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Abstract

Economists frequently use simultaneous one-shot games to model strategic interactions.

Quite often, however, the actions taken in such games require some preparation. If such

preparations are costly to alter, strategic incentives may be an important consideration during

this preparation stage, and may ultimately affect the equilibrium outcome. This paper analyzes

a finite-horizon linear-quadratic differential game of quantity competition, where players may

continuously adjust the actions they plan to take in the eventual interaction. Parties incur

adjustment costs when changing previous plans. This allows them to use such production plans

as a partial commitment device. We show that the equilibrium outcome is more competitive

than its static analog. Moreover, depending on the initial production plans, the equilibrium

path may exhibit one of two patterns: If initial plans are sufficiently high players continuously

adjust their production plans downwards. In contrast, if the intended production is lower the

equilibrium path exhibits a non-monotonic pattern. Players, involved in a Stackelberg warfare,

start by increasing their intended production, and only later adjust it downwards. We use data

about production plans of auto manufacturers in the U.S. to assess the predictions of our model.

The data exhibit qualitatively similar patterns to the theoretical predictions.
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1 Introduction

Economists often model strategic interactions using simultaneous one-shot games. It is as if

decisions were taken in the blink of an eye and realized instantaneously. This is, of course,

a simplification. Complex decisions, such as those of entry, exit, or production are normally

the result of a long preparation process towards the final decisions. If changing plans during

this process is costly, incentives to behave strategically during the preparation stage should be

explicitly considered, as they may be an important determinant of the final outcomes.

Consider, for example, the specific application of this paper. Auto manufacturers compete in

producing cars.1 Suppose that, ahead of time, a firm has a planned production level. In order to

achieve its production target, it needs to take certain measures, such as hiring labor, canceling

vacations, purchasing parts from suppliers, etc. If the firm then decided to change its desired

production level, it would likely need to incur some costs adjusting the previous measures. To the

extent that such preparation measures are either publicly observed or cannot perfectly be hidden

from competitors, they can play a strategic role. Given the costly nature of these adjustments, the

preparation stage acts a gradual commitment device. Firms realize that their planned production

levels affect their rivals’ production plans, and use this to their advantage, adjusting their own

intentions strategically.

In our previous work (Caruana and Einav, 2004), we study the scope for endogenous commit-

ment that may arise from the existence of these adjustment costs, and focus on discrete problems,

such as those of entry and exit. It is hard to extend that framework for the analysis of games

with continuous action spaces, and more importantly, with adjustment costs that depend on the

magnitude of the adjustment. Therefore, in this paper we build a different model using differential

games techniques. In particular, we use a linear-quadratic structure, which allows for a simple

analysis without sacrificing the basic insights.2

Section 2 of the paper presents the basic model. At some specified date in the future two

symmetric firms will engage in a Cournot competition. At date zero, each firm inherits a pro-

duction structure that will lead to a certain production level. From that point on, the firm can

make continuous adjustments to its production structure, but incurs quadratic costs every time

it does so. When the initial production targets are not too high, both firms begin by gradually

increasing their production plans. Firms use these intended plans as a commitment device; they

want to commit to high production levels in order to obtain a Stackelberg leadership position in

the industry. In equilibrium, however, both firms are provided with similar commitment oppor-

tunities, and thereby engage in a “Stackelberg warfare,” each trying not to become a Stackelberg

1For simplicity, the arguments above abstract from other important factors, such as inventories or uncertainty.

These are discussed later in the paper.
2While we believe that the qualitative nature of the results extend to other functional forms of costs and profits,

solving the full dynamic model for such cases is in general not tractable. In this sense, linear-quadratic models are

perceived as second-order approximations to more complicated models.
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follower. As the horizon gets closer, however, both firms become sufficiently committed to pro-

ducing high quantities. Thus, at a certain point before the final date, the (dynamic) commitment

effect becomes less important, while the (static) incentive to best respond to the opponent’s high

production target increases and becomes dominant. Therefore, from that point on both firms start

to gradually decrease their production plans in the direction of their static best-response levels.

The eventual equilibrium outcome still remains more competitive than its static analog. The non-

monotonic equilibrium path described above is a consequence of initial production targets being

not too high. In the end of Section 2 we discuss different possibilities that can rationalize such

initial positions. Nevertheless, the result that before the final date there would be some period in

which firms gradually decrease their intended production is fully general; it does not depend on

the initial production plans.

Section 3 extends the basic model along several dimensions. We investigate the case of asym-

metric duopoly, an extension to more than two symmetric players, and time-varying adjustment

costs, and discuss how the model would extend when the production game is repeated. We also

analyze a case in which there is uncertainty (common to all firms) about demand or cost con-

ditions. Uncertainties create a trade-off between the incentive to commit and the incentive to

remain flexible and wait until the uncertainty is realized. The qualitative nature of the basic

results remain unchanged, and the comparative statics work in the same expected directions.

Our model is related to other models of dynamic quantity competition analyzed in the liter-

ature.3 Their focus, however, is on the stationary equilibrium of an infinite-horizon model (or

on the limit of a finite-horizon one, as the horizon tends to infinity). They typically find that

when actions are strategic substitutes, as in the quadratic Cournot competition we analyze, the

stationary equilibrium is more competitive than its static analog, as players engage in a “Stackel-

berg warfare.” Our finding that the eventual outcome is more competitive than its static analog

has a similar spirit. Unlike this literature, however, our main focus lies on the non-stationary

equilibrium path of the game. Another difference is that they consider a continuous flow of pro-

duction payoffs as time goes by (production takes place at every instant), while in this paper the

dynamics deal with the preparations for a single production period. Therefore, production payoffs

are collected only in the end. These two ingredients result in an equilibrium path displaying a

strong non-stationary pattern.

One advantage in studying non-stationary models is the qualitative testable implications they

provide. It is hard to empirically test stationary dynamic models, as the static benchmark is

typically not available (for example, marginal costs are typically not observed). In contrast, our

non-stationary model provides a qualitative set of predictions, which can be testable even in the

absence of information on, say, marginal costs.

Section 4 presents empirical evidence which is consistent with our model. We use the data

collected by Doyle and Snyder (1999) about production plans made by U.S. auto manufacturers,

3See, among others, Cyert and DeGroot (1970), Hanig (1986), Maskin and Tirole (1987), Fershtman and Kamien

(1987), Reynolds (1987, 1991), Lapham and Ware (1994), and Jun and Vives (2004).
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as published in an industry newsletter. The focus of their study is quite different from ours. They

are interested in the use of these production plans as a device for information sharing among

manufacturers, and analyze the correlation among one manufacturer’s production plan and its

opponents’ subsequent responses. In contrast, our focus lies on the evolution of the production

targets over time.

The data contain multiple observations about future monthly production plans of the main

auto manufacturers for the period 1965-1995. Starting about six months before production, the

newsletter periodically reports its estimates of the production targets (measured as number of cars,

at the manufacturer level) in a given future month by each of the biggest four auto manufacturers

in the U.S. For each future production month, there are one to twelve (4.35 on average) different

pre-production estimates. The main idea underlying the model in this paper is that actions taken

in the preparation stage have a commitment value, and that this value stems from the costly

nature of changing them. Thus, in order to link the data to the model, it is necessary to assume

that the newsletter’s estimates are based on real pre-production decisions being taken. This is an

important assumption underlying our empirical analysis.

By pooling data from different production months, we estimate non-parametrically the re-

lationship between production plans and eventual production levels, and how this relationship

evolves over time. Across all manufacturers, the pattern of production targets consistently dis-

plays the non-monotonic trend predicted by the model. On average, targets start about 5% above

eventual production levels. They gradually increase until they peak at 10% about 80 days before

production. Then, they start a sharp decline until they reach actual production levels. When

studied separately, different manufacturers exhibit different patterns. While Ford and Chrysler

exhibit the strong non-monotonic pattern described above, General Motors and American Motors

start much above their eventual production levels, and mainly exhibit a monotone decreasing

pattern. Both of these patterns are consistent with the theoretical model.

At this point, the evidence presented is more suggestive than conclusive. There are other

important dimensions of the industry, particularly the existence of inventories, which have not

been considered in the study. We should note, however, that it seems hard to come with alter-

native models that could rationalize the consistent non-monotonic pattern observed in the data.

Therefore, we are encouraged to think that the empirical patterns we report point to the strategic

role that pre-production preparations may be playing in determining production decisions.

2 Basic model

2.1 Setup and solution

There are two players. Given initial production plans (q0i , q
0
j ) at time t = 0, each player can

continuously control the rate at which she changes her production target. Namely, if player i

chooses a rate of xi at time t then q0i(t) = xi. Note that xi can be either positive or negative. By
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choosing xi player i pays adjustment costs ci(xi, t). At time T > 0 players engage in a Cournot

competition and collect final payoffs of πi(qi(T ), qj(T )).

We will assume throughout a linear-quadratic structure. Thus, we assume that inverse demand

is linear, given by p = a− bQ and marginal costs are constant and given by c. Thus, we have that

πi(qi(T ), qj(T )) = qi(T )(a− bqi(T )− bqj(T ))− cqi(T ) = (a− c)qi(T )− bq2i (T )− bqi(T )qj(T ) (1)

We assume that adjustment costs are quadratic and take the form of

ci(xi, t) =
θ

2
x2i (2)

Thus, adjustments costs are constant over time, symmetric across players, and symmetric for

positive and negative rates. None of these properties is particularly important.

We solve for the Markov perfect equilibrium of the model. Thus, equilibrium strategies only

depend on the state variables, qi and qj . Let V i
t (qi, qj) be the value function for player i at

time t, with state variables qi and qj . Assume also that V i
t (qi, qj) exists and is continuous and

continuously differentiable in its arguments. The value function must satisfy

V i
t (qi, qj) = maxxi

µ
−θ
2
x2i +

∂V i
t

∂qi
xi +

∂V i
t

∂qj
xj +

∂V i
t

∂t
+ V i

t (qi, qj)

¶
(3)

The first order condition for xi is therefore

−θxi + ∂V i
t

∂qi
= 0 =⇒ xi =

1

θ

∂V i
t

∂qi
(4)

We can now substitute this back into equation (3), as well as the symmetric solution for xj ,

rearrange, and obtain the following differential equation

0 =
1

2θ

µ
∂V i

t

∂qi

¶2
+
1

θ

µ
∂V i

t

∂qj

¶Ã
∂V j

t

∂qj

!
+

∂V i
t

∂t
(5)

The linear-quadratic structure is attractive. It is known that in this case, if one restricts the

strategies to be analytic functions of the state variables, there exists a unique equilibrium of the

game, which is also the limit of its discrete-time analog. Moreover, in such a case the unique

value function is a quadratic function of the state variables.4 Note that due to the inherent

non-stationarity of the model, the parameters of this quadratic equation will depend on t in an

unspecified way. We can express the value function as

V i
t (qi, qj) = At +Btqi + Ctqj +Dtq

2
i +Etq

2
j + Ftqiqj (6)

which also implies that

xit(qi, qj) =
1

θ

∂V i
t

∂qi
=
1

θ
(Bt + 2Dtqi + Ftqj) (7)

4See Kydland (1975), who shows uniqueness for a discrete-time version, and Papavassilopoulos and Cruz (1979)

and Papavassilopoulos and Olsder (1984) for analysis of existence and uniqueness in finite-horizon linear-quadratic

differential games.

4



Substituting equations (6) and (7) into equation (5) gives us

0 =
1

2θ
(Bt + 2Dtqi + Ftqj)

2 +
1

θ
(Ct + 2Etqj + Ftqi) (Bt + 2Dtqj + Ftqi) + (8)

+
¡
A0t +B0tqi + C0tqj +D0

tq
2
i +E0tq

2
j + F 0tqiqj

¢
This is a polynomial of qi and qj . Thus, all its coefficients have to be equal to zero. This gives

the following set of six ODE’s. To ease notation, we can just think about time going backwards,

so all the derivatives with respect to time (A0, B0, etc.) reverse signs. This is convenient as our
boundary condition is for t = T . The law of motion for the parameters is then given by

A0

B0

C 0

D0

E0

F 0


=
1

θ



1
2B

2 +BC

2BD +BF + CF

BF + 2BE + 2CD

2D2 + F 2

1
2F

2 + 4DE

4DF + 2EF


(9)

The boundary condition (for t = T ) is given by the profit function in equation (1), which implies

AT

BT

CT

DT

ET

FT


=



0

a− c

0

−b
0

−b


(10)

2.2 Illustration

The system of ordinary differential equations given by equation (9), with its boundary condition,

defines the solution. It defines the value function at any point in time, which in turn allows us to

compute the equilibrium strategies using equation (7). Unfortunately, the system does not have

a closed-form solution, so we illustrate the results by approximating the equilibrium through the

solution of the discrete-time analog of the game for very small time intervals.

Throughout this section, unless otherwise specified, we set a = b = 1, c = 0, θ = 1, and T = 10.

This implies that marginal costs are zero and that inverse demand is given by p(Q) = 1 − Q.

Adjustment costs are ci(xi, t) =
1
2x
2
i .
5 For later comparison, it is useful to observe that, for

this choice of parameters, the static Nash equilibrium of the Cournot game involves each player

producing q = 1
3 , while the Stackelberg leader and follower production levels are q =

1
2 and q =

1
4 ,

respectively.

5One should note that some of these restriction are not important. The effect of a and c only enters through their

difference a − c, so setting c = 0 is only a normalization. Similarly, optimal strategies are invariant to monotone

transformations of the objective function, so, for example, setting b = 1 is a normalization.
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Figure 1 presents the way the parameters of the (symmetric) value function for this game

evolve over time. It shows the equilibrium values for the parameters of the value equation, as

given in equation (6). One can see that as the horizon becomes longer all parameters, except for

the constant At, approach zero. At converges to approximately 0.0925. Thus, for games with long

horizon the values converge to 0.0925, which are about 20% lower than the static Cournot profits

of 19 . This is the first illustration of how the dynamic interaction leads to a reduction in profits.

If they could, the two parties would have liked to avoid the “preparation race” and commit to the

static Cournot outcome throughout.

Figure 2 presents the symmetric equilibrium path for different initial production plans. As

long as these production targets are not too high, the two parties begin by increasing their targets,

each trying to become a Stackelberg leader, or at least not to fall behind and become a Stackelberg

follower. As the deadline gets closer, both firms are sufficiently committed to high output, so the

static best response functions begin to dominate. Both parties realize that they are much above

their static best responses, and optimally decide to gradually adjust towards it. Due to adjustment

costs, the parties will always end up at higher levels of output than those implied by their static

Nash equilibrium. In the particular example, the equilibrium outcome is about 0.37, compared to

the static outcome which is 13 . The reason that
1
3 cannot be reached is that the profit function is

flat at the static best response level. Thus, with any positive adjustment costs, no party will ever

fully adjust all the way to her static best response level. The optimal strategy will always lead to

only partial adjustment.

If initial production plans are sufficiently high (greater than about 0.44 in this particular

example), however, both parties are sufficiently committed to high production at date zero, so

there is no need to engage in further increases of production targets. The rate at which they

decrease their production targets over time is not constant, however, due to the commitment

effect. They first decrease quantities slowly, so they remain committed to high quantities, and

only later on they speed up this rate in the direction of their static best response levels.

Figures 3 and 4 present comparative statics with respect to the length of the horizon and

with respect to the size of the adjustment cost parameter. To keep intuition simple, in both

figures we keep initial production plans fixed at the static Cournot level. A quick inspection

of equation (9) reveals that these two exercises are somewhat similar. One can think about a

proportional increase in adjustment costs as slowing down the evolution of the value function.

Loosely speaking, this can be thought of as a horizontal stretch of Figure 1, so changes in the

adjustment cost parameter are similar to a rescaling of time. Figure 3 shows how the length

of the horizon affects the equilibrium path. As the horizon gets longer, there is more time and

room for dynamic effects, so production targets increase to higher levels, but ultimately decrease

faster as both firms are further away from their static best response functions. Therefore, the

equilibrium outcome is not affected “by much.” Figure 4 shows that this effect is not monotone.

When adjustment costs are decreased, there are two effects in play. The direct effect makes it

cheaper to increase production targets, creating an incentive for more competitive targets. In
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contrast, lower adjustment costs also make the commitment value of higher production targets

lower, reducing the incentive to increase production targets. In Figure 4 one can see that once

adjustment costs are low enough (θ = 0.2) firms do not increase their production targets as much.

The non-monotonic effect of the adjustment costs is clearly seen by looking at the two extreme

cases. As θ goes to zero, firms lose the ability to commit and the game reduces to a cheap

talk. Thus, in equilibrium players just play their static Cournot levels throughout. As θ goes

to infinity, firms stick to their initial plans and, again, a flat equilibrium path will arise. Thus,

only intermediate values of θ give rise to the patterns shown in the graphs. As the effect of θ is

smooth, it has to be case that the effect of the size of the adjustment costs is non-monotonic.

2.3 Intuition from a two-period model

The key qualitative prediction of the model is that firms start by exaggerating their production

intentions during some time interval before the production date. The intuition for this result is

straightforward and can be achieved by exploring a simple two-period analog. Suppose that at

period t = 0 firms start by having production targets of yi and yj . At period t = 1 firms can revise

their plans to xi and xj , but pay quadratic adjustment costs when they do so. Finally, in period

t = 2 firms have a final opportunity to revise the quantities they want to produce and set them

to qi and qj , paying the corresponding adjustment costs. Given these production levels, market

price is given by p(qi + qj), where p(·) satisfies the standard assumptions about inverse demand
function. There is no discounting. Payoffs are the final Cournot profits (with zero marginal costs)

minus any adjustment costs incurred in the process.

We can now solve for the Markov perfect equilibrium of the game using backward induction.

In period t = 2 each player i chooses qi to solve

max
qi

qip(qi + qj)− θ

2
(qi − xi)

2 (11)

so for each player i, qi has to satisfy

p+ qip
0 − θ(qi − xi) = 0 (12)

One can easily observe that if xi, xj are the static Nash equilibrium quantities, then setting qi = xi

for each i is an equilibrium. In general, the first order conditions define a best-response function

which is a rotation of the static best-response at the previously targeted production level. Because

of the adjustment costs, each player’s response to a change in her opponent’s quantity is not as

strong as it would otherwise be. With downward sloping best responses, it can be easily shown

that if x = xi = xj is greater (less) than the symmetric static Nash equilibrium quantities, the

players will end up adjusting in the direction of their static best responses, but not fully, thereby

ending up at a more (less) competitive equilibrium. To see this, consider the symmetric solution

to the first order condition, denoted by q∗. By taking derivative of the first order condition with
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respect to x and rearranging, we get that

∂q∗(x)
∂x

=
−θ

3p0 + 2q∗(x)p00 − θ
(13)

which is positive provided that the inverse demand function is not too convex (a similar condition

to the one that guarantees downward sloping best response curves). As already mentioned, at x

equal to the static Nash equilibrium, we have that q∗(x) = x. Thus, we obtain our result. Figure

5 illustrates this situation for a linear-quadratic framework. One can see how the best response

curves rotate at the planned quantity xi, and become flatter. In the figure, we show how higher

production plans lead to a reduction in equilibrium quantities (compared to target levels), but

still to a more competitive outcome than the static Nash equilibrium.

In period t = 1 firms choose xi and xj , accounting for the equilibrium strategies at t = 2. Let

qi(xi, xj) and qj(xi, xj) be the solution to the system defined by equation (12), then at t = 1 each

player i chooses xi to solve

max
xi

qi(xi, xj)p(qi(xi, xj) + qj(xi, xj))− θ

2
(qi(xi, xj)− xi)

2 − θ

2
(xi − yi)

2 (14)

implying the following first order condition for each player:

∂qi
∂xi

p+

µ
∂qi
∂xi

+
∂qj
∂xi

¶
qip

0 − θ(qi − xi)

µ
∂qi
∂xi
− 1
¶
− θ(xi − yi) = 0 (15)

For simplicity, we can now assume a linear demand function, i.e. p(Q) = a − bQ. Using

equation (12), best response functions (at t = 2) are given by

qi =
a− bqj + θxi
2b+ θ

(16)

and the t = 2 equilibrium outcome is given by

qi(xi, xj) =
ab+ θ (a+ (2b+ θ)xi − bxj)

3b2 + 4bθ + θ2
(17)

which is linear in xi and xj . It is now easy to see that ∂qi
∂xi

= 2bθ+θ2

3b2+4bθ+θ2
= k ∈ (0, 1) and

∂qi
∂xj

= −bθ
3b2+4bθ+θ2

= −l ∈ (−14 , 0). It is also easy to see that l =
¯̄̄
∂qi
∂xj

¯̄̄
<
¯̄̄
∂qi
∂xi

¯̄̄
= k. Substituting

this into equation (15) one could verify that if initial production targets and xj are at the static

Cournot level, the first order condition is positive, so player i would optimize by setting production

target which is higher than her static Cournot level. Simplifying more, by setting a = b = θ = 1,

one can get t = 1 equilibrium strategies to be xi = 1
104 16

21

(1717 + 64yi − 64
21yj). If we start at the

Cournot level, i.e. yi = yj =
1
3 we will get an equilibrium with xi = xj ≈ 0.357, which is higher

than the Cournot level. It is easy to see that at t = 2 we will then set qi = qj ≈ 0.339. Thus, the
qualitative conclusions are the same as in the continuous time case. Planned production levels

increase first, and decrease later.
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2.4 Initial actions

Our analysis so far took the “inherited” initial production levels as given. Clearly, one would like

to endogenize them. In this section we shed some light on how to do so.

One natural way would be to allow players to freely decide on their initial plans simultaneously

at date zero. In the continuous linear-quadratic case, this simultaneous-move game at date zero

has a unique equilibrium, as best response functions are linear. For example, in the two player

case the equilibrium is given by each player solving

max
qi

¡
A0 +B0qi + C0qj +D0q

2
i +E0q

2
j + F0qiqj

¢
(18)

which leads to a first order condition of

B0 + 2D0qi + F0qj = 0 (19)

In the symmetric case, the equilibrium is

qj = qi =
−B0

2D0 + F0
(20)

which gives rise to a “flat” equilibrium path until a certain point, and then to the regular decline

in production plans towards the end of the game. To understand why this path is initially flat, all

we need to see is that optimal choices in the Nash equilibrium of the initial production plans game

satisfy the first order condition ∂V i
0 (qi,qj)
∂qi

= 0. At the same time, the dynamic equilibrium strategies

determining the adjustment rates are given by equation (7), namely xi0(qi, qj) =
1
θ
∂V i

0 (qi,qj)
∂qi

, which

implies xi0(qi, qj) = 0.

There are other aspects that can be introduced into the model, affect the initial decisions,

and give rise to the various paths described in Section 2, and in particular to the non-monotonic

equilibrium path. Note that, as shown in Figure 1, the value function at date zero becomes

constant as the horizon goes to infinity. Thus, while there is a unique best response of the initial

production plan for any finite horizon, players are almost indifferent among any action taken at

that point. This implies that if there are other effects which may play a role in setting initial

actions, these effects are likely to dominate the strategic effects arising from the dynamic game.

What other effects may be important? Let us emphasize two possible sources. The first is the

introduction of uncertainty, which is discussed in more detail in Section 3. Suppose that market

conditions (e.g. the constant of the inverse demand function, a) at the deadline can be good

or bad, and that players get to observe the realization only after setting their initial production

plans. In such a case, players would tend to initially set some weighted average between the

optimal initial plan for the good realization and the optimal initial plan for the bad realization. If

conditions turn out to be low, we should then observe a downwards equilibrium path. If conditions

are high, however, we will observe the non-monotonic path arising.
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A second potential effect that may affect initial production plans has to do with the existence

of an already installed technology at date zero. This is very reasonable if one thinks that these

production encounters may happen repeatedly. Think of the application of this model to auto

manufacturers. They do not build a factory from scratch every month. For instance, it may be

reasonable to assume that they start with an inherited initial structure that would lead to a final

production similar to last period’s production. Now, one can imagine firms paying adjustment

costs if their first production plan is far away from the last actual production level. This, coupled

with the fact that the objective function is quite flat, would imply that in a stationary equilibrium

such adjustment costs would dominate the initial decision, and would make firms initially set

production targets that will give rise to the non-monotonic path. We discuss this extension more

in the next section.

3 Extensions to the basic model

The linear-quadratic model is attractive as it is quite simple to generalize the basic model along

several dimensions. In this section we briefly illustrate how the results extend. Most extensions

would retain the qualitative predictions of the model. This is true if we introduce time-varying

adjustment costs, asymmetries among players, symmetric uncertainty, or more than two players.

We also discuss the extension of the model to include repeated interaction. There are two cases in

which the qualitative predictions are different. This happens when the final strategic interaction

is of strategic complements, or when there is flow payoffs rather than payoffs that are collected

only in the end.

3.1 Asymmetric players

One could relax the symmetry assumption. Asymmetry can be introduced either through the

final payoff function (for example, firms may vary in their marginal costs) or through asymmetry

in the adjustment costs (for example, the labor of one firm is unionized while that of the other

is not). In what follows, we allow both, but will later do comparative statics on each dimension

separately.

We keep notation as before, with the addition of superscripts to denote the identity of the

player. Thus, player i’s adjustment costs function is now ci(xi, t) =
θi

2 x
2
i , and her (constant)

marginal costs are ci. The same goes for the time-varying parameters of each player’s value

function.

One can follow exactly the same steps as in Section 2 until the first point in which we imposed

the symmetry assumption, i.e. equation (8). Now, equation (8) can be written as

0 =
1

2θi

µ
∂V i

t

∂qi

¶2
+
1

θj

µ
∂V i

t

∂qj

¶Ã
∂V j

t

∂qj

!
+

∂V i
t

∂t
(21)

The value function for each player is now different, and we write it as
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V i
t (qi, qj) = Ai

t +Bi
tqi + Ci

tqj +Di
tq
2
i +Ei

tq
2
j + F i

t qiqj (22)

Substituting it into equation (21) gives us

0 =
1

2θi
¡
Bi
t + 2D

i
tqi + F i

t qj
¢2
+

1

2θj
¡
Ci
t + 2E

i
tqj + F i

t qi
¢ ³

Bj
t + 2D

j
t qj + F j

t qi

´
+ (23)

+
¡
Ai0
t +Bi0

t qi + Ci0
t qj +Di0

t q
2
i +Ei0

t q
2
j + F i0

t qiqj
¢

By collecting terms, we obtain the following law of motion for the parameters in player i’s value

function (symmetrically for player j):

Ai0

Bi0

Ci0

Di0

Ei0

F i0


=



1
2θi

Bi2 + 1
θj
BjCi

2
θi
BiDi + 1

θj
BjF i + 1

θj
CiF j

1
θi
BiF i + 2

θj
BjEi + 2

θj
CiDj

2
θi
Di2 + 1

θj
F iF j

1
2θi

F i2 + 4
θj
DjEi

2
θi
DiF i + 2

θj
DjF i + 2

θj
EiF j


(24)

with the boundary condition given, for example, by

Ai
T

Bi
T

Ci
T

Di
T

Ei
T

F i
T


=



0

a− ci

0

−b
0

−b


(25)

It may be interesting to look at comparative statics. Figure 6 illustrates the case of asymmetric

final payoffs. In particular, it uses the same example as the one used in Section 2, but introduces

a (constant) marginal cost of 0.2 for player 2. Static Nash equilibrium is now given by q1 = 0.4

and q2 = 0.2. Figure 6 presents this case (with identical adjustment costs) for different initial

conditions. The general pattern is quite similar to the symmetric case, with the more efficient

player always producing more than her opponent, and more than her static Nash equilibrium

quantity. There are two interesting points to note. First, not surprisingly, this setup can give

rise to cases in which one of the players has the non-monotonic equilibrium path while the other

only goes down. This happens when the initial plans for both players are intermediate (0.3 in

the example plotted in Figure 6). This is analogous to the symmetric setup, in which players

vary in their initial production plans. In the asymmetric case, such variation may seem more

realistic. For example, one can imagine that both firms set their initial plans first, and only later

learn which one of them enjoys the cost advantage. The second interesting observation is that

with asymmetries, it can happen that the less efficient player eventually ends up producing less
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than her static Nash quantity. This is shown in the thin solid line. This happens because once

we introduce asymmetries in payoffs, it also implies asymmetries in commitment opportunities.

Although both players have identical adjustment costs, the more efficient player is producing

more, so, in absolute terms, her static payoff function is steeper around the equilibrium. This

allows her to have better commitment opportunity, thereby enjoying a Stackelberg advantage.

This makes the less efficient firm take a role of a Stackelberg follower, thereby producing less than

its static Nash quantity. In all cases, however, overall quantity is higher (more competitive) than

the static equilibrium level of 0.6. The fact that the more efficient firm enjoys, ceteris paribus,

a commitment advantage also implies some allocative efficiency, so welfare is higher due to both

higher consumer surplus and more efficient allocation of resources among the firms.

Figure 7 presents the case of symmetric payoff functions (identical to the example of Section 2),

but asymmetric adjustment costs. In the limit of such a case, when one player has zero adjustment

costs while the other has infinite adjustment costs, we are approaching the simple Stackelberg case,

with the zero adjustment costs player acting as a Stackelberg follower, as her opponent can commit

to any level of output. Figure 7 presents more intermediate cases, which illustrate this. As the cost

asymmetry is higher, the commitment opportunity for the high adjustment cost firm increases,

and we get closer to the Stackelberg outcome of 0.5 and 0.25. One should note, however, that with

finite time, it is not only that the relative adjustment costs matter, but the absolute ones as well.

For example, keeping the relative adjustment costs the same, the thin solid line can be compared

to the thick solid line. As can be expected, lower level of adjustment costs (the thin line) makes

commitment less important, and the eventual quantities produced are somewhat closer to the

static best response. It is somewhat interesting to note that this case (the thin line) shows that

one could generate a slight reversed non-monotonic equilibrium path for the Stackelberg follower

in this model.

3.2 Uncertainty

Adjustment costs introduce a mechanism for commitment in this model. Firms would like to com-

mit to enjoy a first-mover advantage, which is the main reason for the non-monotonic equilibrium

path. With uncertainty, however, commitment comes at a cost, as firms who make a commitment

are not as flexible to react to unexpected events later on. To understand the trade-off, we intro-

duce the simplest source of uncertainty into the linear-quadratic model. Consider the two-player

symmetric game, but assume that final demand can take one of two values, high (H) or low (L).

We assume that firms have no private information, and that at any given point in time their

(common) beliefs are such that either H or L will be realized. These beliefs follow a symmetric

Markov process: with probability λ per unit time the beliefs will change, and with probability

(1− λ) they will remain the same.6

6One could also think about firms getting continuous signals about the state of the world in time T , and

using Bayesian updating to revise their beliefs. This somewhat more natural modeling is likely to generate similar
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We can now follow the same steps as in Section 2 with few modifications. We now have two

value functions, as the additional state variable is another indicator. Let these two value functions

be VLt and VHt. Thus, the equation for VL is given by:

V i
Lt(qi, qj) = maxxi

µ
−θ
2
x2i +

∂V i
Lt

∂qi
xi +

∂V i
Lt

∂qj
xj +

∂V i
Lt

∂t
+ V i

Lt(qi, qj) + λ
¡
V i
Ht(qi, qj)− V i

Lt(qi, qj)
¢¶
(26)

and symmetrically for VH . The structure of uncertainty is attractive as the continuous choice of

adjustment rate does not directly depend on λ, as at a given point in time there is probability

zero for a change in beliefs. Optimal adjustment rate is given by

−θxi + ∂V i
Lt

∂qi
= 0 =⇒ xi =

1

θ

∂V i
Lt

∂qi
(27)

and symmetrically for H. It clearly depends on λ indirectly, through the dependence of the value

functions on λ.

This structure results in an identical system of ordinary differential equation, with only one

modification. In each equation, with probability λ we switch to the other value function. Let

s = L,H be the state of the world, and let r = H,L be the other state. The system of 12

differential equations, which defines the law of motion for the parameters, is given by:

A0s
B0s
C 0s
D0
s

E0s
F 0s


= λ



Ar −As

Br −Bs

Cr −Cs

Dr −Ds

Er −Es

Fr − Fs


+
1

θ



1
2B

2
s +BsCs

2BsDs +BsFs + CsFs

BsFs + 2BsEs + 2CsDs

2D2
s + F 2s

1
2F

2
s + 4DsEs

4DsFs + 2EsFs


(28)

with the boundary condition given by the different profit functions at each state.

In the equilibrium of this game, firms will be somewhat more reluctant to commit. After all,

firms care about the current belief about demand only to the extent that it affects the eventual

realization of demand. With the horizon far enough into the future, the current state is not

particularly informative about the final state of demand, so the two value functions will be similar

to each other. Only as the horizon draws near, firms will be more willing to act upon their

beliefs. Thus, one may think about this in a similar way to the time-varying adjustment costs

case described below: firms will be more flexible towards the end, as early on they will be reluctant

to take an action. This is somewhat similar to a rescaling of time.

The equilibrium path of such a game would clearly depend on the realization of firms’ beliefs.

It may be worth mentioning the two extremes, when the beliefs never change throughout the

game. In this case, firms will initially set some intermediate level of initial production target. As

qualitative results. It is more complicated as it introduces a continuous state variable, while the setup we use

introduces only a binary state variable.
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the horizon draws near, they will either have the non-monotonic equilibrium path, in the case of

beliefs being always H, or the monotone (downwards) path in the case of beliefs being always L.

3.3 Repeated Interaction

As our application described below is focused on a case where repeated interaction among players

is present, it is important to show that our qualitative results can still hold. We sketch below the

simplest possible extension of our framework for a repeated game. This extension also provides an-

other rationale for the choice of initial production plans, which will give rise to the non-monotonic

equilibrium path.

Consider two symmetric players playing an infinitely repeated game. Time is continuous, but

production takes place only at a discrete set of points in time, at which payoffs are collected

(except for adjustment costs, which, as before, are spent continuously). Players discount profits

with a common discount factor of δ. Between two consecutive production points, players engage

in a production preparation stage. This stage involves quadratic adjustment costs, just as in our

basic model. As we think about production plans as involving real actions, it seems plausible

that (quadratic) adjustment costs are also paid when initial production plans for a subsequent

production period are different from last period actual production levels. These adjustment costs

are of somewhat different nature from adjusting production plans, so they may have a different

parameter. We solve for the Markov Perfect Equilibrium of the model. As each production period

is identical, we search for the symmetric stationary equilibrium.

To summarize, given last period production of (yi, yj), each period lasts T units of time and

has the following structure:

• At t = 0 each player i sets her initial production plan for next period, qi(0). When doing
so she pays production adjustment costs of µ

2 (qi(0)− yi)
2.

• At t ∈ (0, T ] each player i continuously adjusts her production target, paying an adjustment
cost of θ

2 (q
0
i(t))

2 in the process.

• At t = T each player i produces her target quantity, qi(T ), and collects payoffs of (a −
b (qi(T ) + qj(T ))− c)qi(T ).

This process is then being infinitely repeated.

Given that the game still has a linear-quadratic structure, the value function remains quadratic

in the state variables. Thus, the solution to the value function within each period will be the same

as in our benchmark model, but with different boundary conditions. The boundary conditions

will now be determined endogenously, as part of the steady state. The qualitative nature of the

results, however will remain unchanged. Initial production plans will be chosen optimally, but

because of the production adjustment costs will typically be lower than the unconstrained choice.

We sketch the qualitative pattern of the equilibrium path in Figure 8. Note that the level

of production in such an equilibrium will be even higher than the production level in our basic
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model. This is because in addition to the commitment effect, which we already described, there

is an additional dynamic effect of commitment through the production adjustment costs. This

second effect is the same as in the standard infinitely repeated linear-quadratic models analyzed

in the literature (Maskin and Tirole, 1986; Reynolds, 1987 and 1991; Jun and Vives, 2004).

3.4 Other Extensions

N players The basic results remain unchanged with more than two players. We consider only

the fully symmetric case, as things become quite messy if we consider many asymmetric players.

The derivation is provided in Appendix A. The system of differential equations gives rise to

qualitatively identical equilibrium patterns as that obtained from the basic two player model.

The only difference from the two-player case is that the value function has one additional element.

Player i’s value now depends also on the distribution of target quantities among her opponents.

In particular,
P

j 6=i
P

k 6=i,j qjqk enters player i’s value. As may be expected, the parameter on
this additional element evolves quite similarly to the parameter on

P
j 6=i q

2
j , namely Et, presented

in Figure 1.

Time-varying adjustment costs One may argue that adjustment costs may vary over time.

One reason for this may be discounting. While payoffs are collected only in the end, adjustment

costs are spent over time, so discounting would make future adjustment costs relatively lower. A

different reason for time-varying costs may lead to the opposite effect. It may be reasonable to

believe that adjustments are more difficult as the production date gets closer. As an example,

hiring more temporary labor three months before production may be cheap, while labor availability

one day before production is scarce, and will require higher wages or higher search costs on the

employer part. The second case would make this model a special case of the general framework

proposed in Caruana and Einav (2004).

Fortunately, it is straightforward to incorporate such effects into the model. All one needs to

do is to specify the adjustment cost function as

ci(xi, t) =
θ(t)

2
x2i

imposing no restrictions on θ(t). Discounting would simply mean that θ(t) = βtθ, while Caruana

and Einav (2004) framework would mean that θ(0) = 0 and θ(T ) = ∞. Since the model is not
stationary by construction, this imposes no additional difficulties. The derivation of the system

of ordinary differential equations remains the same as in equation (9), with the only difference

being that θ is replaced by θ(t). As one can notice, however, θ enters to the system just in a

proportional way. Therefore, replacing it by θ(t) is somewhat similar to a rescaling of time. When

θ(t) is low the coefficients on the value function change fast, and when θ(t) is high the coefficients

change slow. All other qualitative predictions remain unchanged.
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Flow payoffs One can modify our model so payoffs are collected continuously rather than only

in the end. This will make the structure of the model quite similar to Cyert and DeGroot (1970),

with the main difference being the commitment technology. Cyert and DeGroot (1970) introduce

commitment by an alternating move game, so a player is committed for one additional period in

a discrete time case. We introduce commitment, as many other papers in the literature do in an

infinite horizon context,7 through adjustment costs.

Solving our differential game with flow payoffs is quite similar. The only difference is that

it “moves” the boundary condition to the law of motion. The boundary condition in our case

reflects the final payoffs. In the flow payoffs case, this is just the way payoffs are accumulated

over time, thereby affecting the slope of the value function’s parameters. In the basic model, this

would mean a boundary condition of zeros for all parameters, and a law of motion of

A0

B0

C 0

D0

E0

F 0


=



0

a

0

−b
0

−b


+
1

θ



1
2B

2 +BC

2BD +BF + CF

BF + 2BE + 2CD

2D2 + F 2

1
2F

2 + 4DE

4DF + 2EF


(29)

The important point to note is that despite the fact that this flow payoff game is not stationary,

it behaves very close to a stationary game. After a quick adjustment to the stationary path in the

beginning and a quick adjustment in the end, for most of the time things are stable. The reason

is that the incentive to commit do not change over time as much as they do in our original game.

This is because much of the payoffs from committing are collected along the way, reducing future

incentives to commit. This feature is the main reason why, indeed, Cyert and DeGroot (1970)

mainly focus on the stationary part of their finite-horizon game, and that the literature has so far

found it somewhat unappealing to look at finite horizon flow-payoff games. As we show in this

paper, the finite horizon has much stronger effects when payoffs are only collected in the end, as

in the basic game presented in this paper.

Strategic complements One can notice that in our derivation of the law of motion for the

game, the specific assumption about quantity competition was not important. It only affected the

solution through the boundary condition. In that sense, one could easily apply the same structure

for other linear-quadratic settings, such as games of strategic complements. For example, suppose

firms compete by setting prices, and pay adjustment costs any time they change the price. Indeed,

Jun and Vives (2004) analyze a flow-payoff infinite-horizon linear-quadratic games of both strategic

substitutes, strategic complements, and a mixture of the two.

7See, among others, Masking and Tirole (1987), Fershtman and Kamien (1987), Lapham and Ware (1994),

Reynolds (1987, 1991), and Jun and Vives (2004).

16



There are two reasons why we focus all our attention on quantity competition and strategic

substitutes. The first is because of the data. In our data auto manufacturers set production

plans, making quantity to be the natural strategic variable in this setup. Second, coordination

rather than commitment is central to games with strategic complements. Therefore, the strategic

interaction obtained is not that different from that of standard infinitely repeated games. Loosely

speaking, the preparation phase only allow firms to coordinate on higher prices, but does not lead

to interesting time dependencies.

4 Evidence from the auto industry

We analyze data about production targets of the major auto manufacturers in the U.S. These

decisions are also studied by Doyle and Snyder (1999).8 Prior to each production month, the

major U.S. auto manufacturers — General Motors (GM), Ford, Chrysler, and American Motors

(AMC) — decide about their production targets for future months. Estimates of these targets

are published in Ward’s Automative Reports for all manufacturers, as early as six months prior

to the actual production date.9 Targets are summarized by the number of cars to be produced

by each manufacturer, aggregated over all brands and models. Ward’s Automative Reports is

a weekly industry newsletter, specializing in industry data and statistics.10 The data set has a

panel structure and covers the years 1965 to 1995, for a total of 372 production months.11 While

production target estimates are typically published on a monthly basis, the number of published

estimates vary across production months. Overall, for each production month, we observe 1 to 12

production targets (for each manufacturer), with a mean of 4.35. The data include 1,620 target

levels for GM, Ford, and Chrysler, and 1,114 for AMC (whose data are only available through

mid 1987). These production targets are later matched with actual production figures. Figure

9 presents the total number of published estimates made at each 10 day interval prior to actual

production. As one can see, production plans are typically published once a month, typically

on the last week of the month, although one can see some density between the monthly peaks.

One can also observe that the number of observations is quite stable over the 3-4 months before

production. There are significantly fewer earlier observations.

It is important to discuss the fit of the automobile application to the theoretical framework.

8We are extremely grateful to Maura Doyle and Chris Snyder for the willingness to share their data with us. We

will be brief in describing the data here, as one can refer to Doyle and Snyder (1999) for more details.
9These targets are being described by various synonyms: “assemply targets,” “assembly schedules,” “production

plans,” “production forecasts,” etc.
10Potential readers are encouraged to buy subscription to the newsletter by the following quote posted onWard’s

web site: “News and numbers you can’t do without. Auto analysts and decision-makers must get the latest, vital

statistics on the industry’s health, plus updated news, analysis and projections that impact their companys’ futures.”

(http://wardsauto.com/war/index.htm)
11Some of the observations in the data include post production revisions. We omit these observations. We only

focus on estimates made before production.
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In the model, production plans have a commitment value as they are costly to change; otherwise,

they would be pure cheap talk. In order for this to be case, it may be useful to discuss what

the production targets in the data may stand for. We think about the main auto manufacturers

continuously taking actions that affect their future production capabilities (contracting to hire

more labor, canceling vacations, contracting more parts from suppliers, etc.). These actions

are observable to their competitors, just as they are observable to the publisher of Ward’s. The

newsletter reports these actions to third parties (suppliers, dealers, analysts). Ward’s only reports

snapshots of those actions on a monthly basis. Thus, we think about these discrete observations as

reflecting an underlying continuous decision process, such as the one described by our theoretical

model. It seems natural to assume that such production-related decisions are costly to change.

Moreover, if it were purely cheap talk, it seems unreasonable that Ward’s would have found it

profitable to publish it. The only reason to publish such information is if it had some commercial

value to third parties. In addition, one should note that if such third parties act upon this

information, and if these actions affect manufacturers’ profits, this by itself creates adjustments

costs of the type analyzed by the theoretical model.

Consequently, we will focus on two key variables. The first is the time until the deadline

(in days). The second is the production target. In order to make targets comparable over time

and across manufacturers, we normalize all targets by eventual production. A data point in our

analysis is (dit, qit) for manufacturer i and production month t. dit is the number of days between

the day the estimated production target was published and the last day of the production month,

for which it was made. qit is the normalized target, i.e.

qit ≡ 100
µ
Pit −Qit

Qit

¶
(30)

where Qit is actual production by manufacturer i at month t, and Pit is manufacturer i’s pro-

duction plan. This transformation of the data is similar to the PPE measure used in Doyle and

Snyder (1999). Our measure has the opposite sign and uses a slightly different normalization in

order to more closely relate the variables to the theoretical predictions.12 Thus, qit is positive

(negative) when a manufacturer plans higher (lower) production than she eventually produces.

Our key theoretical prediction is that manufacturers will typically exaggerate, and that towards

the production date they will gradually reduce their production plans.

Our basic evidence is based on pooling observations from multiple production months. The

basic assumption that justifies it is that, up to the normalization discussed above, the same game

is being played repeatedly over time. It enables treating different production targets in different

games as if they are made in the same context. We then use quartic (biweight) kernel regressions

of qit on dit to describe nonparametrically the evolution of production plans over time. In all

figures, we use a bandwidth of 30 days.

12This normalization requires us to drop two production targets by GM for October 1970, a month in which GM

produced (almost) no cars, i.e. Qit = 0. All our qualitative results carry through if, instead, we use the PPE

measure of Doyle and Snyder (1999), which would allow us to keep these two observations.
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Figure 10 presents the pattern for the major three manufacturers, and for their average. One

can observe a sharp decline in production plans towards the actual production date. This is true

for the average, as well as for each of the manufacturers separately. This is consistent with the

predictions of the model. The average shows a non-monotonic pattern: it peaks approximately

2-3 months before production at production targets which are about 10 percent above actual

production, and then declines. One can see, however, that this pattern is not uniform across

manufacturers. While Ford and Chrysler, the two smaller firms, follow similar non-monotonic

pattern, GM exhibits a very different behavior. GM’s average initial production target is about

15 percent higher than its eventual production, and it gradually declines as the deadline gets

closer. This is, of course, not inconsistent with the model: if initial production targets are high,

the model predicts a gradual decline over time. It would be interesting to explain why GM’s

(relative) initial production plans are consistently much higher than those of Ford and Chrysler.

As mentioned in Section 3, uncertainty may help to rationalize it. For example, if uncertainty is

not about aggregate demand but about an event that has different effects on different firms, the

theoretical model can predict differential patterns for different manufacturers. As an example, if

firms are uncertain whether GM’s workers will go on a strike or not, such uncertainty may result

in a different behavior for GM and for its rivals.13

Figure 11 repeats the same exercise for AMC, as well as for the average of all four manufac-

turers. The solid line in Figure 11 is the same as the thick solid line in Figure 10 to facilitate

comparison between the two figures. As can be easily seen, AMC exhibits a similar trend to that

of GM, but its magnitude is much higher. AMC begins with an average initial production target of

almost 80 percent higher than its eventual production. We are not completely sure about the in-

terpretation of this. One should remember, however, that AMC’s data cover a shorter observation

period, and account for an average market share of about 2%, compared to much higher market

shares of the other three manufacturers (42%, 21%, and 11% for GM, Ford, and Chrysler, respec-

tively). Thus, this makes the underlying strategic effect of AMC negligible for two reasons. First,

if adjustment costs are related to the absolute (not relative) magnitude of adjustments, adjusting

downwards by AMC is pretty cheap, giving its exaggerated production plan little commitment

value. Second, due to AMC’s tiny market share, 80% increase in its anticipated production still

has little effect on its competitors’ profits. Despite this qualification, one should note that this

pattern is still consistent with the qualitative predictions of the model.

Figure 12 reports the above kernel estimates with 95 percent confidence intervals. We compute

the confidence interval by bootstrapping the data, and running the same kernel regression on

each bootstrapped sample. The dashed lines in each figure report the point-by-point 2.5 and 97.5

percentiles, while the solid line reports the 50th percentile, which is approximately the same as

the estimates reported above. It shows that the observed decline in planned production towards

the production deadline is quite precisely estimated. It also shows that the confidence intervals

13The important effects of labor strikes on production during the observation period are discussed in Doyle and

Snyder (1999).
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shrink as the production deadline gets closer. This happens for two reasons. First, as may be

expected, the variance in the estimates is lower close to the day of production. This may be due

to various factors related to uncertainty, which are outside of our model. Such factors are likely

to be more pronounced when the production deadline is further away in the future. The second

reason is because the number of early production target estimates observed is significantly smaller

than the number of observations closer to the production deadline.14

One should note that none of the empirical findings here are inconsistent with the empirical

findings of Doyle and Snyder (1999). Doyle and Snyder focus on the positive correlation among

revisions to production plans by different manufacturers, which is interpreted as evidence for

information sharing. Our theoretical model also predicts such positive correlation, but due to

strategic considerations. Doyle and Snyder (1999) also point out that production plans are, on

average, higher than actual production. They do not analyze this pattern as their main theoretical

framework of information sharing does not provide any restrictions on this dimension. Finally,

we should also note that our findings do not imply that information-sharing has no role in this

setting. The observed pattern of production plans may well be driven by both information-sharing

motives as well as strategic commitment considerations. In fact, we pool observation from different

periods in order to average out the period-specific noise. The period-specific patterns vary quite

substantially, and may be driven by different realizations of uncertainties. Our framework is

therefore more relevant for the average pattern rather than for the period-by-period pattern,

while information-sharing motives are more likely to be important and observed within production

periods.

One important gap between the model and the evidence is that the model analyzes sales, while

the available data is about production.15 For these to be similar, inventories (and, to a lesser

extent, quantity produced abroad) should be roughly stable over time.16 Modeling inventories

is beyond the scope of this paper. In our view, however, it seems difficult to construct a model

that, by considering inventory fluctuations per se, could generate the pattern in production plans

that we observe. The fact that our results rely on a panel rather than on a cross-section implies

that inventory fluctuations should be integrated out once we average over all monthly production

periods. Still, of course, inventories change the strategic environment, and modeling it in a more

structural way may be useful. We leave this for future research.

Finally, our basic theoretical framework is focused on a one-time production interaction, which

follows a dynamic phase of gradual commitment. In contrast, the data is generated by a set of

14These two reason are consistent with each other. If early production targets are subject to a great deal

of uncertainty, they have less value to industry decision makers, making them less likely to be reported by the

newsletter.
15We should note that we are not the first to use a Cournot framework to approximate the strategic interaction

in this market. Doyle and Snyder (1999) do the same, as well as Berndt, Friedlander, and Wang Chiang (1990),

who cannot reject the Cournot model in this context.
16See Kahn (1992) and Bresnahan and Ramey (1994) for theory and evidence about the relationship between

sales and production. See also Judd (1996) for a dynamic model of inventories in a framework similar to ours.
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repeated production games. One could consider the interaction in the auto industry as a nested

repeated game. The main auto manufacturers repeatedly play the production game, which could

be approximated by a standard infinitely repeated game. Within each stage game, however,

manufacturers engage in a dynamic preparation phase. As we discuss in Section 3, extending our

framework in this direction is straightforward. In doing so, the qualitative predictions from the

basic model carry through, thereby making our empirical analysis still valid.

5 Concluding remarks

In this paper we presented a dynamic commitment model in a Cournot framework. Pre-production

preparations provide a commitment device, as changing them is costly. Thus, in a full informa-

tion environment firms use such preparations strategically. We illustrate this point using a finite-

horizon linear-quadratic differential game. We show that under these conditions firms have an

incentive to exaggerate in their production targets in an attempt to achieve a Stackelberg leader-

ship position. As a consequence, the final production levels are higher than in a static framework.

More precisely, the model predicts that firms will first increase their intended production levels

over time, and only later on, as the deadline gets closer, they will start lowering their production

targets.

The finite horizon nature of the problem is an interesting feature of the model. It provides rich

qualitative predictions that can be supported (or falsified) by the data. We use data on production

plans of auto manufacturers to investigate the model’s implications. The evidence show that, on

average, auto manufacturers increase their production targets over time, until about 2-3 months

before production, when they start decreasing them. This pattern is consistent with the theoretical

prediction.

At this stage, we interpret these evidence as suggestive only. It seems to us, however, difficult

to come up with alternative models which can generate the same qualitative predictions. Thus,

we are encouraged to view these findings as empirical support for the relevance of the strategic

role of pre-production preparations in determining final production decisions.

On a more methodological level, we think that this exercise illustrates the empirical potential

of finite-horizon non-stationary models. When they are applicable, such models may provide

sharper qualitative predictions, which have the potential to be empirically verified or falsified

without the need for more precise structural assumptions.
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Appendix

A N players

Consider N > 2 symmetric players. We can write the value function as

V i
t (qi, q−i) = maxxi

−θ
2
x2i +

∂V i
t

∂qi
xi +

X
j 6=i

∂V i
t

∂qj
xj +

∂V i
t

∂t
+ V i

t (qi, q−i)

 (31)

The first order condition for xi is, as before

−θxi + ∂V i
t

∂qi
= 0 =⇒ xi =

1

θ

∂V i
t

∂qi
(32)

We can now plug this back into equation (31), as well as the symmetric solution for xj , rearrange,

and get the following differential equation

0 =
1

2θ

µ
∂V i

t

∂qi

¶2
+
1

θ

X
j 6=i

Ã
∂V j

t

∂qj

!µ
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t

∂qj

¶
+

∂V i
t

∂t
(33)

We guess that the value function would be symmetric in the opponents’ state variables, so it

will only have one additional element compared to the basic model. The quadratic value function

can be written as

V i
t (qi, qj) = At +Btqi +

X
j 6=i

Ctqj +Dtq
2
i +

X
j 6=i

Etq
2
j +

X
j 6=i

Ftqiqj +
X
j 6=i

X
k 6=i,j

Gtqjqk = (34)

= At +Btqi + CtQ−i +Dtq
2
i +EtR−i + FtqiQ−i +GtS−i

where Q−i =
P

j 6=i qj , R−i =
P

j 6=i q
2
j , and S−i =

P
j 6=i
P

k 6=i,j qjqk. Note that Q
2
−i = R−i + S−i.

This also implies that

xit(qi, qj) =
∂V i

t

∂qi
= Bt + 2Dtqi + FtQ−i (35)

Thus, we can write equation (33) again to be

0 =
1

2θ
(Bt + 2Dtqi + FtQ−i)2 +

1

θ

X
j 6=i
(Ct + 2Etqj + Ftqi + 2Gt(Q−j − qi)) (Bt + 2Dtqj + FtQ−j) +

+
¡
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2
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(36)
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After collecting terms (and reversing signs for A0, B0, etc. as before), we get the following law of
motion: 

A0

B0

C 0

D0

E0

F 0

G0
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1
2B
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2F
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1
2F

2 + 2EF + 4GD + 4FG(N − 3)


(37)

with the boundary condition (for t = T ) given by

AT
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CT

DT
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FT

GT
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(38)
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Figure 1: Parameters of the value function
This figure plots the parameters of the value function in the basic model, when parameters

are set to a = b = 1, c = 0, and θ = 1. The value function is given by equation (6):

V i
t (qi, qj) = At +Btqi + Ctqj +Dtq

2
i +Etq

2
j + Ftqiqj

and the figure below shows how each of its parameters change over time.

The parameters can be thought of either as initial value functions for games with different

horizons (so T is on the horizontal axis), or as continuation values within a particular game (so t

is on the horizontal axis). Due to the Markov structure, these two interpretations are identical.

One can see that as the horizon becomes longer all parameters, except for the constant At,

approach zero. At converges to approximately 0.0925. Thus, for games with long horizon the

values converge to 0.0925, which are about 20% lower than the static Cournot profits of 19 .
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Figure 2: Equilibrium path with different (symmetric) initial ac-
tions

This figure plots the equilibrium path in the basic model, when parameters are set to a = b = 1,

c = 0, and θ = 1. It does so for different values of initial production plans: 13 (the Cournot level),

0.37, 0.4, 0.43, 0.46, and 0.5 (the Stackelberg level). All paths are using a symmetric case, in

parameters and in initial actions, so equilibrium path is identical for both players.

Clearly, equilibrium paths of the different cases do not cross each other. Note, however, the

final production levels are much closer (around 0.37 in all cases) to each other compared to the

initial production plans. Note also that the equilibrium path is non-monotonic when initial actions

are sufficiently low (less than about 0.44 in this case), with the peak being closer to the deadline

as the initial actions are lower. When initial actions are higher, equilibrium path is monotone,

but the rate of decrease in production targets is much higher towards the deadline, due to the

commitment effect.
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Figure 3: Equilibrium path with different horizons
This figure plots the equilibrium path in the basic model, when parameters are set to a = b = 1,

c = 0, and θ = 1, and initial production plans are 1
3 (the Cournot level). It does so for different

horizons: 100, 50, 10, and 1.

As can be seen, as the horizons gets longer, players have more time to smooth out their

production target increase, therefore peaking at a higher level. Once the deadline gets closer,

however, this higher build-up declines faster, leading to increase in cost. Final production levels

do not change by much, unless the horizon is very short (as is the case when T = 1).
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Figure 4: Equilibrium path with different adjustment cost para-
meters

This figure plots the equilibrium path in the basic model, when parameters are set to a = b = 1,

c = 0, and initial production plans are 1
3 (the Cournot level). It plots different cases for the

adjustment cost parameters, θ (0.2, 0.5, 1, and 5).

From the figure, one can a get sense of the non-monotonicity of the commitment effect. When

adjustments are costly, the commitment effect is greater, but increasing production targets to

higher levels are more costly. Depending on the size of adjustment costs, one effect or the other

is more dominant.
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Figure 5: Illustration of how the best response functions change
as a result of adjustment costs

This figure sketches the dynamic effect of adjustment costs in the context of a two-period

model. The solid lines are the static best response functions. The dashed lines are the best

response functions when production targets are higher than the Cournot level. Due to adjustment

costs, the best response function rotates at the level of the production target, and becomes less

responsive to the opponent’s action. The new equilibrium is therefore given by the intersection of

the two dashed lines, giving rise to production levels which are more competitive, namely higher

than the Cournot level.
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Figure 5: Illustration of how the best response functions change as a result of adjustment costs
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Figure 6: Asymmetric players with different marginal costs
This figure plots the equilibrium path in a two-player model with asymmetric players. Para-

meters are set to a = b = 1, and θ = 1. One player has zero marginal costs (c1 = 0), while the

other has positive marginal costs (c2 = 0.2).

The figure plots three different cases, for different initial production plans. As players are

asymmetric, each case has two paths, one for each player. The thin solid lines present the case

where initial production plans are at the Cournot level (q1 = 0.4, q2 = 0.2). The dashed lines

present the case of a reversed initial production plans (q1 = 0.2, q2 = 0.4), and the thick solid

lines present the case of identical initial plans (q1 = q2 = 0.3).

As the horizon is reasonably long, in all cases the lower marginal cost player (player 1) even-

tually gain higher market share. Her market share is higher the higher is her initial production

plan. It is somewhat interesting to note that player 2 ends up producing (slightly) less than her

Cournot level in one of the cases (0.195 compared to her Cournot level of 0.2).
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Figure 7: Asymmetric players with different adjustment costs
This figure plots the equilibrium path in a two-player model with asymmetric players. Pa-

rameters are set to a = b = 1, c = 0, and θ = 1. One player (player 1), however, has higher

adjustment cost parameter than her opponent. This allows her to more credibly commit to higher

production levels. The figure presents three different cases, all of them with initial production

plan set at the Cournot level.

As can be seen, in all cases, the higher adjustment costs of player 1 gives her a commitment

advantage, so she takes a Stackelberg leadership position in the market. In the limit, if she could

fully commit, she would choose the Stackelberg level of 0.5. The second player reacts by reducing

her production target, making her look more like a Stackelberg follower. It is somewhat interesting

that in this case once could get non-monotonic path that goes in the reverse direction for player

2.
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Figure 8: Sketch of an equilibrium path of a “nested” repeated
game

This figure sketches the equilibrium path of a “nested” linear-quadratic repeated game, which

we describe in Section 3. Given some stationary equilibrium of the infinitely repeated game, the

one-period value function will serve as the boundary condition for the preparation stage. This will

give rise to the pattern of production targets described in the figure. With adjustment costs in

setting initial production plans, players will never fully adjust to the level of the peak production

target, thereby giving rise to the non-monotonic path within each preparation stage.
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Figure 8: Sketch of an equilibrium path of a “nested” repeated game
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Figure 9: Frequency and timing of production target observations
This figure provides information about the timing of the observations available. Recall, there

are 372 production months in the data. Thus, one can see that starting at around four months

before production, observations are available at least on a monthly basis, typically at the last

week of the month. Earlier observations about production targets are not as regular, with very

few coming more than six months prior to actual production.
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Figure 10: Kernel regressions for the major three manufacturers
(1965-1995)

This figure presents quartic (biweight) kernel regressions of production targets, measured

according to equation (30), as a function of the number of days before production. It does so for

each of the major three manufacturers (GM, Ford, and Chrysler), as well as for the (unweighted)

average (“Big3”). Each series is based on 1,620 observations. Standard errors for these estimates

are reported in Figure 12. All estimates use bandwidth of 30 days.
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Figure 11: Kernel regressions for the major four manufacturers
(1965-1987)

This figure, just as the previous one, presents quartic (biweight) kernel regressions of produc-

tion targets, measured according to equation (30), as a function of the number of days before

production. Since the data about AMC production targets span shorter observation period, this

figure also reports the (unweighted) average for all four manufacturers (“Big4”), as well as for the

major three (“Big3∗”), for the same observation period. The other “Big3” series covers the whole
sample, is identical to the one presented in the previous figure, and is shown for comparison. The

rest of the series are based on 1,114 observations (compared to 1,620) and 270 production months

(compared to 372). Standard errors for these estimates are reported in Figure 12. All estimates

use bandwidth of 30 days.
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Figure 12: Kernel estimates with confidence intervals
This figure provides 95 percent confidence intervals for the estimates reported in Figure 10

and Figure 11. Confidence intervals are computed by bootstrapping the data, and running the

same kernel regression on each bootstrapped sample. The dashed lines in each figure report the

point-by-point 2.5 and 97.5 percentiles, while the solid line reports the 50th percentile, which is

approximately the same as the estimates reported above in Figure 10 and Figure 11.
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Figure 12: Kernel estiamtes with confidence intervals
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