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Abstract

We analyze coalition formation problems in which a group of agents is partitioned

into coalitions and agents' preferences only depend on the identity of the members

of the coalition they are members of. We study (coalition formation) rules that

associate to each pro�le of agents' preferences a partition of the society. Our main

interest is to devise rules that never provide incentives for the agents to misrepresent

their preferences. Hence, we analyze strategy-proof rules in restricted domains of

preferences as the domain of additively representable or separable preferences. In

such restricted domains, we show that a family of rules {single-lapping rules{ are the

only rules that ful�ll the requirements of strategy-proofness, individual rationality,

non-bossiness, and minimal exibility. Single-lapping rules are characterized by

severe restrictions on the set of feasible coalitions. However, these rules always

select core-stable partitions. Hence, our results highlight the relation between the

non-cooperative concept of strategy-proofness and the cooperative concept of core-

stability. We also analyze the implications of our results to matching problems as

marriage, roommate, or college-admission problems.
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1 Introduction

We analyze simple coalition formation problems in which a group of agents is partitioned

into coalitions and agents have preferences over the coalitions they are members of. Fol-

lowing the terminology proposed by Dr�eze and Greensberg [8], we focus on problems

characterized by the \hedonic" aspect of coalition formation. Agents' preferences only

depend on the identity of the members of the coalition to which they belong. Hence, we

exclude the existence of externalities among di�erent coalitions. The most relevant exam-

ples of such problems are matching problems as the roommate problem, or the formation

of social clubs, organizations, teams or societies.

The literature of Coalitional Game Theory has extensively analyzed the existence of

stable partitions in hedonic coalition formation problems.1 Instead, we propose a so-

cial choice approach. We study coalition formation rules that associate to each pro�le

of agents' preferences a partition of the group of agents. Our main concern is that our

rules satisfy strategy-proofness. Strategy-proofness is the strongest decentrability prop-

erty. Each agent needs to know only her own preferences to compute her best choice.

It is well known that the requirements of strategy-proofness are hard to meet. In the

abstract model of social choice, Gibbard [10] and Satterthwaite [15] show that {provided

there are more than two alternatives at stake{ every strategy-proof social choice rule is

dictatorial. However, reasonable strategy-proof rules do exist if appropriate restrictions

are imposed on agents' preferences. We focus on restricted domains of preferences over

coalitions as the domain of additively representable preferences and the domain of sepa-

rable preferences, that exclude complementarities among the members of a coalition. For

these domains of preferences, possibility results have been obtained in the literature. For

instance, in the context of a group of agents choosing a subset from a set of objects (that

represent, for instance, candidates who opt to some number of available positions), when

agents' preferences over sets of objects are additively representable, then strategy-proof

rules can be decomposed into independent rules, one for each object.2

Besides strategy-proofness, we would like our rule to satisfy three additional proper-

ties that are natural in the context of coalition formation problems. Our rules should be

individually rational, non-bossy and exible. Individual rationality is a minimal partici-

1For further references, see the recent works by Banerjee, Konishi, and S�onmez [3], Barber�a and

Gerber [4], Bogomolnaia and Jackson [6], and P�apai [12].
2See Barber�a, Sonnenschein, and Zhou [5] and Le Breton and Sen [11] for further details.
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pation constraint. It means that no agent should be ever worse o� than she would be in

her own. Non-bossiness is a collusion-proof requirement. It says that if a change in an

agent's preferences does not a�ect the coalition to which this agent is assigned, then the

remaining agents are also una�ected by this change of preferences. Flexibility says that

every partition formed by a collection of feasible coalitions belongs to the range of the

rule. For some agents to form a coalition is not necessary that other coalitions are also

formed.

Our main result characterizes a family of rules that ful�lls the previous axioms, the

family of single-lapping rules. Single lapping rules are characterized by severe restric-

tions over the set of feasible coalitions. On the other hand, single-lapping rules always

select core-stable partitions of the society, in the sense that no feasible coalition of agents

may unanimously prefer to join each other rather than to stay at the coalition they are

assigned. Hence, our main result provides further evidence on the relation between the

Non-Cooperative Game Theory concept of strategy-proofness and the Cooperative Game

Theory concept of the core.

Before proceeding with the formal analysis, we review the most related literature.

P�apai [12] is closely related to this work. This author analyzes restrictions over the set

of feasible coalitions that ensure the existence of unique core-stable partitions. She intro-

duces the single-lapping property and shows that the single-lapping property is a su�cient

condition for unique core-stability. Moreover, it is also shown that single-lapping rules are

the only rules that satisfy strategy-proofness, individual rationality, and a weak version

of e�ciency when agents' preferences over coalitions are not restricted. Our theorems re-

inforce their results, since we show that, indeed, similar results also hold in much tighter

domains of preferences.

Finally, we refer to the works by Alcalde and Revilla [2], Cechl�arov�a and Romero-

Medina [7], and S�onmez [17]. All these works study strategy-proof coalition formation

rules. However, they focus on di�erent domains of preferences. More speci�cally, Alcalde

and Revilla [2], Cechl�arov�a and Romero-Medina [7] assume that agents' preferences over

coalitions are based on the best or the worst group of agents in each coalition. In these

environments, they prove the existence of strategy-proof rules that always select core-

stable partitions. S�onmez [17] proposes a general model of allocation of indivisible goods

that can be applied to coalition formation problems. He focuses on preference domains

for which there always exist core-stable partitions. His main result states that there exist
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strategy-proof, individually rational, and Pareto e�cient rules only if the set of core-stable

partitions is always essentially single-valued.3

The remainder of the paper is organized as follows. In Section 2, we present the model

and basic notation. In Section 3, we present di�erent agents' domains of preferences over

coalitions. In Section 4, we introduce the main axioms while in Section 5, we provide the

characterization results. In Section 6, we prove our main result (Theorem 1). In Section

6, we conclude by analyzing some applications of our result to di�erent classes of coalition

formation problems.

2 Basic Notation

Let N = f1; : : : ; ng be a society consisting of a �nite set of at least 3 agents. We call a

non-empty subset C � N a coalition. We denote by N the set of all non-empty subsets

of N . For each C 2 N , let [C] � ffig : i 2 Cg. A collection of coalitions is a set

of coalitions � � N that contains all the singleton sets, [N ] � �. We denote by � a

partition of N and by � the set of all partitions of N . For each i 2 N and each � 2 �,

we denote by �i 2 � the coalition in � to which i belongs.

For each i 2 N , let Ci = fC � N; i 2 Cg. That is, Ci is the set of all coalitions to

which i belongs. A preference for i, %i, is a complete order on Ci.
4 For each i 2 N , we

denote by Di the set of all agent i�s admissible preferences. As we assume that agents only

care about the coalition they belong to, agents' preferences over partitions are completely

de�ned by their preferences over coalitions. Then, abusing notation, we say that for each

i 2 N , each %2 Di, and each �; �0 2 �, � is at least as good as �0, � %i �
0, if and only if

�i %i �
0
i.

For each i 2 N , each set of coalitions X � N , and each %i2 Di, let top(X ;%i) be the

coalition in X \ Ci that is ranked �rst according to %i.

Let D = �i2NDi. We call %2 D a preference pro�le. For each C � N , DC = �i2CDi ,

while for each %2 D, %C2 DC denotes the restriction of pro�le % to the preferences of

the agents in C. Let �D � D, we say that �D is a cartesian domain if for each i 2 N

there is �Di 2 Di such that �D = �i2N
�Di.

3Under some preference assumptions as strict preferences and no-consumption externalities that are

ful�lled in coalition formation problems, Takayima [18] proves that the converse results also holds.
4An order is a reexive, transitive, and antisymmetric binary relation.
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We are interested in rules that associate a partition of the society to each pro�le of

agents' preferences.

Let �D � D be a cartesian domain. A (coalition formation) rule de�ned on the

domain �D is a mapping ' : �D ! �.

For each i 2 N and each %2 �D, 'i(%) denotes the coalition in '(%) to which i belongs.

We denote by R' the range of ', that is, the set of feasible partitions,

R' � f� 2 �; such that there is %2 �D; '(%) = �g;

while, F' denotes the set of feasible coalitions,

F' � fC 2 N ; such that for some � 2 R'; C 2 �g:

3 Preferences over Coalitions: Rich Domains

We start by presenting two classes of preferences over sets that play a crucial role in our

analysis. We call them top preferences and bottom preferences. These preferences are

obtained by extending orders over single agents to preferences over coalitions. The basic

idea behind our preferences over sets is that according to some order of the set of agents,

each agent i divides the set of possible mates into two groups. Those agents that she likes,

and those agents she dislikes. An agent equipped with top preferences prioritizes joining

the agents she likes the most with respect to avoiding the agents she dislikes. On the

other hand, an agent equipped with bottom preferences prioritizes avoiding the agents

she dislikes the most with respect to joining the agents she likes. In order to present both

domains of preferences, we introduce �rst additional notation.

Let P be the set of all complete orders over N . For each P 2 P , R denotes the weak

order associated to P and it is de�ned in the usual way. For each C � N and each

P 2 P , we denote by max(C;P ) and min(C;P ), respectively, the agents of C who are the

�rst-ranked and last-ranked agents by P . Next, for each i 2 N , each P 2 P , and each

C 2 Ci, let C+
i (P ) � fj 2 C; s.t. j R ig , and C�

i (P ) � fj 2 C s.t. i R jg . Now, de�ne

C+
i (1; P ) � max(C+

i ; P ) and C�
i (1; P ) � min(C�

i ; P ) . Once C+
i (t; P ) and C�

i (t; P ) �

min(C�
i ; P ) are de�ned for some t � 1, iteratively, let

C+
i (t+ 1; P ) � max

��
C+
i (P ) n [

t
k=1C

+
i (k; P )

�
; P
�
; and,

C�
i (t+ 1; P ) � min

��
C�
i (P ) n [

t
k=1C

�
i (k; P )

�
; P
�
:
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Let i 2 N and P 2 P .

The preference %i2 Di is the top preference associated to P by i, %i=%
+
i (P ) if

for each two distinct coalitions C;C 0 2 Ci, C � C 0 if and only if

� C+
i (P ) 6= C 0+

i (P ) and C+
i (t; P ) P C 0+

i (t; P ), where t is the �rst integer such that

C+
i (t; P ) 6= C 0+

i (t; P )

� C+
i (P ) = C 0+

i (P ) and C�
i (t

0; P ) P C 0�
i (t0; P ), where t0 is the �rst integer such that

C�
i (t

0; P ) 6= C 0�
i (t0; P ).

The preference %i2 Di is the bottom preference associated to P by i, %i=%
�
i (P )

if for each two distinct coalitions C;C 0 2 Ci, C � C 0 if and only if

� C�
i (P ) 6= C 0�

i (P ), and C�
i (t; P ) P C 0�

i (t; P ), where t is the �rst integer such that

C�
i (t; P ) 6= C 0�

i (t; P )

� C�
i (P ) = C 0�

i (P ) and C+
i (t

0; P ) P C 0+
i (t0; P ), where t0 is the �rst integer such that

C+
i (t

0; P ) 6= C 0+
i (t0; P ).

For each i 2 N , let

D+
i � f%i2 Di such that for some P 2 P ; %i=%

+
i (P )g ;

D�
i � f%i2 Di such that for some P 2 P ; %i=%

�
i (P )g ;

D�
i � D+

i [ D
�
i and;

D� � �i2ND
�
i :

Let �D � D. We say that �D is a rich domain if �D is cartesian and D� � �D.

Next, we present two domains of preferences that have been extensively analyzed

in the social choice literature, the domains of additive preferences and the domain of

separable preferences. Both domains exclude the possibility of (negative or positive)

complementarities among the members of a coalition.

Let i 2 N . A utility function for agent i is a mapping ui : N ! R such that

ui(i) = 0. A preference for agent i, %i2 Di is additively representable if there is

a utility function ui such that for each A;B 2 Ci, A %i B if and only if
P

a2A ui(a) �P
b2B ui(b). For each i 2N,Ai denotes the set of all i's additively representable preferences

for agent i and let A � �i2NAi.
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A preference for i, %i2 Di, is separable if for each j 2 N and each C 2 Ci such

that j =2 C, fi; jg �i fig if and only if (C [ fjg) �i C. Let Si be the set of all agent i's

separable preferences and let S � �i2NSi.

The following remark shows that the additive and the separable domains are rich

domains.

Remark 1. Let i 2 N .

(a) If n � 4, then D�
i � Ai � Si.

(b) If n = 3, then D�
i = Ai = Si.

Proof. It is well-known that additive preferences are separable. Hence, we only prove

the inclusion D�
i � Ai. Let %i2 Di be such that for some P 2 P , %i=%

+
i (P ). Let

t� � ft 2 N : i = N+
i (t; P )g, and �t � n� t�. For each j 2 N+

i (P ) n fig, if j = N+
i (k; P ),

then let ui(j) = nn�k, whereas for each j0 2 N�
i (P ) n i, if j

0 = N�
i (k

0; P ), then let

ui(j
0) = �(n�t�k�1). Now, let %0

i2 Di be such %
0
i=%

�
i (P ). For each j 2 N+

i (P ) n fig, if

j = N+
i (k; P ), then let u0i(j) = nt

��k�1, whereas for each j0 2 N�
i (P )ni, if j

0 = N�
i (k

0; P ),

then let u0i(j
0) = �(nn�k).

The proof of (b) is just a matter of checking. Let N = fi; j; kg. Note that D�
i ; Ai and

Si consist of the following eight preferences:

%1
i : %2

i : %3
1: %4

i : %5
i : %6

i : %7
i : %8

i :

fi; j; kg fi; j; kg fi; jg fi; jg fi; kg fi; kg fig fig

fi; jg fi; kg fi; j; kg fig fi; j; kg fig fi; jg fi; kg

fi; kg fi; jg fig fi; j; kg fig fi; j; kg fi; kg fi; jg

fig fig fi; kg fi; kg fi; jg fi; jg fi; j; kg fi; j; kg

Note that %1
i ;%

2
i ;%

7
i ;%

8
i2 D

+
i \ D

�
i , while %

3
i ;%

5
i2 D

+
i n D

�
i , and %

4
i ;%

6
i2 D

�
i n D

+
i .

We close this section with a �nal remark on the size of the domain D�
i . It is clear

that by focusing on the domain D�
i we are restricting considerably the set of admissible

preferences.

Remark 2. For each i 2 N , #D�
i = 2(n� 1)(n� 1)!) while #Di = (2(n�1))!.
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4 Axioms

This section introduces four properties that rules may satisfy. Let �D � D be a cartesian

domain. Let ' : �D ! � be a rule de�ned on �D.

Our main axiom is an incentive constraint. A rule should provide incentives for the

agents to report their true preferences. Only if a rule elicits the true preferences from

the agents the social choice will be based upon the correct information. Of course, this

property refers to the speci�c domain in which the rule is de�ned.

Strategy-Proofness. For each i 2 N , each %2 �D, and each %0
i2 �Di, 'i(%) %i 'i(%�i;%

0
i) .

Conversely, ' is manipulable if ' is not strategy-proof in �D.

The Gibbard-Satterthwaite Theorem states that every strategy-proof rule on an un-

restricted domain either is dictatorial or its range contains only two elements.5 As we

assume that agents' preferences over social outcomes are restricted to depend only on the

coalitions they are members of and we focus on rich domains, the negative consequences

of the Gibbard-Satterthwaite Theorem do not apply to our framework.

We also consider a minimal participation constraint. Agents should not prefer to stay

on their own rather than to belong to the coalition that the rule assigns them.

Individual Rationality. For each i 2 N and each %2 �D, 'i(%) %i fig.

Note that, for every individually rational rule, its set of feasible allocations is a collec-

tion of coalitions.

We consider rules such that whenever a change in an agent's preference does not

change the coalition she is assigned to, then the assignment for the remaining agents does

not change.

Non-Bossiness. For each i 2 N , each %2 �D, and each %i2 �Di, 'i(%) = 'i(%�i;%
0
i)

implies '(%) = '(%�i;%
0
i).

Although in our model there does not exist any transferable private good, we can

interpret non-bossiness as a collusion-proof or bribe-proof condition. A violation of its

5A rule de�ned in the domain �D is dictatorial if there is i 2 N (a dictator) such that for each %2 �D,

'i(%) = top(F';%i) .
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requirements implies a possibility of collusion. An agent might misrepresent her prefer-

ences in exchange for a transfer (of a private good) from those who bene�t from her lie.

We also introduce a minimal exibility condition on the range of the rule. We assume

that the range of a rule is determined by the set of feasible coalitions.

Flexibility. For each � = fC1; : : : ; Cmg 2 �, Ct 2 F' for each t = 1; : : : ;m, implies

� 2 R'.

Flexibility is a mild condition. It does not assume the feasibility of any coalition

and it does not restrict signi�catively the range of applications of our model. It avoids

interdependence among coalitions.

Although in principle, we are not interested in e�ciency, we include now a minimal

e�ciency requirement.

Pareto E�ciency (on the Range). There is no � 2 R' such that for each i 2 N

�i %i 'i(%), and for some j 2 N , �j �j 'j(%).

5 Characterization Results

In this section we analyze the implications of the axioms listed above over rules de�ned

on rich domains. First, we introduce additional notation due to P�apai [12]. This author

proposes a property over sets of coalitions { the single-lapping property{ that ensures the

existence of a unique core-stable partition for every preference pro�le. We make use of

this property to de�ne a class of rules.

A collection of coalitions � satis�es the single-lapping property if

Condition (a): For each C;C 0 2 �, C 6= C 0 implies #(C \ C 0) � 1.

Condition (b): For each fC1; : : : ; Cmg � � with m � 3 and for each t = 1; : : : ;m,

#(Ct\Ct+1) � 1 (where m+1 = 1), there is i 2 N such that for each t = 1; : : : ;m,

Ct \ Ct+1 = fig.

9



Condition (a) states that if there is an overlap between any two coalitions in the

collection, there cannot be more than one agent who is member of these two coalitions.

Condition (b) is a non-cycle condition. It requires that if a set of coalitions in the collection

form a cycle in which every two neighbor coalitions have a common member, then all

these coalitions have the same common member. A prominent property of single-lapping

collection of coalitions is that for every preference pro�le, there is a coalition in the

collection such that all its members think that this coalition is the best coalition in the

collection.6 This fact implies that for every single-lapping collection of coalitions and

every preference pro�le there is a unique core-stable partition of the society. Moreover,

P�apai [12] also shows that the single-lapping property is a necessary condition for the

existence of a unique core-stable partition when agents' preferences over coalitions are

unrestricted. Furthermore, she also presents the following algorithm that allows us to

�nd such partition.

For each %2 D� and each single-lapping collection of coalitions � � N , the core-

stable partition associated to � at pro�le %, ���(%), can be identi�ed by the

following algorithm:

Algorithm: P�apai [12] Find C 2 � such that for each i 2 C, top(�;%i) = C . As � is

single-lapping, such coalition exists. Note that there may be several such coalitions,

and all these coalitions are disjoint. Let M�(1;%) denote the set of all coalitions

that are obtained in this �rst stage. Let �(1;%) � �. Let T�(1;%) denote the set

of agents that are matched in the �rst stage. Then,

M�(1;%) � fC 2 � such that for each i 2 C; top(�;%i) = Cg

T�(1;%) � [C2M�(1;%)C

Once �(t;%); M�(t;%), and T�(t;%) are de�ned for some t � 1, let,

�(t+ 1;%) � fC 2 � such that C \ T�
t = f?gg;

M�(t+ 1;%) � fC 2 �(t+ 1;%) such that for each i 2 C; top(�(t+ 1;%);%i) = Cg and,

T�(t+ 1;%) � [C2M�(1;%)[:::[M�(t+1;%)C:

Note that, for each t = 1; : : : ;m, �(t;%) � �, �(t;%) is a collection of coali-

tions for the reduced society N n T�(t;%). Moreover, �(t;%) satis�es the single-

lapping property. Then, the algorithm identi�es a unique partition, ���(%) � fC 2

6See Lemma 1, P�apai [12].
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� such that for some t � m; C 2 M�
t g, where m � n is the smallest integer such

that T�(m;%) = N ..

As for each single-lapping collection of coalitions and each preference pro�le there is a

unique core-stable partition, each single-lapping collection of coalitions de�nes a unique

rule.

Let �D � D be a cartesian domain of preferences and let ' be a rule de�ned on �D.

The rule ' is a single-lapping rule if there is a single-lapping collection of coalition �

such that for each %2 �D, '(%) = ���(%).

P�apai [12] has proved that single-lapping rules there are not other rules de�ned on

D satisfying strategy-proofness, individual rationality, and Pareto e�ciency. Of course,

single-lapping rules also satisfy those axioms when de�ned on smaller domains. Moreover,

single-lapping rules also satisfy non-bossiness and exibility. The fact that for each

single-lapping rule and each preference pro�le there is a feasible coalition such that all

its members think that this is their best preferred coalition is the key point on the non

manipulability of single-lapping rules.

Theorem 1. Let �D � D be a rich domain of preferences. If the rule ' de�ned on �D

is a single-lapping rule, then ' satis�es strategy-proofness, individual rationality, non-

bossiness, and exibility.

Proof. Let F' = �. As ' is a single-lapping rule, � is a single-lapping collection of

coalitions. Let us check that ' satis�es strategy-proofness. Let %2 �D. For each i 2

T�(1;%), 'i(%) = top(�;%i). Then, agents in T�(1;%) cannot manipulate. Moreover,

by the de�nition of single-lapping rule for each %02 �D such that for each i 2 T�(1;%)

%i=%
0
i, 'i(%) = 'i(%

0). Now, let j 2 T�(2;%). If there exists C 2 � such that

C �j 'j(%), then there is i 2 T�(1;%)) such that i 2 C. As for each %0
j2 �Dj, for each i 2

T�(1;%), 'i(%Nnfjg;%
0
j) = T�(1;%), 'j(%) %j 'j(%Nnfjg;%

0
j), and j cannot manipulate.

Repeating iteratively the argument with the remaining steps of the algorithm, we obtain

that no agent can manipulate. Let us check that ' satis�es individual rationality. By

the de�nition of single-lapping rule, for each i 2 N and each %2 �D, there is t � n such

that 'i(%) 2M�(t;%). Note that fig 2 �(t;%). By the de�nition of single-lapping rule,

'i(%) � top(�(t;%);%i). Then, 'i(%) %i fig. Let us check that ' satis�es non-bossiness.

Let i 2 N , %2 �D, and%0
i2 �Di be such that 'i(%) = 'i(%Nnfig;%

0
i). Let i 2 T�(t;%). As '
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is a single-lapping rule, for each j 2 [t0�tT
�(t0;%), 'j(%) = 'j(%Nnfig;%

0
i). Moreover, as

'i(%) = 'i(%Nnfig;%
0
i), for each k 2 [t0�tT

�(t0;%), also 'k(%) = 'k(%Nnfig;%
0
i) . Then,

'(%) = '(%0). Finally, let us check that ' satis�es exibility. Let � = fC1; : : : ; Cmg 2 �

be such that for each t = 1; : : : ; k, Ct 2 �. Let %2 �D be such that for each t = 1; : : : ;m

and each i 2 Ct, top(N ;%i) = Ct. By the de�nition of single-lapping rule, '(%) = � and

� 2 R'.

Next, we present our main result. We prove that even if we restrict dramatically the

domain of admissible preferences and we focus on the smallest rich domain, single-lapping

rules are the only rules that satisfy our list of axioms.

Theorem 2. Let ' : D� ! �. If ' satis�es strategy-proofness, individual rationality,

non-bossiness, and exibility then ' is a single-lapping rule.

Proof. See Section 5.

The intuition behind the proof of Theorem 2 runs as follows. First, for every rule

that satis�es our axioms, whenever a feasible coalition of individuals agrees that they are

the best coalition available, they should become together. The result follows immediately

once we check that the set of feasible coalitions satis�es the single-lapping property. This

step is far from being immediate, although the analysis is relatively simple for three agents

societies. An induction argument extends the results to arbitrary societies.

From Proposition 1 and Theorem 2, we obtain the following characterization theorem.

Theorem 3. A rule ' de�ned on a rich domain of preferences satis�es strategy-proofness,

individual rationality, non-bossiness, and exibility if and only if ' is a single-lapping

rule.

At this point, we have to relate our results those by S�onmez [17]. They are logically in-

dependent, but all highlight the close relation between the concepts of strategy-proofness

and core-stability. S�onmez [17] proves that for coalition formation problems for which

there is always a core-stable partition, there is a rule that satis�es strategy-proofness,

individual rationality, and Pareto e�cient if there is always a unique core-stable parti-

tion.7 Besides the di�erent set of axioms that we analyze, the main di�erence between our

framework and S�onmez's one relies on the domain of preferences over coalitions. S�onmez

7Takayima [18] shows that in fact the converse result is also true.
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[17] assumes the existence of certain preferences that need not to exist on a rich domain.

Basically, S�onmez [17] assumes that for each i 2 N , and each A 2 (F' \ Ci), if there is

an admissible preference %i such that A �i fig then there is another admissible prefer-

ence %0
i such that for each B 2 (F' \ Ci) n fig, B %0

i A if and only if B %i A, while

A %i B if and only if A %0
i B and A %0

i fig %
0
i B. However, there are rich domains,

as the domain of additively representable preferences, for which such preferences are not

admissible. Let i; j; k 2 N , and assume fi; jg; fi; kg; fi; j; kg 2 F'. Let %i2 Ai be such

that fi; j; kg �i fi; jg � fi; kg � fig, but there is no %0
i2 Ai such that fi; j; kg �0

i fig,

fig �0
i fi; jg, and fig �

0
i fi; kg.

Richness is a severe restriction on the domain of admissible preferences. This fact

makes our negative result stronger. Similar results hold for other plausible domains of

preferences as the domains of additively representable or separable preferences. Then, we

can state the following result.

Corollary 1. Let ~' : A ! �. Then, ~' satis�es strategy-proofness, individual rationality,

non-bossiness, and exibility if and only if ~' is a single-lapping rule.

Corollary 2. Let ~' : S ! �. Then, ~' satis�es strategy-proofness, individual rationality,

non-bossiness, and exibility if and only if ~' is a single-lapping rule.

Theorems 2 and 3 are tight if there are at least four agents. When there are only three

agents, exibility is directly implied by individual rationality. The following examples

show the independence of the axioms.

Example 1 (Strategy-proofness). For each i 2 N and each %2 D�, let

IRi(%) � fC 2 Ci; such that for each j 2 C;C %j fjgg :

Let i 2 N . Let '�SP be such that for each %2 D�, '�SPi (%) � top(IRi(%);%i) and for

each j =2 top(IRi(%);%i), '
�SP
j (%) � fjg. Note that '�SP satis�es individual rationality,

non-bossiness, and exibility. However, '�SP violates strategy-proofness.8

8In order to check that '�SP is manipulable, let N = fi; j; kg, %2 D�, and %0
j2 D�

j be such that

fi; jg �î fi; j; kg �i fig, fi; j; kg �j fi; jg �j fj; kg �j fjg, and fi; kg �k fi; j; kg �k fkg; while

fj; kg �0
j f�; j; kg �

0
j fjg. Note that '

�SP (%) = (fi; jg; fkg), while '�SP (%Nnfjg;%
0
j) = fi; j; kg. Then,

'�SPj (%Nnfjg;%
0
j) �j '

�SP
j (%).
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Example 2 (Individual rationality). Let N = fi; j; kg. Assume that agents i and j form

a club and have to vote on whether they admit agent k in the club. In order to join the

club, agent k only needs the support of one of the other agents. Then, for each %2 D�,

let

'�IR(%) �

(
fi; j; kg if fi; j; kg �k fkg; and either fi; kg �i fig; or fj; kg �j fjg;

(fi; jg; fkg) otherwise.

The rule '�IR is an instance of voting by committees as presented by Barber�a et al. [5].

It is clear that '�IR satis�es strategy-proofness, non-bossiness, and exibility. However,

'�IR violates individual rationality.

Example 3 (Non-Bossiness). Let N = fi; j; kg. Let '�NB be such that for each %2 D�,

'�NB (%) =

8>><
>>:
fi; j; kg if for each i0 2 N; fi; j; kg %i0 fi

0g ;

(fi; jg ; fkg) if fi; jg �i fig; fi; jg �j fjg and top(N ;%k) = fkg;

(fig ; fjg ; fkg) otherwise.

It is not di�cult to check that '�NB satis�es individual rationality, strategy-proofness,

exibility. However, '�NB violates non-bossiness.9

Example 4 (Flexibility). Let N = fi; j; k; lg. Let '�F be such that for each %2 A,

'�F (%) =

(
(fi; jg; fk; lg) if for each m 2 N; (fi; jg; fk; lg) %m fmg;

(fig; fjg; fkg; flg) otherwise.

It is immediate to check that '�F satis�es individual rationality, strategy-proofness, and

non-bossiness. However, '�R violates exibility.

6 Proof of Theorem 2

We begin this section by introducing some properties that are implied by our axioms.

These properties incorporate the idea that a rule cannot be against the preferences of

the members of the society. When there is a partition that each agent considers at least

as good as every other partition, a rule should choose that best-preferred partition. A

9In order to check that '�NB violates non-bossiness, let %2 A, %0
k2 Ak be such that fi; jg �i fig,

fi; jg �j fjg, top(N ;%k) = fkg, while fj; kg �0
k fkg �

0
k fi; j; kg. Note that '(%) = (fi; jg; fkg) and

'(%Nnfkg;%
0
k) = [fig; fjg; fkg].
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stronger requirement would be that whenever the members of a coalition consider this

coalition as the best coalition, a rule should allow them to join, independently of the

preferences of the remaining agents in society.

Unanimity (on the Range). Let � = fC1; : : : ; Cmg 2 � be such that for each

t = 1; : : : ;m , Ct 2 F' . For each%2 D�, each t = 1; : : : ;m , and each i 2 Ct, top(F
';%i) = Ct

implies '(%) = � .

Top-Coalition (on the Range). Let C 2 F' and %2 D�. If for each i 2 C,

top(F';%i) = C , then for each i 2 C, 'i (%) = C.

It is clear that top-coalition implies unanimity. Note that top-coalition is a property

of rules. Banerjee et al. [3] use the term top-coalition to name a a property of preference

pro�les. These authors say that a preference pro�le satis�es the top-coalition property if

for every group of agents V � N there is a coalition C � V that is mutually the best

for all the members of C. Basically, our top-coalition implies that if a preference pro�le

satis�es the Banerjee et al.'s top-coalition property, then the rule selects a partition in

which the coalition that all its members consider that coalition as the best is formed.

Lemma 1. Let ' : D� ! � satisfy strategy-proofness non-bossiness, and exibility.

Then, ' satis�es unanimity.

Proof. Let � = fC1; : : : ; Cmg 2 � be such that for each t = 1; : : : ;m, Ct 2 F'. Let

%2 D� be such that for each t = 1; : : : ; t and each i 2 Ct, top(F
';%i) = Ct . By exibility,

� 2 R'. Then, there is %02 D�, such that '(%0) = �. Let i 2 N . Let %002 A be such

that %00
i=%i while for each j 2 N n fig, %00

j=%
0
j. By strategy-proofness, 'i(%

0
Nnfi;%i) %i

'i(%
0) = top(F';%i). Then, 'i(%

0
Nnfi;%i) = 'i(%

0) = top(F';%i). By non-bossiness,

'(%0
Nnfi;%i) = '(%0). Repeating the argument as many times as necessary, we obtain

'(%) = '(%0).

Lemma 2. Let ' : D� ! � satisfy strategy-proofness, individual rationality, non-bossiness,

and exibility. Then, ' satis�es top-coalition.

Proof. Let C 2 F'. Let %2 D� be such that for each i 2 C, top(F';%i) = C. If

#C = 1, the result follows from individual rationality. If C = N , the result is immediate

by unanimity. Let %02 D� be such that for each i 2 C, top(F';%0
i) = C, and for each
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C 0 � N , such that there is j 2 (C 0 n C), fig �i C
0, while for each k =2 C, %k=%

0
k. By

individual rationality, for each i 2 C, 'i(%) � C. Let %002 A be such that for each

i 2 C, %0
i=%

00
i while for each k 2 (N n C), 'k(%

0) = top(F';%00
k) . By strategy-proofness,

'k(%
0
Nnfkg;%

00
k) = 'k(%

0) . By non-bossiness, '(%0
Nnfkg;%

00
k) = '(%0) . Repeating the ar-

guments for each k 2 (N nC), '(%0) = '(%00). By unanimity, for each i 2 C, 'i(%
00) = C.

Then, 'i(%
0) = C. Finally, let i 2 C. By strategy-proofness, 'i(%

0
Nnfig;%i) %i 'i(%

0) .

Then, 'i(%
0
Nnfig;%i) = C. Repeating the argument as many times as necessary, we obtain

that for each i 2 C, 'i(%) = C.

In the following lemma we prove that agents' preferences over unfeasible coalitions are

irrelevant for the social choice.

Lemma 3. Let ' : D� ! � satisfy strategy-proofness and non-bossiness. Then, for each

%;%02 D� such that for each i 2 N , and each C;C 0 2 (F' \ Ci), C �i C
0 if and only if

C �0
i C

0, '(%) = '(%0).

Proof. Let%;%02 D� be such that for each each i 2 N , and each C;C 0 2 (F'\Ci), C �i C
0

if and only if C �0
i C

0. Let i 2 N . By strategy-proofness, 'i(%Nnfig;%
0
i) %

0
i 'i(%) and

'i(%) %i 'i(%Nnfig;%
0
i) . Then, as for each C;C 0 2 (F' \ Ci), C �i C

0 if and only if

C �0
i C

0, 'i(%) = 'i(%Nnfig;%
0
i). By non-bossiness, '(%) = '(%Nnfig;%

0
i). Repeating

the argument as many times as necessary, we get '(%) = '(%0).

The following lemma presents the crucial step in the proof of Theorem 2.

Lemma 4. Let ' : D� ! � satisfy strategy-proofness, individual rationality, non-bossiness,

and exibility. Then, F' satis�es the single-lapping property.

Proof. The proof is by induction on the number of agents. We �rst focus on three-agent

societies. Then, we extend the result to arbitrary societies.

Claim 1. Let n = 3, then F' satis�es Condition (a) of the single-lapping property.

Let N = fi; j; kg. Assume to the contrary that F' does not satisfy Condition (a).

Then, there are C;C 0 2 F' such that #(C \ C 0) � 2. We have two cases.

Case (a.1 ): F' = ffig; fjg; fkg; fi; jg; fi; j; kgg.
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Let �%k 2 D
�
k be such that fi; j; kg��kfi; kg��kfj; kg��kfkg. Let the rule �'fi;jg : D�

fi;jg ! �

be such that for each %fi;jg2 D�
fi;jg, �'fi;jg(%fi;jg) � '(%fi;jg; �%k). By ''s strategy-

proofness, �'fi;jg satis�es strategy-proofness. By ''s top-coalition,

R �'fi;jg = f(fig; fjg; fkg); (fi; jg; fkg); fi; j; kgg:

Note that, agent i and agent j's preferences over the partitions in R �'fi;jg are unrestricted.

Hence, �'fi;jg satis�es strategy-proofness, its range contains three elements, and agents'

preferences over the elements of the range are unrestricted. Then, by the Gibbard-

Satterthwaite Theorem, �'fi;jg is dictatorial. Assume that i is the dictator for �'fi;jg.

Let %fi;jg2 D�
fi;jg be such that fi; j; kg �i fi; jg �i fig and fjg �j fi; jg �j fi; j; kg.

Then, '(%fi;jg; �%k) = fi; j; kg , but fjg �j 'j(%), which violates individual rationality.

Case (a.2 ) ffig; fjg; fkg; fi; jg; fj; kg; fi; j; kgg � F'.

Let %12 D� be such that,

%1
i : %1

j : %1
k:

fi; jg fi; jg fj; kg

fig fjg fi; j; kg

fi; j; kg fi; j; kg fkg

fi; kg fj; kg fi; kg

By top-coalition, ' (%1) = (fi; jg; fkg):

Let %22 D� be such that %2
Nnfig=%

1
Nnfig and fi; j; kg %2

i fi; jg %
2
i fi; kg %

i
2 fig.

By strategy-proofness, 'i(%
2) %2

i 'i(%
1). Then, 'i(%

2) is either fi; j; kg or fi; jg. As

fjg �2
j fi; j; kg, by individual rationality, 'i(%

2) = fi; jg. Then, by non-bossiness,

'(%2) = '(%1) .

Let %32 D� be such that %3
Nnfjg=%

2
Nnfjg and fi; jg %

3
j fi; j; kg %

3
j fjg. By strategy-

proofness, 'j (%
3) %3

j 'j(%
2). Then, 'j(%

3) = fi; jg: By non-bossiness, ' (%3) = ' (%2).

Now, let %42 D� be such that %4
Nnfig=%

3
Nnfig and fi; kg %

4
i fi; j; kg %

4
i fig. Then,

%4
i : %4

j : %4
k:

fi; kg fi; jg fj; kg

fi; j; kg fi; j; kg fi; j; kg

fig fjg fkg

fi; jg fj; kg fi; kg
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By individual rationality, 'k(%
4) 6= fi; kg and 'j(%

4) 6= fj; kg. By strategy-proofness,

'i(succsim
3) %3

i '(%
4). Note that, fi; j; kg �3

i ' (%
3) : Then, ' (%4) = (fig; fjg; fkg):

Let %52 D� be such that %5
i=%

4
i , fj; kg �

5
j fjg �

5
j fi; j; kg %

5
j fi; jg , and fi; j; kg %

5
k

fj; kg %5
k fi; kg %

5
k fkg. By top-coalition, 'k(%

5
Nnfkg;%

4
k) = fj; kg . By strategy-proofness,

'k(%
5) %5

k fj; kg . As fjg �
5
j fi; j; kg , by individual rationality, ' (%5) = (fig; fj; kg) .

Let %62 D� be such that %6
Nnfjg=%

5
Nnfjg and fi; j; kg %

6
j fj; kg %

6
j fi; jg %

6
j fjg. Note

that, by unanimity, '(%6
Nnfig;%

3
i ) = fi; j; kg . Hence, by strategy-proofness, 'i(%

6) %i fi; j; kg .

Then, '(%6) = fi; j; kg .

Finally, let %72 D� be such that %7
Nnfjg=%

6
Nnfjg and %

7
j=%

4
j . Then

%7
i : %7

j : %7
k:

fi; kg fi; jg fi; j; kg

fi; j; kg fi; j; kg fj; kg

fig fjg fi; kg

fi; jg fj; kg fkg

Note that the only di�erence between %4 and %7 consists of k's preference. By strategy-

proofness, 'j (%
7) %7

j 'j (%
6) = fi; j; kg: By individual rationality, if j 2 'i(%

7), then

'i(%
7) = fi; j; kg. Hence, ' (%7) = fi; j; kg: However, 'k (%

7) �4
k 'k (%

4), which violates

strategy-proofness.

Cases (a:1) and (a:2) exhaust (up to relabelling the agents) all the possibilities. Then,

F' satis�es Condition (a), which concludes the proof of Claim 1.

Claim 2. Let n = 3, then F' satis�es Condition (b) of the single-lapping property.

Assume, to the contrary, that F' does not satisfy Condition (b). Then, there is

a list of coalitions fC1; : : : ; Cmg � F', with m � 3 such that for each t = 1; : : : ;m,

#(Ct \ Ct+1) � 1 and for no i 2 N , (Ct \ Ct+1) = fig. As, by Claim 1, ' satis�es

Condition (a), we have F' = ffig; fjg; fkg; fi; jg; fj; kg; fi; kgg. Then, for each %2 D�,

there is i0 2 fi; j; kg such that

'i0(%) = fi0g (*)

Let %2 D�, be such that fi; jg �i fi; kg �i fig, fj; kg �j fi; jg �j fjg, while

fi; kg �k fj; kg �k fkg . Let %
0
i2 D

�
i be such that top(F';%0

i) = fi; kg. By top-coalition,
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'(%Nnfig;%
0
i) = (fi; kg; fjg) . By strategy-proofness, 'i(%) �i '(%Nnfig;%

0
i) . Then, we

have that 'i(%) 6= fig . Using parallel arguments, we get 'j(%) 6= fjg and 'k(%) 6= fkg ,

which contradicts (*) and concludes the proof of Claim 2.

Now, we extend the result to arbitrary �nite societies.

Induction Step. There is m � 3 such that for each n � m, if the n-agent rule ' satis�es

strategy-proofness, individual rationality, non-bossiness, and exibility, then F' satis�es

the single-lapping property. Now we prove this is true for n = m+ 1.

By Claims 1 and 2, the induction hypothesis is true for n � 3. (If n = 1; 2 the

single-lapping property trivially holds.) Let n = m+ 1. Assume that ' satis�es strategy-

proofness, individual rationality, non-bossiness, and exibility. First, we prove two facts.

Fact 1. For each C;C 0 2 F' such that C [ C 0 6= N , #(C \ C 0) = 1.

Let C;C 0 2 F' such that (C[C 0) 6= N . Let j 2 N n(C[C 0). Let �%j 2 D
�
j be such that

for each C 2 Cj, C 6= fjg, fjg��jC. Let �Nnfjg denote all the partitions of the reduced

society N n fjg. De�ne the rule �'Nnfjg : D�
Nnfjg ! �Nnfjg. Let �'Nnfjg be such that for

each %Nnfjg, ( �'
Nnfjg(%Nnfjg); fjg) � '(%Nnfjg; �%j). By ''s strategy-proofness, individual

rationality, non-bossiness, and exibility, �'Nnfjg satis�es strategy-proofness, individual ra-

tionality, non-bossiness, and exibility. By the induction hypothesis, F �'Nnfjg
satis�es the

single-lapping property. By ''s exibility, C;C 0 2 F �'Nnfjg
, then #(C \ C 0) = 1.

With similar arguments, we can also prove the following fact.

Fact 2. For each fC1; : : : ; Cmg � � with m � 3, [mt=1Ct 6= N , and for each t =

1; : : : ;m, #(Ct \ Ct+1) � 1 (where m + 1 = 1), there is i 2 N such that for each

t = 1; : : : ;m, Ct \ Ct+1 = fig.

Claim 10. F' satis�es Condition (a).

Assume, to the contrary, that there are C;C 0 2 F' such that (C [ C 0) = N , and

#(C \ C 0) � 2. There are three cases:

Case (a:00) Let C;C 0 6= N .
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By Fact 1, either F' = f[N ]; C; C 0g, or F' = f[N ]; C; C 0; Ng. Let �%Nn(C\C0) 2 D
�
Nn(C\C0)

be such that for each j 2 (C n C 0), top(F';%j) = C, whereas for each k 2 (C 0 n C),

top(F';%k) = C 0. De�ne the rule �'C\C
0
: D�

C\C0 ! � in such a way that for each

%C\C02 D�
C\C0 , �'C\C

0
(%C\C0) � '(%C\C0 ; �%Nn(C\C0)). As ' is strategy-proof, �'C\C

0
is

strategy-proof. Moreover, by top-coalition, R �'C\C
0

= f[N ]; (C; [C 0 n C]); (C 0; [C n C 0])g.

Note that, richness of the domain D� does not impose any restriction on the preferences

of the agents in (C \ C 0) over the partitions in R �'C\C
0

. By the Gibbard-Satterthwaite

Theorem, 'C\C
0
is dictatorial. Let i 2 (C\C 0) be a dictator for 'C\C

0
. Let %C\C02 D�

C\C0

be such that top(F �'C\C
0

;%i) = C 0, while for each j 2 (C\C 0)nfig, top(F �'C\C
0

;%j) = fjg.

Then, '(%C\C0 ; �%Nn(C[C0)) = (C 0; [C n C 0]), which violates individual rationality.

Case (a:10) Let C 0 = N , and for no i 2 C there is j 2 N n C, C 00 � N , such that

fi; jg � C 00 2 F'.

Let %NnC2 D
�
NnC be such that for each j 2 (N n C), top(F'; ��j) = N . De�ne now the

rule �'C : D�
C ! � in the following way. For each %C2 DC

� , �'C(�C) � '(%C ; �%NnC).

Clearly, �'C satis�es strategy-proofness. Moreover, by top-coalition, R' = R �'C . Richness

of the domain of preferences does not impose any restriction on the order in which agents

in C may compare partitions in R �'C . Then, by the Gibbard-Satterthwaite Theorem, �'C

is dictatorial, which, by an already familiar argument, violates ''s individual rationality.

Case (a:10) Let C 0 = N , and for some i 2 C there is j 2 N n C, C 00 � N , such that

fi; jg � C 00 2 F'.

Note �rst that, by Fact 1, for each C 00 2 (F' n N), #(C \ C 00) � 1. Moreover, by

Fact 2, there is no cycle of three coalitions in F' that does not involve the grand coalition

N . Let T � N nC. Let j 2 C be such that there is �T � T such that �T [ fjg 2 F'. Note

that by Fact 1, for each T 0 � T with (T 0[fjg) 2 F', ( �T \T 0) = f?g. Let �C � (C nfjg).

Assume that C;N 2 F', and also there is j 2 C such that for some T � N n C,

T [ fjg 2 F'. Note that, by Fact 1, if T 0 2 F' n C, then neither there is i 2 C n fjg,

such that fi; jg � T 0, nor there is k 2 T such that fi; kg � T 0. Let �C � C n fjg.

In this step, we simply replicate the arguments of Case (a:2). Let %12 D� be such that

for each i 2 �C, there is P 1
i 2 P with j = max(N;P 1

i ), N
+
i (P ) = C, and %1

i=%
�
i (P 1

i ), for

j there is P 1
j 2 P with N+

j (P ) = C, and %1
j=%

�
j (P 1

j ), while for each k 2 N n C, there
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is P 1
k 2 P with N+

k (P ) = fjg [ fkg, and %1
k=%

+
k (P 1

k ). By top-coalition, for each i 2 C,

'i(%
1) = C.

Next, let %22 D� be such that %1
Nn �C

=%2
Nn �C

, while for each i 2 �C there is P 2
i 2

P such that j = max(N;P 2
i ), N = N+

i (P
2
i ), and %

2
i=%

+
i (P 2

i ). Note that for each

i 2 �C, N = top(F';%2
i ) and C = top(F' n N;%2

i ). Let i 2 �C, by strategy-proofness,

'i(%
1
Nnfig;%

2
i ) %

2
i 'i(%

1) = C. By individual rationality, 'j(%
1
Nnfig;%

2
i ) 6= N . Then,

'i(%
1
Nnfig;%

2
i ) = C. By non-bossiness, '(%1

Nnfig;%
2
i ) = '(%1). Repeating the same

argument iteratively with each i 2 �C, we get '(%2) = '(%1).

Let%32 D� be such that%2
Nnfjg=%

3
Nnfjg and%

3
j=%

+
j (P 1

j ). Note that top(F
';%3

j) = C .

By strategy-proofness, 'j(%
3) %3

j '(%2). Then, 'j(%
3) = C, and by non-bossiness,

'(%3) = '(%2).

Let %42 D� be such that %3
Nn �C

=%4
Nn �C

, while for each i 2 �C there is P 4
i 2 P such that

for some �k 2 �T max(N;P 4
i ) =

�k, N+
i (P

4
i ) = �T [fig, and %4

i=%
+
i (P 4

i ). Note that by Fact

2, and our assumptions on F', for each i 2 �C, top(F'; P 4
i ) = N , and for each C 2 F'\Ci,

if C 6= N , then fig %4
i C. Let i 2 �C, by strategy-proofness, 'i(%

3) %3
i 'i(%

3
Nnfig;%

4
i ).

Hence, 'i(%
3
Nnfig;%

4
i ) 6= N . Repeating the argument for each i 2 �C, we obtain that

'(%4) 6= N . Then, by individual rationality, we have that '(%4) = [N ].10

Consider now the pro�le %52 D�, such that for that for each i 2 �C, %5
i=%

4
i , for

some P 5
j 2 P such that there is �k 2 T , with max(N;P 5

j ) =
�k and N+

j (P
5
j ) = N , and

%5
j=%

+
j (P 5

j ), while for each k 2 N n C, there is P 5
k 2 P such that j = max(N;P 5

k ),

N = N+
k (P

5
k ), and %

5
k=%

+
k (P 5

k ). By unanimity, '(%5) = N .

Finally, let %62 D�, be such that for each %7
C=%

4
C , while %

6
NnC=%

5
NnC . That is,

we only change agent j's preferences with respect to the previous pro�le. By strategy-

proofness, 'j(%
6) %6 '6(%

5= N . By individual rationality, for each i 2 �C,if j 2 'i(%
6),

then 'i(%
6) = N . Hence, '(%6) = N . Note now that %6 only di�ers from %4 in the

preferences of the agents who belong to N n C. Let k 2 N n T . By strategy-proofness,

'k(%
6
Nnfkg;%

4
k) %

4
k 'k(%

6) = N . Then, j 2 'k(%
6
Nnfkg;%

4
k). By individual rationality,

there is i 2 �C such that i 2 'j(%
6
Nnfkg;%

4
k). By Fact 1, and our assumptions over F',

'(%6
Nnfkg;%

4
k) = N . Repeating the argument as many times as necessary, we get that

10Note that for each i 2 �C, N is the only coalition in F' that is preferred to staying on her own. On

the other hand, for agent j, the coalitions that are preferred to staying alone include some member of �C.

Thus, j also stays alone. Finally, each agent k 2 N n C requires the presence of agent j in order to be

happy about joining any given coalition.
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'(%4) = N , a contradiction.

Cases (a:00), (a:10) and (a:20) exhaust all the possibilities. Then, this su�ces to prove

that ' satis�es Condition (a).

Claim 20. F' satis�es Condition (b).

Assume, to the contrary, that ' does not satisfy Condition (b). Then, there is a

list of coalitions fC1; : : : ; Cmg, with k � 3 such that for each t = 1; : : : ;m, (m + 1 = 1),

(Ct\Ct+1) 6= f?g, and there is no i 2 N such that for each t = 1; : : : ;m, fig = (Ct\Ct+1).

As we have just proved that F' satis�es Condition (a) of the single-lapping property, for

each t = 1; : : : ; k; #(Ct \ Ct+1) = 1. With similar arguments to those we use in Fact 1,

we can prove that [kt=1Ct = N . Moreover, F' = fC1; : : : ; Ckg [ [N ].

For each t = 1; : : : ; k, let it � (Ct\Ct+1). Let %2 D
� be such that for each t = 1; : : : ; k

and each j 2 (Ct n fit; it+1g), top(F
';%j) = Ct. On the other hand, for each t = 1; : : : ; k,

top(F';%it) = Ct+1, and Ct �it fitg. By top-coalition and the repeated application of

strategy-proofness, for each t = 1; : : : ;m; 'it(%) %it Ct.

Assume �rst that m is odd, there is t0 2 f1; : : : ;mg such that 'it0 (%) = fit0g, a

contradiction with 'it(%) %it Ct for each t = 1; : : : ;m.

Assume now that m is even. Without loss of generality, assume that for each t odd,

'it(%) = Ct+1 and for each t0 even, 'it0 (%) = Ct0 . Let �t be even and let %0
i�t
2 D�

i�t
be such

that top(F';%0
i�t
) = C�t+1 and for each T * C�t+1, fi�tg �

0
i�t
T . By individual rationality,

we obtain 'i�t(%Nnfi�tg;%
0
i�t
) 6= C�t . Let %0

i�t�1
2 D�

i�t�1
be such that top(�';%

0
i�t�1

) = C�t�1 .

By top-coalition, 'i�t�1(%Nnfi�t�1;i�tg;%
0
fi�t�1;i�tg

) = C�t�1 . By strategy-proofness, we obtain

'i�t�1(%Nnfi�tg;%
0
fi�tg

) %i�t�1 'i�t�1(%Nnfi�t�1;i�tg;%
0
fi�t�1;i�tg

) . Then, 'i�t�1(%Nnfi�tg;%
0
i�t
) = C�t�1,

and 'i�t�2(%Nnfi�tg;%
0
i�t
) = C�t�1 . Repeating the argument as many times as necessary,

for each t odd, 'it(%Nnfi�tg;%
0
i�t
) = Ct , while for each t0 even 'it0 (%Nnfi�tg;%

0
i�t
) = Ct0+1,

and 'i�t(%Nnfi�tg;%
0
i�t
) = C�t+1. Then, we get 'i�t(%Nnfi�tg;%

0
i�t
) �i�t 'i�t(%) , which violates

strategy-proofness.

Proof of Theorem 2. Let ' satisfy strategy-proofness, individual rationality, non-bossiness,

and exibility. By Lemma 2, ' satis�es top-coalition. Let %2 D�. By Lemma 4, As F'

satis�es the single-lapping property. Then , there is C 2 F' such that for each i 2 C,
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top(F';%i) = C . By top-coalition, for each i 2 C, 'i(%) = C. Moreover, again by top-

coalition, for each%02 D� such that%C=%
0
C , for each i 2 C, 'i(%

0) = C. Let �NnC denote

the set of all possible partitions of the reduced society N n C. De�ne now the restricted

social choice function �'NnC : D�
NnC ! �NnC , in such a way that for each %NnC2 D

�
NnC ,

( �'NnC(%NnC); C) � '(%NnC ;%C). Clearly, �'NnC satis�es strategy-proofness, individual

rationality, non-bossiness, and exibility. Moreover, F �'NnC
= fC 0 2 F'; C \ C 0 = f?gg,

and F �'NnC
satis�es the single-lapping property. Repeating the same arguments as many

times as necessary, we get '(%) = ��F
'

(%).

7 Applications to Matching Problems

In this section we present several applications of our results. Corollaries in this section

consist of simple examples of rules whose sets of feasible coalitions do not ful�ll the single-

lapping property.

7.1 Marriage and Roommate Problems

The marriage problems are a special class of coalition formation problems. There are two

disjoint groups of agents.11 These two sets are usually interpreted as a set of men and

a set of women. Each man has preferences over women and remaining single, and each

woman has preferences over men and remaining single. A coalition is feasible if it consists

of a couple formed by a man and a woman, or it is formed by a single agent. Then, we say

that a rule 'm is de�ned over a subclass of marriage problems if, there are two disjoint

sets of agents M; W , M [W = N such that

F'm = f(m;w) � N;m 2M;w 2 Wg [ [N ]:

Clearly, if #M � 2 and #W � 2, the set of feasible coalitions of a rule de�ned on a

subclass of marriage problems does not satisfy the single-lapping property. Note that,

additive representability of agents' preferences does not introduce any restriction on the

ranking of couples. Moreover, from Lemma 3, we know that the choice of a rule satisfying

our axioms is not a�ected by changes on the preferences over unfeasible coalitions. Then,

from Theorem 1, we can derive immediately the following corollary.

11See Roth and Sotomayor [14] for a comprehensive exposition of modeling and analysis of such prob-

lems.
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Corollary 3. There is no rule de�ned on the class of marriage problems with at least two

men and two women that satis�es strategy-proofness, individual rationality, non-bossiness,

and exibility.12

The only possibility to avoid the impossibility consists of reducing the set of feasible

coalitions, in such a way that not every couple is feasible. That would be the case when

the set of men (or women) is a singleton.

A generalization of marriage problems is known as roommate problems. There is a set

of agents that have to be organized in couples. For instance, there are a number of rooms

available and we can assign either 1 or 2 persons to each room. (Some room may remain

empty.) Then, we say that a rule 'r is de�ned over a the class of roommate problems if

F'r = fC 2 N ; #C � 2g:

Corollary 4. There is no rule de�ned on the class of roommate problems that satis�es

strategy-proofness, individual rationality, non-bossiness, and exibility.

Of course, Corollary 2 can be extended to problems for which larger coalitions are ad-

missible. However, in that case, the result only holds if agents' preferences over roommate

are additively representable.

7.2 College Admission Problems when Students Care about Class-

mates

Another generalization of the marriage problem is known as the college admission problem.

There are two disjoint sets of agents, a set of colleges C, and a set of new students S. Each

college c 2 C may admit up to qc new students. Colleges have additively representable

preferences over new students. New students have additively representable preferences

over colleges and classmates. A coalition is feasible if and only if either is a singleton

or it contains exactly one college and the number of students assigned to each college is

not larger than its respective quota qc. Dutta and Mass�o [9] have shown that core-stable

partitions may fail to exist in such problems when students may care about the identity

of their classmates. We say a rule 'c is de�ned on the college admission problem where

12Alcalde and Barber�a [1], Roth [13], and S�onmez [17] show that for the marriage problem, no rule

satis�es strategy-proofness, individual rationality, exibility, and Pareto e�ciency.
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students care about classmates if there are two disjoint sets, C; S, C [ S = N , and a list

of quotas fqcgc2C , such that

F'c = f(c; Sc); c 2 C; Sc � S; and #Sc � qcg [ [N ]:

Corollary 5. Assume that S � 2, and either #C � 2 or if C = fcg, qc � 2. Then, there

is no rule de�ned on the class of college admission problems where students care about

their classmates that satis�es strategy-proofness, individual rationality, non-bossiness, and

exibility.

Note that the previous corollary only holds if students care about their classmates. In

fact, S�onmez [16] shows that if students only care about the college they attend, and each

college has an unlimited number of slots, there is always a unique core-stable partition,

and the rule that selects that partition satis�es strategy-proofness, individual rationality,

and Pareto e�cient.
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