under the Inequality Constraint

Let
C = {(y, x) ∈ W : τ0(y, x) = 0}.

Result (Pointwise): Suppose
∫ ∫

C w(y, x)dydx > 0. Then, under
H0 : τ0(y, x) ≤ 0 ∀ (y, x) ∈ W,

T̂ = Tn(C) + op(1), where

Tn(C) =
∫ ∫

C

√
nmax{[τn(y, x)− Eτn(y, x)] , 0}w(y, x)dydx.

Why?: Recall that
T̂ = T ∗n + op(1),

T ∗n =
∫ ∫ √

nmax{τ0(y, x)+ [τn(y, x)− Eτn(y, x)] , 0}w(y, x)dydx.
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Test Statistic

Contact Set Estimator:

Ĉ = {(y, x) ∈ W : |τ̂(y, x)| ≤ ηn}.

Test Statistic:

ŜC =
T̂ − ân(Ĉ)
σ̂(Ĉ)

.

Decision Rule:
Reject H0 if Ŝ∗ > z1−α ,

where

Ŝ∗ =
{
ŜC if

∫ ∫
Ĉ w(y, x)dydx > 0

Ŝ if
∫ ∫

Ĉ w(y, x)dydx = 0
.
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Assumption 4.1

1 C = C1 × C0, where C1 ⊂ Wy and C0 ⊂ Wx are Borel sets.

2 Whenever the Lebesgue measure λ(C) of C is strictly positive, the
boundary of C satisfies

0 < lim
t→0+

inf
h∗(t)
tγ
≤ lim

t→0+
sup

h∗(t)
tγ

= c,

for γ ≥ 1 and some finite constant c, where
h∗(t) = λ({(y, x) : 0 < |τ0(y, x)| ≤ t}).

3 The tuning parameter ηn satisfies ηn = c2n
−α for some constant c2

with 2δ/(1 + γ) < α < (1− δ)/2.
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Size and Global Power

Theorem 4.1. Suppose that Assumptions 3.1 and 4.1 hold. Then,
(a) under the null hypothesis H0,

lim
n→∞

Pr
(
Ŝ∗ > z1−α

)
≤ α,

with equality when
∫ ∫

C w(y, x)dydx > 0 and (b) under the
alternative hypothesis H1,

lim
n→∞

Pr
(
Ŝ∗ > z1−α

)
= 1.
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Local Power

Local Alternatives:

H∗a : τ0(y, x) = µ(y, x) + n−1/2δ(y, x),

where µ ≤ 0 on W, µ = 0 on Ca and
∫ ∫

Ca
δ(y, x)w(y, x)dydx > 0.

Theorem 4.2: Suppose that Assumptions 3.1, 4.1 (iii) and 4.2 hold.
Then, under the alternative hypothesis H∗a , we have (a)

lim
n→∞

Pr
(
Ŝ∗ > z1−α

)
> α

and (b)

lim
n→∞

Pr
(
Ŝ∗ > z1−α

)
> lim

n→∞
Pr
(
Ŝ > z1−α

)
,

whenever ∫ ∫
R2

w(y, x)dydx >
∫ ∫

Ca

w(y, x)dydx.
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Assumption 4.2

1 Ca = C1a × C0a, where C1a ⊂ Wy and C0a ⊂ Wx are Borel sets.

2
∫ ∫

Ca
w(y, x)dydx > 0, where Ca = {(y, x) ∈ W : µ(y, x) = 0}.

3 sup(y,x)∈W µ(y, x) ≤ 0 .

4 δ(·, ·) is a non-negative function on W with∫ ∫
Ca
δ(y, x)w(y, x)dydx > 0 and sup(y,x)∈W δ(y, x) <∞.

5 The boundary of Ca satisfies

0 < lim
t→0+

inf
h∗∗(t)
tγ

≤ lim
t→0+

sup
h∗∗(t)
tγ

= c,

for γ ≥ 1 and some finite constant c, where
h∗∗(t) = λ({(y, x) : 0 < |µ(y, x)| ≤ t}).
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5. An Empirical Example and Monte Carlo
Experiments
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Setup

Data: The experimental data from National Supported Work (NSW)
Demonstration program.

NSW : A randomized, temporary employment program in the U.S. in
the mid-1970s designed to help disadvantaged workers.
Empirical Analysis: LaLonde (1986), Dehejia and Wahba (1999, 2002)
and Smith and Todd (2005), etc.
Observations: Treatment group (297) + Control group (425) = Total
(722)

Variables:

Y : RE78 (earnings in 1978) or RE78-RE75 (changes in earnings
between 1978 (post-intervention year) and 1975 (pre-intervention
year))
X : Age
Z = 1 (Treatment group), Z = 0 (Control group)
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Empirical Results (RE78)
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Empirical Results (RE78)
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Empirical Results (RE78)
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Empirical Results (RE78)
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Empirical Results (RE78-RE75)
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Empirical Results (RE78-RE75)
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Empirical Results (RE78-RE75)
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Empirical Results (RE78-RE75)
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Monte Carlo Experiments

We use the NSW data to get simulation data, in order to evaluate the
finite sample performance of our tests in more practical situations.

DGP1: 1,000 repeated samples are generated randomly with
replacement from the NSW data, with the restriction that (Y,X) and
Z are generated independently. ⇒ LFC

DGP2: 1,000 repeated samples are generated randomly with
replacement from the NSW data, with the joint distribution of
(Y,X,Z) being left intact. ⇒ Interior of the Null & Power

Other Choices:

K(u) =
3
2
(
1− (2u)2

)
1
{
|u| ≤ 1

2

}
h = ChŝXn

−2/7

n = 722 or 1, 444.
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One-Sided Test
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One-Sided Test
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One-Sided Test
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One-Sided Test
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Two-Sided Test
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Two-Sided Test
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Two-Sided Test
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Two-Sided Test
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Rejection Probabilities (Our Test, One-Sided)

DGP1: H0 is true DGP2: Mimicking
Sample (least favorable case) the NSW data

Size Bandwidth Nominal Probabilities Nominal Probabilities
(n) (h) 0.10 0.05 0.01 0.10 0.05 0.01

H0: the CATE is positive for each x (One-Sided Test)

722 2.021 0.127 0.075 0.031 0.012 0.006 0.001
2.526 0.119 0.075 0.030 0.009 0.004 0.001
3.031 0.120 0.071 0.030 0.005 0.002 0.001
3.537 0.117 0.071 0.027 0.003 0.002 0.001

1444 1.658 0.134 0.074 0.025 0.032 0.010 0.002
2.072 0.119 0.066 0.024 0.005 0.002 0.002
2.487 0.122 0.067 0.022 0.003 0.002 0.001
2.901 0.126 0.064 0.021 0.003 0.001 0.000
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Rejection Probabilities (Our Test, One-Sided)

DGP1: H0 is true DGP2: Mimicking
Sample (least favorable case) the NSW data

Size Bandwidth Nominal Probabilities Nominal Probabilities
(n) (h) 0.10 0.05 0.01 0.10 0.05 0.01

H0: the CATE is negative for each x (One-Sided Test)

722 2.021 0.126 0.073 0.019 0.861 0.767 0.559
2.526 0.115 0.076 0.020 0.834 0.746 0.535
3.031 0.112 0.066 0.019 0.803 0.719 0.509
3.537 0.112 0.064 0.019 0.780 0.684 0.477

1444 1.658 0.110 0.068 0.021 0.983 0.976 0.914
2.072 0.098 0.061 0.018 0.993 0.984 0.910
2.487 0.102 0.065 0.020 0.987 0.970 0.892
2.901 0.100 0.065 0.022 0.981 0.960 0.859
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Rejection Probabilities (Our Test, Two-Sided)

DGP1: H0 is true DGP2: Mimicking
Sample (least favorable case) the NSW data

Size Bandwidth Nominal Probabilities Nominal Probabilities
(n) (h) 0.10 0.05 0.01 0.10 0.05 0.01

H0: the CATE is zero for each x (Two-Sided Test)

722 2.021 0.149 0.095 0.033 0.801 0.693 0.460
2.526 0.134 0.087 0.029 0.703 0.581 0.365
3.031 0.121 0.077 0.024 0.613 0.497 0.306
3.537 0.114 0.071 0.018 0.547 0.447 0.261

1444 1.658 0.154 0.077 0.028 0.980 0.977 0.944
2.072 0.123 0.071 0.020 0.990 0.968 0.877
2.487 0.116 0.067 0.021 0.969 0.940 0.808
2.901 0.115 0.064 0.019 0.946 0.888 0.722
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Rejection Probabilities (Crump et. al., Two-Sided # 1)

DGP1: H0 is true DGP2: Mimicking
Sample Order of (least favorable case) the NSW data

Size Power Series Nominal Probabilities Nominal Probabilities
(n) (K − 1) 0.10 0.05 0.01 0.10 0.05 0.01

H0: the CATE is zero for each x (Test Statistic T )

722 1 0.099 0.072 0.028 0.512 0.432 0.293
2 0.108 0.068 0.022 0.452 0.368 0.236
3 0.064 0.045 0.023 0.163 0.127 0.069
4 0.063 0.039 0.018 0.136 0.096 0.056
5 0.065 0.040 0.020 0.459 0.403 0.301

1444 1 0.114 0.080 0.042 0.798 0.741 0.626
2 0.114 0.075 0.040 0.740 0.653 0.516
3 0.071 0.051 0.026 0.218 0.173 0.100
4 0.049 0.032 0.016 0.169 0.120 0.051
5 0.051 0.028 0.014 0.725 0.671 0.573
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Rejection Probabilities (Crump et. al., Two-Sided #2)

DGP1: H0 is true DGP2: Mimicking
Sample Order of (least favorable case) the NSW data

Size Power Series Nominal Probabilities Nominal Probabilities
(n) (K − 1) 0.10 0.05 0.01 0.10 0.05 0.01

H0: the CATE is zero for each x (Test Statistic Q)

722 1 0.098 0.042 0.004 0.504 0.362 0.140
2 0.100 0.045 0.007 0.443 0.295 0.113
3 0.059 0.034 0.013 0.153 0.097 0.033
4 0.059 0.030 0.010 0.131 0.074 0.029
5 0.061 0.031 0.011 0.453 0.355 0.231

1444 1 0.109 0.059 0.013 0.794 0.686 0.409
2 0.105 0.055 0.012 0.725 0.587 0.336
3 0.065 0.036 0.010 0.211 0.138 0.049
4 0.045 0.021 0.004 0.166 0.086 0.024
5 0.046 0.020 0.004 0.714 0.626 0.462
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7. Conclusions
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Conclusions

We develop a general nonparametric test for the treatment effects
conditional on covariates, explicitly allowing for the individual
heterogeneity.
The hypotheses can be either one-sided (positive effect) or two-sided
(no effect) and we allow both conditional average (CATE) or
conditional distributional treatment effects (CDTE).
The test is easy to implement, using the standard normal critical
values. The test is consistent and powerful against some n−1/2 local
alternatives. Under certain contexts, we may improve the power of
the one-sided test by estimating the ”contact set”.
The poissonization technique seems to be widely applicable to many
contexts in econometrics. E.g., Anderson, Linton and Whang (2009),
”Nonparametric Estimation of a Polarization Measure” :
θ =

∫
min {f(x), g(x)} dx.

Future works: Uniformity issues, Bootstrap critical values, Bandwidth
choices, More simulations and applications,...
In near future, the paper will be posted as Cemmap working paper at
http://www.cemmap.ac.uk/.
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